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Abstract: Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder of
childhood. Although abnormalities in several brain regions and disturbances of the catecholaminergic
pathway have been demonstrated, the pathophysiology of ADHD is not completely understood,
but as a multifactorial disorder, has been associated with an increase in oxidative stress and
neuroinflammation. This review presents an overview of factors that increase oxidative stress and
neuroinflammation. The imbalance between oxidants and antioxidants and also the treatment with
medications are two factors that can increase oxidative damage, whereas the comorbidity between
ADHD and inflammatory disorders, altered immune response, genetic and environmental associations,
and polymorphisms in inflammatory-related genes can increase neuroinflammation. Evidence of an
association with these factors has become valuable for research on ADHD. Such evidence opens up
new intervention routes for the use of natural products as antioxidants that could have potential as a
treatment against oxidative stress and neuroinflammation in ADHD.

Keywords: oxidative stress; neuroinflammation; attention-deficit/hyperactivity disorder (ADHD);
medications

1. Introduction

1.1. Attention-Deficit/Hyperactivity Disorder

Attention-deficit/hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder in
children characterized by inattention, hyperactivity, and/or impulsivity [1–3] that impairs the psychological,
social, academic, and occupational function [4]. The disorder is linked with a range of comorbidities
(e.g., depression, anxiety, substance use disorders, conduct disorders, criminal behavior), developmental
conditions (e.g., autism spectrum disorders), and physical conditions [5–8]. Clinical diagnosis of ADHD is
based on the presence of six or more symptoms that include inattention and hyperactivity/impulsivity
and, according to the criteria of the fifth edition of the Diagnostic and Statistical Manual of Mental
Disorders (DSM-5), should be carried out when symptoms impair academic, occupational, and social
behavior, the onset is before 12 years of age and the symptoms can be observed in multiple settings in
the clinical interview, including the gestational, developmental, and family history [9]. The worldwide
prevalence of ADHD in children and adolescents is 7.2%, with about 4% shown to persist in adults,
and the diagnosis of ADHD is more frequent in boys than in girls [4,10–13]. Although ADHD is
a childhood disorder, a large percentage of children continue to have symptoms in adolescent life,
and approximately 45% have symptoms as adults [1,14,15].

1.2. Medications for ADHD

Medications used for ADHD are divided into psychostimulants and non-psychostimulants,
which have diverse delivery systems, formulations, and pharmacokinetic actions. Educational and
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psychosocial approaches are also used as a treatment for ADHD [4,16]. Psychostimulants such
as methylphenidate (MPH) and amphetamine are the first-line therapy for ADHD. MPH and
amphetamine improve the symptoms by blocking presynaptic dopamine and norepinephrine
transporters, thus increasing catecholaminergic transmission in the striatum, prefrontal cortex,
and hippocampus [4,9,17]. Some side effects have been observed with psychostimulants, such as
insomnia, appetite loss, headache, dry mouth, anxiety, and nausea [2,18]; long-term psychostimulants
treatment also has an effect on growth (particularly weight and height velocity) and causes euphoric
effects and cardiovascular events [19,20].

The second-line treatment is with non-psychostimulants such as atomoxetine (ATX), which is
a selective norepinephrine transporter inhibitor, and selective α-2 adrenergic receptor agonists,
namely clonidine and guanfacine [9,21,22]. Non-psychostimulant medications usually are given to
patients who cannot tolerate the side-effects of psychostimulants and have a poor response. However,
some side effects of non-psychostimulants have been linked with somnolence, nausea, vomiting,
diarrhea, decreased appetite, dizziness, fatigue, and changes in cardiovascular parameters [2,23].

1.3. Etiology of ADHD

The heritability of ADHD is high, with a range of 70–80% [1,24]. Genome-wide association studies
have identified approximately 22% of the heritability, associated with 12 genome-wide significant
risk loci and also the enrichment of copy-number variants [25–28]. Prematurity/low birth weight and
exposure to environmental toxins and pesticides have been highlighted as risk factors in ADHD [29,30].
Maternal exposure to tobacco and alcohol, nutritional deficiencies, viral infections, and obesity during
pregnancy are also associated with ADHD but can also be associated with genetic factors [31].

1.4. Pathophysiology of ADHD

The pathophysiology related to ADHD remains unknown. However, ADHD is associated with
abnormalities in the brain due to cognitive and functional deficits. Additionally, links between ADHD
and the dopamine levels in specific brain regions have been found: patients with ADHD have attenuated
dopaminergic activity [32,33]. In that sense, it has been suggested that deregulation in catecholaminergic
neurotransmission is the cause of the disorder [34,35]. Furthermore, extensive data indicate the
contribution of oxidative stress as a pathophysiological cause of ADHD [3,36,37]. Also, there is
evidence indicating neuroinflammation as a possible factor in ADHD [3,38–40]. In this review, the role
of oxidative stress and neuroinflammation as possible factors involved in the pathophysiology of
ADHD is discussed, along with a possible link to the medications used for treatment that may increase
these factors.

2. Role of Oxidative Stress

Oxidative stress is a state produced by an imbalance between antioxidants and oxidants in the cells.
The imbalance occurs as a result of the inappropriate function of the antioxidant system or by an excessive
level of reactive oxygen species (ROS). Oxidative stress in the brain can harm the integrity of neurons
because the brain is rich in polyunsaturated fatty acids (PUFAs) that are highly susceptible to oxidation,
producing ROS [41,42]. This condition could cause oxidative damage of neurons, which are rich in
mitochondria; mitochondria can regulate the redox state, ion homeostasis, apoptosis, cell signaling
and, as the powerhouse of the cell, produce ATP, thus they can generate ROS, causing bioenergetic
disturbances that lead to cell death or several disorders, including neurodegenerative and psychiatric
diseases [43–45].

Mitochondrial dysfunction, genetic, and environmental factors can generate oxidative stress,
and inflammation is a neuroprotective response to diverse types of tissue damage. If the tissue is
inflamed, it causes an increase of ROS, which can lead to cell death [46,47]. The oxidative stress
modifies the inflammatory response, thus, when there is a redox balance, the inflammatory response
is a defense mechanism; when there is a redox imbalance, the signaling pathways that modulate
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the immune system are altered, leading to dysregulation of the immune response [48]. In a chronic
state of oxidative stress, proteins and lipids oxidize and the DNA is damaged. ROS could also
lead to the activation of astrocytes and microglia. High concentrations of ROS could activate the
high secretion of proinflammatory chemokines and cytokines and produce a vicious circle [47,48].
Therefore, oxidative stress and neuroinflammation are mechanisms that coexist and are interrelated.
The pathophysiology of ADHD is associated with oxidative stress and neuroinflammation, due to the
imbalance between oxidants and antioxidants, catecholaminergic dysregulation, medications used
for treatment, genetic and environmental factors, and all those factors could be producing oxidative
stress and neuroinflammation which further increases the symptoms and as a result, triggering a
vicious circle.

2.1. Oxidative Stress and Oxidant Levels

Numerous studies have demonstrated elevated levels of oxidative stress in ADHD, increasing the
evidence for oxidative stress being a pathophysiological factor. The measurement of higher rates of
ethane levels, as a non-invasive measure of oxidative breakdown of n-3 PUFAs in patients with ADHD,
was also demonstrated [49]. Furthermore, elevated levels of malondialdehyde (MDA) have been
observed in children with ADHD [50,51]. A randomized, double-blind, placebo-controlled study found
that children with ADHD had increased damage to DNA, measured with 8-oxo-7,8-dihydroguanine
(8-oxoG) [52]. Moreover, the levels of MDA in plasma from children and adolescents with ADHD
were significantly higher than the controls [53]. An increase in lipid peroxidation in pediatric ADHD
patients was evaluated using acrolein-lysine in urine samples [54]. Also, changes in plasma levels
of xanthine oxidase (XO) were significantly higher in patients with ADHD [55]. The levels of MDA
and the DNA damage indicator 8-hydroxy-2′-deoxyguanosine (8-OHdG) were statistically lower in
children with ADHD [56,57]. The total oxidative status (TOS) and oxidative stress index (OSI) were
higher in patients with ADHD than controls [58]. Furthermore, in children and adolescents with
ADHD, the TOS and OSI were significantly higher than in healthy controls [59]. Also, the TOS was
high in plasma of children and adolescents with ADHD [60]. In a meta-analysis of ADHD patients,
an increase in oxidative stress was found [37]. Moreover, TOS and OSI were increased in children
with ADHD [61]. No significant differences were detected in serum TOS and OSI levels in adults with
ADHD [62]. Also, in the spontaneously hypertensive rat (SHR), used as an animal model for ADHD,
an increase in ROS production measured using 2′-7′-dichlorofluorescein diacetate (DCFH-DA) was
demonstrated in the striatum, hippocampus, and cortex [63]. In contrast, it was demonstrated that
MDA levels were not significantly different in children with ADHD [64]. Moreover, in children with
ADHD, increases in plasma MDA and urinary 8-OHdG levels were found [65]. Finally, the levels of
MDA and free sulphydryl groups in the spleen were higher in 5-week-old SHR than in control rats [66].
Recently, evaluation of serum levels of hydroperoxide, an oxidative stress marker, was shown to be
higher in preschool children with ADHD [67].

2.2. Nitrosative Stress

An increase in nitrosative stress (i.e., nitric oxide (NO) levels) and an impaired balance of oxidants
and antioxidants were observed in children with ADHD [68]. In the SHR, damaged non-selective
attention was improved with the nitric oxide synthase (NOS) inhibitor l-nitro-arginine methyl ester
(l-NAME) [69]. In contrast, reduced blood NO levels have been reported [70]. On the other hand,
NO levels were significantly higher in ADHD [53,71]. Also, changes in plasma levels of NOS were
significantly higher in patients with ADHD [55]. The outcomes of oxidative and nitrosative stress are
summarized in Table 1.
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Table 1. Summary of oxidative and nitrosative stress biomarkers and outcomes.

Biomarker/Outcome Sample Compared to
Control/Treatment (Tx) Reference

Improved non-selective attention Rat intraperitoneal NOS inhibitor [69]
↑ Extracellular norepinephrine and dopamine in PC Rat brain-Tx ATX [22]

Breakdown of PUFAs ↑ exhaled ethane [49]
↑ Extracellular norepinephrine and dopamine in PC,

OC, HPT, HC, and CB Rat brain-Tx ATX [72]

NO ↓ Plasma [70]
↑ TBARS and protein carbonyl formation Rat brain regions-Tx MPH [73]

8-oxoG ↑ Plasma [52]

↑ DNA damage Rat blood and brain regions-Tx
MPH [74]

↑Mitochondrial complexes Rat brain homogenates-Tx MPH [75]
MDA ↑ Plasma [50]
MDA ↓ Plasma [57]
NO ↑ Plasma [71]

↑ Superoxide in submitochondrial particles in CB and
HC Rat brain-Tx MPH [76]

MDA and NO ↑ Plasma [53]
Acrolein-lysine ↑ Urine [54]
TOS and OSI ↑ Plasma [58]

MDA and 8-OHdG ↓ Plasma [56]
XO and NOS ↑ Serum [55]

↓TBARS and reactive species level in HC and ST
↑ Reactive species level and lipid peroxidation in PC Rat brain homogenates-Tx MPH [77]

MDA ↑ Plasma [51]
↑ TBARS and carbonyl groups Rat brain homogenates-Tx MPH [78]

TOS and OSI ↑ Plasma [59]
TOS ↑ Plasma [60]

TOS and OSI ↑ Serum [61]
↑MDA and induced neurodegeneration in CC and

HC Rat brain homogenates-Tx MPH [79]

DCFH-DA ↑ Rat brain homogenates [63]
TOS and OSI = Serum [62]

MDA = Serum [64]
MDA and 8-OHdG ↑ Plasma and urine [65]

MDA and free sulphydryl groups ↑ Rat spleen [66]
Impaired oxidants-antioxidants balance

↑ NO Serum [68]

↑ Cytosolic and mitochondrial ROS, damage of
mitochondria and cell death Cell line-Tx ATX [80]

MDA in CX and HC ↑ Rat brain homogenates-Tx MPH [81]
Hydroperoxide ↑ Serum [67]

The table summarizes the oxidative and nitrosative stress biomarkers and outcomes. More details in the text.
PC, prefrontal cortex; HC, hippocampus; OC, occipital cortex; CB, cerebellum; ST, striatum; HPT, hypothalamus;
CC, cerebral cortex; CX, cortex; ↑, increased; ↓, decreased; =, no difference.

2.3. Antioxidant Levels in ADHD

In a randomized, double-blind, placebo-controlled study, it was found that children with ADHD
had decreased total antioxidant status (TAS) [52]. Also, the TAS in children with ADHD was low [82].
Moreover, in a randomized, double-blind controlled trial, higher concentrations of adrenaline and
noradrenaline were found in the urine of ADHD patients, which correlated positively with the degree
of hyperactivity, and they were associated with high levels of oxidized glutathione disulphide (GSSG),
which is an important marker of exhaustion of the antioxidant glutathione (GSH) [83]. In plasma
samples of patients with ADHD, the antioxidant enzyme activity of glutathione peroxidase (GPx) was
significantly lower, the superoxide dismutase (SOD) activity was not significantly different between
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patients and controls, and the catalase (CAT) activity was higher than in the controls, but not statistically
significant [53]. It was also demonstrated that the serum levels of SOD1 were significantly lower in
children with ADHD [84]. Moreover, in plasma, the levels of SOD, glutathione-S-transferase (GST), GPx,
and CAT were significantly lower in children with ADHD [85]. Furthermore, a decrease in the salivary
total antioxidant activity was observed in children with ADHD [86]. It has been demonstrated that
levels of the antioxidant enzymes GST and paraoxonase-1 (PON1) were significantly lower in plasma
from patients with ADHD [55], however, the antioxidant PON1 and thiol levels were no different in
children with ADHD [56]. In addition, a significant increase in the salivary thiol levels was observed;
in contrast, ceruloplasmin, which is an important extracellular antioxidant, did not show any significant
change, but magnesium levels were significantly decreased in children with ADHD [87]. The TAS was
increased in patients with ADHD [58], but TAS levels in plasma tended to decrease in children and
adolescents with ADHD, and antioxidant enzymes such as PON, stimulated PON, and arylesterase
(ARE) showed no differences in activity. However, a significantly lower thiol enzyme activity was found
in the plasma of children and adolescents with ADHD [60]. TAS was also significantly lower in children
and adolescents with ADHD than in controls [59]. In children with ADHD, it was demonstrated that
the TAS, PON1, and ARE activities were decreased [61]. In the SHR, decreased GPx activity was found
in the prefrontal cortex, but there was no difference in the other regions or in GSH, SOD, and CAT
activities between the SHR and controls [63]. In adults with ADHD, the homocysteine level was lower
and the serum folate level was higher. However, no significant difference was detected in serum
vitamin B12 and the TAS [62]. In contrast, erythrocyte GSH and plasma retinyl palmitate levels were
higher in patients with ADHD than in controls [65]. The antioxidant levels of melatonin were high in
serum from children with ADHD [68]. Finally, the total antioxidant capacity (TAC), CAT, and GSH
were significantly lower in children with ADHD [64]. Some of the opposing results observed in the
different studies could be explained by the different methodologies, the participant selection criteria
and the analysis used. Thus, the extensive data propose that a decrease in antioxidants and an increase
in both oxidative and nitrosative stress in ADHD could contribute to its pathophysiology [3,36,37].
The antioxidant outcomes of are summarized in Table 2.

Table 2. Summary of antioxidant biomarkers and outcomes.

Biomarker/Outcome Sample Compared to
Control/Treatment (Tx) Reference

TAS ↓ Plasma [52]
TAS ↓ Plasma [82]

↑ Adrenaline and noradrenaline
↑ GSSG level and ↓ GSH level Plasma [83]

SOD (chronic Tx: ↑ CC, HC, and ↓ ST-acute Tx: ↑ CC
and ↓ PC)

CAT (acute Tx: ↓ HC)
Rat brain-Tx MPH [88]

SOD ↓ Plasma [71]
↑ CAT, ↓ GPx and = SOD Plasma [53]

SOD1 ↓ Serum [84]
SOD, GST, GPx, and CAT ↓ Plasma [85]

Antioxidant activity and CAT ↓ Saliva [86]
GST, PON1 ↓ Serum [55]

PON1 and thiol = Plasma [56]
= Ceruloplasmin and ↑ thiol Saliva [87]

TAS ↑ Plasma [58]
↑ SOD and CAT in CB Rat brain homogenates-Tx MPH [77]

PON1 and ARE ↓ Plasma [51]
↓ SOD and CAT Rat brain homogenates-Tx MPH [78]

TAS ↓ Plasma [59]
↓ TAS and thiol
= PON and ARE Plasma [60]

TAS, PON1, and ARE ↓ Serum [61]



Antioxidants 2020, 9, 1039 6 of 17

Table 2. Cont.

Biomarker/Outcome Sample Compared to
Control/Treatment (Tx) Reference

↓ GSH, SOD, GPx, and GR in CC and HC Rat brain homogenates-Tx MPH [79]
= GSH, SOD, and CAT

↓ GPx in PC Rat brain homogenates [63]

↓ Homocysteine and ↑ Folate
= Vitamin B12 and TAS Serum [62]

Retinyl palmitate and GSH ↑ Plasma and erythrocytes [65]
TAC, CAT, and GSH ↓ Serum [64]

Melatonin ↑ Serum [68]
SOD in CX and HC ↓ Rat brain homogenates-Tx MPH [81]

The table summarizes the antioxidant biomarkers and outcomes. More details in the text. PC, prefrontal cortex;
HC, hippocampus; CB, cerebellum; ST, striatum; CC, cerebral cortex; CX, cortex. ↑, increased; ↓, decreased;
=, no difference.

As demonstrated in Tables 1 and 2, data on oxidative, nitrosative stress, and antioxidant levels are
inconsistent in patients with ADHD. Altogether, some differences have been observed, although the
changes are controversial, suggesting that patients with ADHD have heterogeneity in the antioxidant
production, but their response to oxidative and nitrosative stress is insufficient, leading to oxidative
damage. Thus, studies carried out so far point out that ADHD is associated with increased oxidative
stress. However, there continues to be inconsistency in findings, and this may at least be partly
attributed to differences in participants examined, oxidative stress markers tested, and protocols
and samples utilized to examine appropriate markers. It is also acceptable that oxidative stress is
associated with some ADHD symptoms and/or subtypes, across gender and age, but this has not yet
been enough explored due to a lack of appropriate research. Consequently, methodological differences
might underlie contradictory results. Additional research is therefore required to help clarify the
importance of oxidative stress in ADHD and its pertinence for the treatment and prevention of ADHD.

2.4. ADHD Medications and Oxidative Damage

It has been demonstrated that treatment with MPH increases the generation of oxidative stress;
in the brain of young rats, chronic treatment with MPH increased oxidative stress as assessed by
thiobarbituric acid reactive species (TBARS) and protein carbonyl formation [73]. Also, treatment with
MPH in the striatum of young and adult rats increases DNA damage [74]. On the other hand, it was
demonstrated that chronic exposure to MPH in the brain of young rats increases mitochondrial
complexes [75]. Moreover, chronic or acute treatment with MPH altered the activity of SOD and
CAT enzymes in the brain of young rats [88]. Acute administration of MPH in young rats increased
the production of superoxide in submitochondrial particles in the cerebellum and hippocampus [76].
Additionally, in the prefrontal cortex of juvenile rats, chronic MPH treatment induced an increase in
oxidative stress, protein damage, and lipid peroxidation [77]. Furthermore, an increase in oxidative
stress was shown with acute and chronic MPH treatment in the SHR [78]. Finally, acute administration of
high doses of MPH in adult rats produced oxidative damage, reduced GSH, SOD, GPx, and glutathione
reductase (GR) activities, and provoked neurodegeneration in the cerebral cortex and hippocampus [79].
Recently, in the cortex and hippocampus of rats treated with MPH, MDA levels were increased and
SOD levels reduced [81].

The auto-oxidation of catecholamines (dopamine and norepinephrine) can be easily generated and
ROS formed [89–91]; ROS generation can trigger oxidative damage to DNA and cell death [92,93]. In that
sense, it was demonstrated that ATX treatment increases extracellular catecholamine levels [22,72].
Therefore, ATX can trigger an increase of cytosolic and mitochondrial ROS, producing damage to the
mitochondria and consequently, cell death [80]. The precise association between the auto-oxidation of
catecholamines and the generation of oxidative stress in ADHD remains unclear. Hence, both processes
could be implicated in the pathophysiology of ADHD.
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3. Role of Neuroinflammation

The innate and adaptive immune systems work in harmony to support and determine effective
and protective immune responses. The innate immune system works as the first line of defense,
including the clearance of microbes such as viruses or bacteria, wound repair, and removal of cells
that are in the process of dying. Moreover, the innate immune system can later activate the adaptive
system. The cells in the central nervous system that participate in the innate immune response are
microglia (which are immune cells in the brain), astrocytes, mast cells, natural killer cells, macrophages
and oligodendrocytes, circulating phagocytes, and also monocytes, which are the precursors of
macrophages and dendritic cells and play a role in innate immunity [94,95]. The adaptive immune
system is highly specific and capable of remembering; it can also effectively initiate responses against
previously experienced immunological threats or eliminate tumors. The components of the adaptive
immune system are the T and B cells, known as lymphocytes, the effector cells, and their secreted
products [94,95].

Inflammation of the nervous system, commonly known as neuroinflammation, can be characterized
by the activation of microglia (which play a role in pathological and physiological conditions),
astrocytes, oligodendrocytes, and ependymal cells, by increasing levels of proteases, glutamate, ROS,
NO, chemokines, toxic cytokines, and prostaglandins and by infiltration of T and B cells, neutrophils,
monocytes/macrophages and dendritic cells [96–99]. The role of neuroinflammation has been associated
with several neuropsychiatric disorders, such as autism [100], bipolar disorder [101], depression [102],
and schizophrenia [103]. Thus, growing interest points to neuroinflammation as a factor involved in
the pathophysiology of ADHD [3,39,40].

Microglia represents the resident immune cells of the CNS, with an important function in the
elimination of waste products during inflammation or damage [94]. The cytokine and growth factor
S100B is a marker of glial function. In serum samples of children with ADHD, there were no clear
differences in the levels of S100B [104]. Conversely, a decreased in the total serum levels of S100B were
modestly associated with hyperactive-impulsive symptoms [105].

Astrocytes have unique functional and morphological characteristics that differ within specific
areas of the brain, and brain disorders could be characterized by an inflammatory state of the astrocytes.
Thus, astrocytes can drive the induction and progression of the inflammatory state, which is notably
related to the disorder condition or severity [106]. SynCAM1 is an adhesion molecule involved in
synaptic differentiation and organization, which is expressed in astroglial cells. A mice carrying
a dominant-negative form of SynCAM1 specifically targeted to astrocytes developed behavioral
abnormalities similar to those described in animals model of ADHD, suggesting unappreciated
involvement of astrocytes to the pathophysiology of this disorder [107].

An association between cytokines and ADHD symptoms in children has been demonstrated.
As a result, elevated levels of IL-16 (hyperactive-impulsive symptoms) and IL-13 (inattention) were
found [105]. In patients with ADHD, the adenosine deaminase (ADA) activity, a marker of cellular
immunity, was significantly higher; ADA has a role in differentiation and lymphocyte proliferation [55].
Furthermore, it has been suggested that the release of inflammatory cytokines caused by stress or
allergic inflammation could alter the maturation of the prefrontal cortex and the neurotransmitters
involved in ADHD [108]. Additionally, serum levels of IL-6 were significantly higher in children with
ADHD compared with controls [109]. The serum and splenic concentrations of chemokines IP-10,
RANTES, and MCP-1 were significantly increased in 5- and 10-week-old SHR, and increased levels
of IL-6 and TNF-α were observed in 5-week-old SHR [66]. Recently, in plasma from young people
with ADHD, higher levels of C-reactive protein and IL-6 and lower levels of TNF-α and BDNF were
found [110].
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3.1. Inflammation and Polymorphisms

The contribution of gene polymorphisms could be associated as a neurodevelopmental risk factor
in the pathogenesis of ADHD. Thus, the findings of the IL-1 receptor antagonist (IL-1RA) gene variable
number tandem repeat (VNTR) polymorphism in children with ADHD demonstrated that the 2-repeat
allele was associated with reduced risk and the 4-repeat allele with increased risk for ADHD [111].
Nevertheless, no evidence for the association of IL-1RA polymorphism with ADHD was found [112].
Furthermore, a significantly higher polymorphism of dopamine receptor D2 gene (TaqI A) and of
BDNF (196 G/A val66met), IL-2 (−330), IL-6 (−174), and TNF-α (−308) was reported [113]. In a study
of single nucleotide polymorphisms (SNPs) an association was demonstrated between the cytokine
family and the ciliary neurotrophic factor receptor (CNTF) in both adults and children with ADHD,
(rs7036351, rs1080750 and rs1124882 risk haplotypes) [114]. Also, two SNPs in the CNTF (rs10758268
and rs7044318) gene were associated with inattentive symptom severity in ADHD and SNPs within
cytokine genes IL-16 (rs8039027), and S100B (rs2839361) moderated the association between birthweight
and symptom severity [115]. The outcomes of neuroinflammation are summarized in Table 3.

Table 3. Summary of neuroinflammation and outcomes in ADHD.

Type of Study Outcome References

DNA from children IL-1RA: 2-repeat allele ↓ risk and 4-repeat allele ↑ risk [111]
DNA from children No evidence of IL-1RA polymorphism [112]

DNA from children ↑ Polymorphism of dopamine receptor D2, BDNF,
IL-2, IL-6 and TNF-α [113]

DNA from children and adults Association with CNTF [114]

Serum from children
↑ Levels of IL-16 and IL-13

↓ S100B associated with hyperactive-impulsive
symptoms

[105]

A cross-sectional study of adults ↑ Comorbidity with asthma [116]
Serum from children ↑ ADA activity [55]

Astrocyte-specific disruption of
SynCAM1 ADHD-like behavior abnormalities in mice [107]

Serum from children Positive immunoreactivity against anti-Purkinje cell
antibodies in the cerebellum [117]

Birth cohort, population-based
and correlational studies of

children and adolescents
↑ Comorbidity with atopic eczema [108,118,119]

DNA from young
2 SNPs in CNTF were associated

SNPs within IL-16 and S100B moderated birthweight
and symptom severity

[115]

A population-based cohort study
using a sibling-comparison design

Maternal obesity and metabolic complications could
increase the risk of ADHD in offspring [120,121]

Serum from patients Autoimmune reactions against the basal ganglia and
streptococcal infections [122,123]

Serum from children ↑ Auto-antibodies against the dopamine transporter [124]
Serum from patients ↑ Anti-basal ganglia antibodies [122]
Serum from children ↑ Anti-Purkinje antibodies and IL-6 and IL-10 [125]

Population-based study of patients ↑ Prevalence of autoimmune thyroid disease,
ulcerative colitis, and ankylosing spondylitis [126]

Population-based nested
case-control study

Mothers with inflammatory or immune diseases ↑
risk of ADHD in offspring [38]

A prospective nationwide study Maternal history of autoimmune disease could ↑ risk
of ADHD [127]

Population-based case-control,
large-scale cross-sectional,

population-based studies, and
venous blood of children

↑ Comorbidity with allergic diseases such as allergic
rhinitis, atopic dermatitis, allergic conjunctivitis [128–132]
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Table 3. Cont.

Type of Study Outcome References

Serum from children ↑ IL-6 [109]

Serum and spleen from SHR ↑ IP-10, RANTES, and MCP-1
↑ Levels of IL-6 and TNF-α [66]

Large-scale genome-wide
cross-trait association study Causal links between asthma and ADHD [133]

Plasma from young ↑ C-reactive protein and IL-6 and ↓ TNF-α and BDNF [110]
Prenatal studies with a nested

case-control design
Maternal C-reactive protein during early pregnancy

showed no significant association in offspring [134]

The table summarizes the neuroinflammation and outcomes. More details in the text. ↑, increased; ↓, decreased.

3.2. Antibodies in ADHD

A possible association between specific antibodies and immune dysregulation in ADHD has
been evaluated and a significant positive immunoreactivity against anti-Purkinje cell antibodies in the
cerebellum of children with ADHD was found [117]. Furthermore, a high percentage of anti-Purkinje
antibodies and increased serum levels of interleukin IL-6 and IL-10 were detected in patients with
ADHD [125]. Moreover, high levels of auto-antibodies against the dopamine transporter [124] and
high levels of anti-basal ganglia antibodies were found in ADHD patients [122].

3.3. Comorbidity with Other Disorders

A marked comorbidity has been observed between ADHD and asthma [116], atopic
eczema [108,118,119], and allergic diseases such as allergic rhinitis, atopic dermatitis, and allergic
conjunctivitis [128–132]. Moreover, it was indicated that autoimmune reactions against the basal ganglia
and streptococcal infections are more frequent in patients with ADHD [122,123]. The comorbidity
of autoimmune diseases with ADHD was demonstrated to be low, but patients with ADHD had a
significant prevalence of autoimmune thyroid disease, ulcerative colitis, and ankylosing spondylitis
compared to controls [126]. Recently, a large-scale genome-wide cross-trait analysis identified causal
links between asthma and ADHD [133]. Thus, more research is required to elucidate the comorbidity
between ADHD and allergic or autoimmune disorders.

Both maternal obesity and metabolic complications could increase the risk of ADHD in
offspring [120,121]. Moreover, the risk of ADHD in offspring has been found to increase in mothers
with inflammatory or immune diseases [38]. Furthermore, a maternal history of autoimmune disease
could be associated with an increased risk of ADHD [127], but recently, the maternal C-reactive protein
during early pregnancy showed no significant associations with ADHD in offspring [134].

4. Use of Dietary and Natural Compounds against Oxidative Stress and Neuroinflammation
in ADHD

Increasing studies are looking for alternative therapies for ADHD, mainly focused on the
neuroprotective effects of dietary and natural compounds as antioxidants because they may be
alternative treatments with fewer side effects. Some nutritional or natural components which have
been studied for having therapeutic benefits in ADHD are: Omega-3 fatty acids have antioxidant and
anti-inflammatory activities and the two main are docosahexaenoic acid and eicosapentaenoic acid,
found mainly in oily fish [3,135–137]. N-Acetylcysteine is a precursor of the antioxidant glutathione,
found in the onion and exerts antioxidant and anti-inflammatory activities [3,135]. Sulforaphane exerts
antioxidant and anti-inflammatory activities, is found in highest concentrations in broccoli sprouts,
and cauliflower [3]. Ginseng contains a class of phytochemicals called ginsenosides, known as potent
antioxidants [2,136]. St. John’s wort, which is rich in flavonoids, providing antioxidants effects [2].
Passionflower contains flavonoids and exerts antioxidants activities [2]. Ginkgo biloba has antioxidant
effects and contains flavonoids, terpenoids, and ginkgolic acid [2,135,136]. Several flavonoids with
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antioxidant activities that include a large group of natural polyphenols are found abundantly in fruits,
red wine, green tea, and vegetables [2,135,136]. Thus, it has been shown that these compounds could
improve ADHD progression due to their antioxidants and anti-inflammatory properties.

5. Conclusions

The pathophysiological process of ADHD has been associated with an increase in oxidative stress
and neuroinflammation. Accordingly, some of the factors discussed in this review appear to play a key
role in the pathological process of ADHD. Several factors seem to increase oxidative stress, such as the
imbalance between oxidants and antioxidants in patients and also the treatment with medications,
both of which could increase the oxidative damage in patients. Moreover, several factors can also
cause neuroinflammation in ADHD, such as an altered immune response, genetic and environmental
associations, comorbidity between ADHD and inflammatory disorders, and also some polymorphisms
in inflammatory-related genes. The aforementioned factors offer the potential for dietary and natural
compounds as ADHD therapy, due to the potent antioxidant and anti-inflammatory properties such as
the increase of antioxidant levels, reduce oxidative stress, and improve the inflammation. In summary,
there are several pieces of evidence for the role of oxidative stress and neuroinflammation in the
pathophysiology of ADHD. However, clinical trials and prospective, well-designed studies are still
needed to confirm these hypotheses.
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