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Abstract: Diabetes prevalence is increasing worldwide, especially through the increase of type 2
diabetes. Diabetic nephropathy occurs in up to 40% of diabetic patients and is the leading cause
of end-stage renal disease. Various factors affect the development and progression of diabetic
nephropathy. Hyperglycaemia increases free radical production, resulting in oxidative stress, which
plays an important role in the pathogenesis of diabetic nephropathy. Free radicals have a short
half-life and are difficult to measure. In contrast, oxidation products, including lipid peroxidation,
protein oxidation, and nucleic acid oxidation, have longer lifetimes and are used to evaluate oxidative
stress. In recent years, different oxidative stress biomarkers associated with diabetic nephropathy
have been found. This review summarises current evidence of oxidative stress biomarkers in patients
with diabetic nephropathy. Although some of them are promising, they cannot replace currently used
clinical biomarkers (eGFR, proteinuria) in the development and progression of diabetic nephropathy.
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1. Introduction

Chronic kidney disease (CKD) is a common and serious disease that affects 8 to 16% of the
global population [1]. Management of CKD is costly and it presents a significant challenge for
societies and health care systems [2]. In 2016, CKD was the 16th leading cause of years of life lost
worldwide, mainly due to cardiovascular diseases and infections, and is expected to rise to 5th place
by 2040 [3]. The increasing prevalence of CKD is associated with the increase in patients with diabetes
and hypertension [4–6]. In 2019, 463 million people had diabetes and the International Diabetes
Federation estimates that there will be 700 million adults with diabetes by 2045 [6]. Diabetes prevalence
is increasing, especially through an increase in type 2 diabetes [6]. Diabetes is the main cause of CKD
in many developed countries and is quickly becoming the leading cause in developing countries [4].
Diabetic nephropathy (DN) occurs in up to 40% of type 1 or type 2 diabetic patients [7]. Other frequent
causes of CKD are hypertension, glomerulonephritides, etc.; in many cases, the cause of CKD is
unknown [2,8].

Oxidative stress contributes to many pathological conditions. It is involved in the onset and/or
progression of cancer, atherosclerosis, neurological disorders, cardiovascular diseases, pulmonary
diseases, and diabetes [9–15]. Diabetes mellitus is a chronic disease with either a lack of insulin
production or, more commonly, resistance to insulin, leading to hyperglycaemia. Hyperglycaemia
increases free radical production, leading to oxidative stress [16]. Experimental and clinical studies
suggest an association between hyperglycaemia, oxidative stress, and diabetic complications [16–19].
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Oxidative stress plays an important role in the pathogenesis of DN and its progression to end-stage
renal disease (ESRD) [16,20–22].

In the current review, we will present the role of oxidative stress in patients with diabetes and CKD.
Our emphasis will be presenting the oxidative stress markers in the development and progression of
diabetic nephropathy used in clinical studies.

2. Oxidative Stress

Oxidative stress is a state of imbalance between oxidants and antioxidants [23]. It is dependent on
the production and accumulation of oxidant radicals in cells and tissues and the ability of a biological
system to detoxify these reactive products [24]. Oxidant compounds (reactive oxygen species (ROS),
reactive nitrogen species (RNS)) are products of normal cellular metabolism. We can divide them into
free radicals and nonradicals [25]. Free radicals have one or more unpaired electrons and are therefore
highly reactive [23,25]. Examples of the most important ROS and RNS of physiological significance
are superoxide anion (O2

•−), hydroxyl radical (•OH), nitric oxide radical (NO•), and nitrogen dioxide
radical (NO2

•) [9]. When two free radicals share their unpaired electrons, nonradicals are formed.
More often, free radicals attack nonradical molecules and a new radical molecule is formed, triggering
a chain reaction [23]. Examples of nonradical oxidants are hydrogen peroxide (H2O2), ozone (O3),
singlet oxygen (1O2), hypochlorous acid (HOCl), nitrous acid (HNO2), dinitrogen trioxide (N2O3),
peroxynitrite (ONOO−), and lipid peroxides [23].

At low to moderate concentrations, ROS and RNS act as secondary messengers and regulate
intracellular signal transduction pathways regulating cell growth and differentiation, mitogenic
responses, extracellular matrix production and breakdown, apoptosis, oxygen sensing, and
inflammation [26,27]. ROS and RNS act as part of the immune defence system [27]. At high
concentrations, they produce unwanted modifications to lipids, proteins, DNA, etc. [25]. ROS are very
unstable with short half-lives (only seconds) and are therefore difficult to measure [23]. In contrast,
oxidation products have longer lifetimes (from hours to weeks) and are used to assess the redox
state [23,28]. The most important markers of oxidative stress are presented in Table 1.

Table 1. Most important markers of oxidative stress and antioxidants.

Markers of Oxidative Stress Antioxidants

Lipid peroxidation Enzymatic
Malondialdehyde (MDA) Superoxide dismutase (SOD)

Thiobarbituric acid reactive substances (TBARSs) Catalase
4-hydroxynonenal (HNE) Glutathione peroxidase (GSH-Px)

F2-isoprostanes Haem oxygenase-1 (HO-1)
Protein oxidation Thioredoxin

Advanced oxidation protein products (AOPPs) Nonenzymatic
Advanced glycation end products (AGEs) Glutathione (GSH)

Protein carbonyls Vitamins (vitamins C and E)
Nucleic acid oxidation β-carotene

8-hydroxyguanosine (8-OHG)
8-hydroxy-2′-deoxyguanosine (8-OHdG)

2.1. Sources of Oxidative Stress

Normal aerobic metabolism is a major source of ROS; the most important in ROS generation
are mitochondrial nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX), xanthine
oxidase (XO), myeloperoxidase (MPO), and endothelium nitric oxide synthase (eNOS) [23,25,29]. Other
enzyme sources are prostaglandin synthase, lipoxygenase, and flavoprotein dehydrogenase [23,25,29].
The main exogenous sources of oxidative stress are cigarette smoke, environmental pollution, heavy
metals (Cd, Hg, Pb, Fe, and As), drugs (gentamycin, bleomycin, etc.), alcohol, chemical solvents,
and radiation [23–25,29].
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2.2. Antioxidants

The human body has defence mechanism that counterbalances the effects of oxidants: the
antioxidants. They can be divided into enzymatic and nonenzymatic antioxidants. The major
enzymatic antioxidants are superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px),
haem oxygenase-1 (HO-1), and thioredoxin [23–25,30–34]. The major nonenzymatic antioxidants are
glutathione (GSH), vitamins (vitamins C and E), and β-carotene [23–25,35–37]. They are low-molecular-
weight compounds and are found in the plasma, extracellular fluids, intracellular fluids, lipoproteins,
and membranes [9]. An important endogenous antioxidant with good antioxidant capacity is serum
albumin [23,38]. There are also several exogenous antioxidant molecules (polyphenols, flavonoids)
which are mainly introduced by the diet or by nutritional supplementation [23,25,39]. Enzymatic and
nonenzymatic antioxidants are presented in Table 1.

3. Oxidative Stress in CKD

Oxidative stress is not only an important factor in the development of type 1 and type 2
diabetes, but it also has a significant role in the development of diabetic complications, including
DN [11,14,16–22,40–42]. Oxidative stress is linked with metabolic changes and alterations in renal
haemodynamics. Both mechanisms have adverse synergistic effects [40]. Oxidative stress is directly
linked to podocyte damage, proteinuria, and tubulointerstitial fibrosis [43]. Additionally, vascular
oxidative stress has an important role in CKD progression (Figure 1) [43–46].
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 Figure 1. Oxidative stress is a significant factor in the development of diabetic nephropathy.
Oxidative stress is associated with metabolic changes and alterations in renal hemodynamic.
MDA: malondialdehyde; TBARS: thiobarbituric acid reactive substances; HNE: 4-hydroxynonenal;
AOPP: advanced oxidation protein products; AGE: advanced glycation end products; 8-OHG:
8-hydroxyguanosine; 8-OHdG: 8-hydroxy-2′-deoxyguanosine; eGFR: estimated glomerular filtration
rate; ESRD: end-stage renal disease.
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3.1. Oxidative Stress and Glomerular Injury

Podocytes are vulnerable to oxidative damage [43]. Mature podocytes are highly differentiated
cells and respond to injury with detachment from the glomerular basement membrane, dedifferentiation,
autophagy, and apoptosis [47]. An important consequence of podocyte injury is proteinuria, which is a
well-known marker of kidney damage and is associated with CKD progression [47,48]. Proteinuria is
an important factor in inducing mesangial and tubular toxicity and is involved in local and systemic
inflammatory pathways [48,49].

In early studies, it was shown that puromycin aminonucleoside, a podocyte toxin, induced
glomerular injury in rats through ROS [43,50,51]. In these studies, antioxidants also provided
protection against the changes in podocytes [51]. Later, ROS-mediated DNA damage was also
shown [52]. Podocyte injury and dysfunctional glomerular filtration barrier is important in the process
of focal segmental glomerular sclerosis (FSGS). The development and progression of FSGS is associated
with transforming growth factor beta (TGF-β) activation in podocytes [53]. TGF-β is involved in
crosstalk between podocytes and the glomerular endothelium [54]. TGF-β promotes synthesis of
endothelin precursors in podocytes and expression of endothelin receptors. The binding of endothelin
with its receptors suppresses mitochondrial function and induces oxidative stress in the glomerular
endothelium [54]. Mitochondrial oxidative DNA damage was evident before podocyte injury [54].

Other oxidative stress markers are advanced oxidation protein products (AOPPs). They are
dityrosine-containing products of plasma proteins [43]. Higher AOPP levels were found in patients with
CKD compared to controls [55,56]. Podocyte injury, proteinuria, and glomerulosclerosis were associated
with AOPPs through a NOX-dependent mechanism [57]. In normal rats, chronic administration of
AOPPs increased proteinuria and urinary 8-hydroxydeoxyguanosine (8-OHdG) excretion. On the other
hand, chronic inhibition of NOX by apocynin prevented podocyte apoptosis and decreased proteinuria
in these rats [57]. AOPPs interacted with the receptor of advanced glycation end products (RAGE) on
podocytes [58]. Additionally, blocking RAGE by anti-RAGE immunoglobulin G or its silencing by
siRNA significantly protected podocytes from AOPP-induced apoptosis and ameliorated proteinuria
in AOPP-challenged mice [58]. AOPPs are involved in the activation of Wnt/β-catenin signalling. Wnts
are a family of secretory proteins that induce a series of signals which results in the phosphorylation of
β-catenin [59]. After activation, β-catenin enters the nucleus and promotes the transcription of Wnt
target genes [59]. Wnt/β-catenin signalling is silent in normal adults. AOPPs induce NOX activation
via plasma membrane receptor RAGE, which promotes the activation of the nuclear factor kappa B
(NF-κB) transcription factor. The NF-κB transcription factor leads to the induction of Wnt ligands,
such as Wnt1 and Wnt7a, and the activation of β-catenin [60]. Accumulating evidence suggests that
Wnt/β-catenin has an important role in oxidative stress-induced podocyte damage and proteinuria [60].
Recently, it was demonstrated that a blockade of Wnt signalling preserves podocyte integrity and
ameliorates proteinuria [60]. According to the mentioned data, targeting Wnt/β-catenin could be a
new therapeutic modality for proteinuric CKD [60].

In the middle-aged general population, a marker of oxidative DNA damage, urinary
8-hydroxyguanosine (8-OHG) excretion, was independently associated with incident low-grade
albuminuria during almost 6 years of follow-up [61].

Additionally, oxidative stress is also associated with progressive renal failure. Finnish-type
congenital nephrotic syndrome (NPHS1) is a rare genetic kidney disease caused by mutations in the
NPHS1 gene, which codes for the podocyte protein nephrin [62]. The disease is characterised by heavy
proteinuria and hypoproteinaemia from birth [62]. In nephrectomised kidneys from children with
NPHS1, interstitial expression of MPO was demonstrated [62]. This enzyme generates hypoclorous
acid (HOCl), which causes irreversible tissue damage [62]. The concentration of free GSH in the cortex
of the NPHS1 kidneys, which is a major antioxidant, was extremely low as compared to controls [62].
All these findings support the fact that proteinuric kidneys are under heavy oxidative stress.

In proteinuric CKD, tubulointerstitial injury with subsequent progressive loss of renal function is
common. During urinary albumin endocytosis in the proximal tubule, protein kinase C-dependent
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NOX-mediated ROS generation is induced and this is responsible for enhanced NF-κB activity and the
induction of NF-κB-dependent pathways of interstitial inflammation [63,64].

Less is known about the role of antioxidants in proteinuric CKD. Enzyme superoxide dismutase
(SOD) protects the kidney from superoxide. Downregulation of cytosolic CuZn-SOD (SOD1) and
extracellular CuZn-SOD (SOD3), but not mitochondrial Mn-SOD (SOD2), was observed in the
kidney of KK/Ta-Akita mice that exhibit progressive DN [65]. In this study, no change in renal SOD
expression in DN-resistant C57BL/6-Akita mice was observed [65]. In another study, a murine model
of adriamycin-induced nephropathy was used. Levels of SOD3 diminished throughout the course of
disease progression [66]. Interestingly, similar to findings in mice, a decrease in SOD3 in human CKD
biopsy samples was found [66]. The authors concluded that SOD3 protects against proteinuric renal
injury in vivo. It offers protection through the inhibition of NOX upregulation and downregulation of
pathologic β-catenin signalling [66].

3.2. Oxidative Stress and Interstitial Fibrosis

Disregarding the initial injury, renal fibrosis is the common final pathway leading to ESRD,
and the degree of fibrosis or fibroblast number are robust pathologic markers of progression [67].
Tubulointerstitial fibrosis includes the deposition of interstitial matrix with inflammatory cells,
tubular cell loss, fibroblast accumulation, and rarefaction of the peritubular microvasculature [67].
Renal scarring is a result of complex interactions of molecular pathways, growth factors, cytokines,
and cells [68–71].

Fibroblasts/myofibroblasts are most responsible for interstitial matrix accumulation and
subsequent structural changes [72]. Collagen-producing myofibroblasts in the kidney can be derived
from resident fibroblasts, pericytes, perivascular adventitial, epithelial, and/or endothelial sources [72].
Regardless of the origin of the cells, TGF-β1 is the main molecule responsible for myofibroblast
activation with the expression of α-smooth muscle actin (α-SMA), which gives the myofibroblasts
their contractility [72–74]. TGF-β1 increases the activity of NOX and expression of NOX2 and NOX4,
homologues of the NOX family, indicating that this growth factor induces the production of ROS [74].
NOX2 and NOX4 have an important role in the conversion of fibroblasts to myofibroblasts [72,74]. It was
shown that inhibition of NOX4 inhibited TGF-β-induced stimulation of NOX activity and reduced
α-SMA expression [74]. Additionally, inhibition of TGF-β receptor type I reduced TGF-β-enhanced
NOX activity and decreased expression of NOX4 and α-SMA [74].

As was shown, NOX synthesises ROS that are involved in fibrosis progression. On the other
hand, their effect on renal disease progression is not well understood. In the model of chronic renal
injury due to unilateral urinary obstruction, leading to renal fibrosis, wild-type and NOX4-deficient
mice were used [75]. In the NOX4-deficient mice, more interstitial fibrosis was found in the obstructed
kidney compared to the wild-type mice [75]. More TGF-β1-mediated tubular apoptosis, reduced
expression of hypoxia-inducible factor-1α, and vascular endothelial growth factor was also found
in the obstructed kidneys of the NOX4-deficient mice [75]. It was shown that the absence of NOX4
increases interstitial kidney fibrosis, independent of NOX2. [75]. NOX4 deficiency increased fibrosis
due to enhanced tubular cell apoptosis, decreased microvascularisation, and enhanced oxidative
stress [75]. The NOX4-mediated protection might be a consequence of Nrf2 pathway upregulation [76].
The Nrf2/Keap1 system controls the expression of antioxidant genes [76]. Furthermore, Nrf2 plays a
protective role in CKD animal models, including DN [77,78].

Uraemic toxins are also involved in the progression of CKD. In the last decade, indoxyl sulphate
(IS) and p-cresyl sulphate (PCS), which accumulate with CKD progression, have appeared as key
nephrotoxins [79,80]. IS and PCS enhance ROS production in renal tubular cells, which activate the
NF-kB pathway, resulting in both oxidative stress and inflammation [80,81]. These mechanisms have
been confirmed in studies showing that fibrosis of renal tubules and oxidative stress are significantly
enhanced after toxin administration and suppressed after IS reduction [80–82]. Additionally, it was
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shown that antioxidant treatment dose-dependently inhibits the fibrotic and oxidative effects of IS and
PCS [83,84].

Recently, it was demonstrated that oxidative stress and autophagy are involved in kidney health
and disease [85]. Autophagy is a crucial cellular homeostatic process that cells use to degrade
and recycle cellular proteins and remove damaged organelles. It involves the formation of double
membrane-bound vesicles called autophagosomes, which later fuse with lysosomes [86]. Basal levels
of redox signalling and autophagy signalling are necessary to maintain cellular homeostasis. Under
distinct circumstances, changes in autophagic flux have been shown to regulate ROS formation and
redox signalling [85]. It is also suggested that ROS and RNS induce autophagy and vice versa [85,87].

3.3. Oxidative Stress and Microvascular Dysfunction

The endothelium is a fundamental layer in the arterial wall and is essential for the regulation and
maintenance of normal renal function [43,44]. Oxidative stress is related to endothelial dysfunction
and plays a critical role in CKD progression [44,45,88]. The endothelium secretes nitric oxide (NO),
which is produced from arginine by the enzyme NOS [88]. NO is involved in several biological
processes, including vasodilatation in smooth muscle cells, inflammation, and immune responses [88].
NOS is expressed as various isoforms: endothelial NOS (eNOS), neuronal NOS (nNOS), inducible NOS
(iNOS), and constitutive NOS (cNOS); all have been isolated from the kidney [43,88,89]. The cNOS is
expressed in the vessels, glomeruli, and tubules, iNOS is expressed in vascular smooth muscle cells
and the mesangium, and eNOS is associated with the vascular endothelium [45,88,90]. Low levels of
NO in the endothelium induce the expression of antioxidative genes and protect renal endothelial and
mesangial cells from apoptosis and fibrosis but, on the other hand, increased levels of ROS reduce the
production of NO via inhibition and/or uncoupling of NOS enzymes [45,88–90]. The NO production in
the kidney can be blocked by NOS inhibition with asymmetric dimethylarginine (ADMA). ADMA is
a natural product formed by the methylation of arginine which accumulates in the plasma of CKD
patients in the early stages of CKD [45,89]. The decrease in NO leads to an increase in vascular
resistance [89]. Additionally, it was shown in patients with CKD stages 1-5 that levels of serum ADMA
and oxidative stress markers (plasma malondialdehyde (MDA), erythrocyte SOD, and GSH-Px) were
directly associated with CKD stages [45]. It was shown that the glomerular filtration rate correlated
negatively with plasma MDA and ADMA levels and positively with erythrocyte SOD and GSH-Px [45].
Patients with CKD, compared to a control group of healthy subjects, had higher levels of MDA and
ADMA and lower levels of erythrocyte SOD and GSH-Px [45]. Furthermore, it was shown that levels
of oxidative stress markers and ADMA are independently associated with endothelial function [45].

Autoregulation is important in maintaining renal blood flow, glomerular filtration rate, and tubular
fluid flow over a wide range of perfusion pressures. It is dependent on afferent arteriole contraction
followed by a tubuloglomerular feedback [91,92]. Impairment of renal autoregulation is associated
with CKD progression. In experimental studies, it was documented that ROS mediate myogenic
responses of afferent arterioles in CKD models [93]. It was also shown that NOX2 plays an important
role in regulating tone and reactivity of afferent arterioles, also in response to angiotensin II (ANG II)
and/or adenosine [94]. NOX2-derived ROS scavenges NO, causing subsequent NO deficiency [94].
It was demonstrated that an increase in perfusion pressure increases superoxide (O2

•−) in afferent
arterioles in normal mice or mice with a genetic deletion of SOD and is involved in the myogenic
contractions of afferent arterioles [95,96]. H2O2 impaired autoregulation of afferent arterioles in five
out of six nephrectomised mice [92,95,96].

3.4. Oxidative Stress and Chronic Inflammation

Oxidative stress and inflammation, as well as their interaction, have an important role in the
pathogenesis and progression of CKD [97]. Both promote renal injury through damage of molecular
components [98]. The primary pathological mechanism that links oxidative stress, inflammation, and
CKD progression includes an initial injury to the kidney by intra- and extracellular oxygen-derived
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radicals and the resultant inflammation [98]. In recent years, some important review papers have
been published showing the importance of inflammation in the pathogenesis and progression of
CKD [16,20,23,43,99–103]. More details about the role of inflammation in CKD is beyond the scope of
this review.

4. Biomarkers of Oxidative Stress in Patients with CKD

ROS are highly reactive and unstable compounds with short half-lives of only seconds. Using
them as clinical biomarkers of oxidative stress is difficult or even impossible. ROS produce unwanted
modifications to lipids, proteins, DNA, etc. These oxidation products have longer lifetimes and,
together with antioxidants, are used to assess the redox state.

4.1. Lipid Peroxidation

Oxidation of polyunsaturated fatty acids (linoleic acid, arachidonic acid, etc.) by free radicals
is known as lipid peroxidation and it can cause major tissue damage [104]. Lipids are the main
component of cellular membranes and peroxidation alters their properties and consequently affects their
function [105]. The most frequently studied lipid peroxidation markers are MDA, 4-hydroxynonenal
(HNE), thiobarbituric acid reactive substances (TBARSs), and isoprostanes such as 8-iso-prostaglandin
F2α (8-iso-PGF2α) [106–108].

MDA is formed through lipid peroxidation and during prostaglandin and thromboxane
synthesis [105]. It can attack macromolecules, leading to alterations in their functions [105].
In several studies, higher serum MDA levels were found in CKD patients compared to healthy
control subjects [109–111]. MDA correlated negatively with the glomerular filtration rate and was
significantly different among CKD patients with stages 2, 3, 4, and 5 [31]. Higher levels of serum MDA
were also found in haemodialysis patients [31,112]. In haemodialysis patients, the value of serum
MDA is limited because it is a water-soluble low-molecular-weight product and could be removed by
haemodialysis [105]. Serum MDA levels in transplant patients were significantly lower than in dialysis
patients [113]. Furthermore, serum MDA decreased after kidney transplantation [114].

TBARSs are a nonspecific marker of lipid peroxidation, therefore, serum MDA or F2-isoprostanes
are preferred alternatives. It was shown that the production of TBARSs was higher in advanced CKD
stages and in haemodialysis patients [115].

F2-isoprostanes are lipid peroxidation products with a prostaglandin-like structure formed
by the nonenzymatic oxidation of arachidonic acid, and could be detected in serum and urine
samples [105]. The values of plasma F2-isoprostanes were higher in CKD patients and in ESRD patients
(both haemodialysis and peritoneal dialysis) compared to control subjects [116–118]. F2-isoprostanes
increased significantly as the CKD stage advanced and were inversely related to the glomerular filtration
rate [119]. Moreover, F2-isoprostanes significantly decreased after kidney transplantation [120].

4.2. Protein Oxidation

Protein oxidation is a covalent modification induced directly by ROS and/or RNS or indirectly
by reaction with secondary products of oxygen stress [107]. Oxidative modifications lead to changes
in protein properties and the consequences are loss of enzymatic activity, altered cellular functions,
interference with the creation of membrane potentials, and changes in the type and level of cellular
proteins [121,122].

Protein tyrosine nitration is mediated by RNS such as peroxynitrite (ONOO−) and nitrogendioxide
(NO2) and results in structural and functional changes, leading to altered cell homeostasis [123].
It was shown that nitrotyrosine was higher in haemodialysis patients compared to controls [124]. It is
important to note that methods of detecting nitrotyrosine are quite costly and impractical for daily
screening and analysis [123].

AOPPs and AGEs are markers of protein oxidation and proinflammatory mediators [107]. AOPPs
are increased in CKD and ESRD patients and higher levels were found in dialysis patients [125]. All of
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them showed increased AOPP levels in comparison to age-matched controls [125]. It is important to
note that AOPP levels are overestimated in patients with hypertriglyceridaemia [125].

AGEs, such as pentosidine, were increased in CKD and ESRD patients [126]. In nondialysis CKD
patients, pentosidine was associated inversely with the glomerular filtration rate [126].

Protein carbonylation is the oxidation of proteins that can be promoted by ROS, and protein
carbonyls are used as markers of oxidative stress. Plasma protein carbonyl levels were higher in CKD
and haemodialysis patients compared to normal volunteers [127]. In this study, no significant difference
in the plasma protein carbonyl group concentration between CKD patients and chronic haemodialysis
patients was found [127]. Results from another study showed that carbonylation of albumin in CKD
patients gradually increased during the development of the disease [128]. The carbonylation of
albumin was even higher in the plasma of haemodialysis patients, while a comparison of peritoneal
dialysis patients with controls found no difference [128]. Protein carbonyls were inversely related to
the glomerular filtration rate and a significant reduction in plasma carbonyls after renal transplantation
was documented [129].

4.3. Nucleic Acid Oxidation

Oxidative damage to DNA includes fragmentation products, single/double-strand breaks,
inter/intra-strand cross-links, DNA protein cross-links, and DNA bases damage [107]. Sensitive
biomarkers of DNA damage are 8-hydroxyguanosine (8-OHG) and 8-hydroxy-2′-deoxyguanosine
(8-OHdG).

8-OHdG levels in peripheral leukocyte DNA were higher in CKD patients compared to healthy
controls. The highest values were observed in peritoneal dialysis patients [130]. Furthermore,
in nondialysed CKD patients, 8-OHdG levels inversely correlated with renal creatinine clearance [130].
An increased 8-OHdG level in leukocyte DNA was also found in haemodialysis patients [131]. They had
the greatest 8-OHdG level, followed by undialysed CKD patients and healthy controls [131]. The 24 h
urinary 8-OHdG excretion in patients with proteinuria was significantly higher than in the control
subjects [132].

4.4. Antioxidants

An antioxidant is a substance that delays or inhibits cell damage caused by free radicals [133].
Total antioxidant status is determined by different measurement techniques and the results are difficult
to compare across studies [107]. Patients with CKD, including haemodialysis patients, have diminished
total antioxidant capacity [134,135]. It was reported that total antioxidant capacity was also lower in
peritoneal dialysis patients [136].

The first line of enzymatic antioxidant defence is SOD, which dismutes superoxide hydrogen
peroxide and molecular oxygen [107]. Results from studies examining SOD in CKD patients are
contradictory and difficult to interpret [107]. Some authors found no significant difference in SOD
between CKD patients and controls [88,137], while others found reduced SOD activity in haemodialysis
and peritoneal dialysis patients compared to controls [138], or that plasma SOD activity increased
in CKD patients with the progression of renal insufficiency [139]. On the other hand, plasma SOD
values were lower in CKD patients than controls and the glomerular filtration rate correlated positively
with SOD [31]. Erythrocyte SOD levels increased following renal transplantation [140]. The lack of
consistency in SOD expression encourages careful interpretation of the results [107].

Catalase reduces H2O2 to water; selenium-containing GSH-Px reduces all organic lipid
peroxides and requires GSH as a hydrogen donor [28,107]. Studies related to plasma or
erythrocyte catalase and GSH-Px activity are conflicting and the results should be interpreted very
carefully [88,135,138,139,141–145].

GSH, a tripeptide, is a major nonenzymatic antioxidant found in almost all living cells. It is
considered as a biomarker of redox imbalance at the cellular level and its activity fluctuates less
than other antioxidants, making it a more stable indicator of antioxidant status [107,137]. Plasma
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GSH was diminished in many studies, including CKD, haemodialysis, and peritoneal dialysis
patients [144,146,147]. Interestingly, GSH concentration measured in erythrocytes showed contradictory
results, it may either be decreased, unchanged, or even increased [148–152]. GSH is oxidised to
glutathione disulphide (GSSG); GSSG and the GSH/GSSG ratio were used as markers of GSH-related
activity in some studies [107,153].

5. Biomarkers of Oxidative Stress in Development and Progression of DN

Diabetes is the leading cause of CKD. The exact pathogenesis is complex and oxidative stress has
a significant role in the pathogenesis of DN and its progression to ESRD. In recent years, a variety of
biomarkers of oxidative stress associated with DN has been found and the most important ones used
in clinical studies are presented (Table 2) [152–186].

Table 2. Most important biomarkers of oxidative stress associated with diabetic nephropathy (DN)
used in clinical studies.

Biomarker Clinical Importance Sample Ref.

MDA Increased in patients with DN compared to those without plasma
serum

[152,
154]
[153]

No difference in patients with or without DN plasma [155]

No difference in patients with normo-, micro-, and macroalbuminuria plasma,
erythrocytes

[156]

HNE Increased in patients with DN compared to controls plasma,
leukocytes [157]

F2-isoprostanes Increased in patients with DN compared to controls plasma,
leukocytes [157]

AOPP Increased in patients with DN compared to those without serum [153]
Increased in patients with DN compared to those without plasma [160]

AGE Increased in patients with DN compared to those without plasma [154]

Increased in patients with DN compared to controls plasma,
urine [157]

Increased in patients with renal failure compared to patients with normo-,
micro-, and macroalbuminuria without renal failure blood [163]

Increased in haemodialysis patients compared to non-dialysis; no
difference in patients with normo-, micro-, and macroalbuminuria serum [106]

No difference in patients with normo-, micro-, and macroalbuminuria plasma [156]
Protein
carbonyls Increased in patients with DN compared to those without serum [153]

Increased in patients with DN compared to controls plasma,
leukocytes [157]

Nucleic acid
oxidation Increased in patients with DN compared to those without serum

urine

[153,
167]
[167]

Increased in patients with micro- and macroalbuminuria compared to
normoalbuminuria; no difference in patients with micro- and
macroalbuminuria

plasma [156]

Increased in patients with macroalbuminuria compared to micro- or
normoalbuminuria urine [106,

169]

Prediction of the onset and progression of DN urine [170,
171]

No relationship with the onset and progression of DN leukocytes [171]
No difference in patients with or without DN urine [165]

TAS Decreased in patients with DN compared to those without plasma [152]
No difference in patients with or without DN plasma [154]
No difference in patients with normo-, micro-, and macroalbuminuria erythrocytes [156]

SOD Decreased in patients with DN compared to those without serum [153]
No difference in patients with or without DN erythrocytes [155]

No difference in patients with normo-, micro-, and macroalbuminuria plasma,
erythrocytes [156]

Catalase No difference in patients with or without DN serum
erythrocytes

[153]
[181]

No difference in patients with normo-, micro-, and macroalbuminuria plasma,
erythrocytes [156]
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Table 2. Cont.

Biomarker Clinical Importance Sample Ref.

GSH-Px No difference in patients with or without DN serum [153]

No difference in patients with normo-, micro-, and macroalbuminuria plasma,
erythrocytes [156]

HO-1 Increased in patients with DN, no difference in patients with micro- and
macroalbuminuria urine [186]

Increased in patients with DN compared to controls lymphocytes [157]
GSH Decreased in patients with DN compared to those without plasma [152]

No difference in patients with normo-, micro-, and macroalbuminuria plasma,
erythrocytes [156]

Vitamin C Decreased in DN; correlation with UACR and eGFR tissue [156]

Vitamin E No difference in patients with or without DN tissue
plasma

[156]
[154]

MDA: malondialdehyde; HNE: 4-hydroxynonenal; AOPP: advanced oxidation protein products; AGE: advanced
glycation end products; TAS: total antioxidant status; SOD: superoxide dismutase; GSH-Px: glutathione peroxidase;
HO-1: haem oxygenase-1; GSH: glutathione.

5.1. Lipid Peroxidation

According to lipid peroxidation markers, an increase in MDA or TBARSs in type 2 diabetic
patients with and without complications compared to healthy controls is one of the most consistent
findings [105]. Furthermore, a significant increase in MDA and TBARSs in type 2 diabetic patients
with micro- and macrovascular complications compared to those without was reported [154–156].
In these studies, up to 40% of patients with microvascular complications had DN. Unfortunately,
patients with DN were not analysed separately. In type 2 diabetic patients with DN, it was shown
that MDA was significantly higher in patients with DN compared to patients without DN and healthy
controls [157–159]. Meanwhile, other studies reported no difference in MDA between patients with or
without DN [160,161].

A significant increase in urinary and plasma levels of total F2-isoprostanes was found in type 2
diabetic patients with DN compared to controls [162].

5.2. Protein Oxidation

AOPPs were higher in type 2 diabetic patients compared to controls [154,156,163,164]. AOPPs
were increased in patients with micro- or macrovascular complications (including DN) compared to
those without them [154,156,163,164]. Patients with DN were not analysed separately in these studies.
It was documented that diabetic patients with albuminuria had increased AOPP levels compared to
those without albuminuria [165].

Plasma AGE levels were higher in type 2 diabetic patients compared to healthy controls and
in type 2 diabetic patients with micro- or macrovascular complications (including DN) compared
to those without complications [156,159,163,166,167]. In another study, AGEs were significantly
higher only in type 2 diabetic patients with chronic renal failure (defined as creatinine ≥ 1.3 mg/dL)
compared to patients with normo-, micro-, and macroalbuminuria without renal failure [168]. On the
contrary, no difference was found in AGEs when comparing type 2 diabetic patients with or without
nephropathy [161].

In type 1 diabetic patients, serum levels of AGEs were significantly increased as normal renal
status advanced to microalbuminuria, clinical nephropathy, and haemodialysis; serum levels of AGEs
positively correlated with urinary albumin excretion [169].

Protein carbonyls were also higher in type 2 diabetic patients compared to healthy controls and in
type 2 diabetic patients with micro- or macrovascular complications (including DN) compared to those
without complications [154,156,163,164]. Furthermore, increased levels of plasma and lymphocyte
carbonyls were found in type 2 diabetic patients with DN compared to healthy controls [162].
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5.3. Nucleic Acid Oxidation

Increased serum and urinary 8-OHdG in type 2 diabetic patients was documented compared
to controls [158,170,171]. Increased serum and plasma 8-OHdG was documented in type 2 diabetic
patients with DN compared to diabetic patients without complications [158,172]. It was also found
that plasma 8-OHdG levels in diabetic patients with micro- and macroalbuminuria were increased
compared to normoalbuminuric patients [161]. Moreover, urinary 8-OHdG levels were significantly
higher in patients with microvascular complications, including DN, compared to those without
complications [173]. Urinary 8-OHdG levels in type 2 diabetic patients were significantly higher in
patients with macroalbuminuria compared to patients with micro- or normoalbuminuria [132,174].
Additionally, urinary 8-OHdG levels were increased in type 2 diabetic patients with micro- and
macroalbuminuria compared to patients with normoalbuminuria and healthy controls; 8-OHdG
levels were also significantly higher in patients with macroalbuminuria compared to patients with
microalbuminuria [175]. In a prospective longitudinal study, patients with higher urinary excretion of
8-OHdG had a significant progression of DN compared to patients with moderate or lower excretion of
8-OHdG [176]. In this study, multivariate logistic regression analysis suggested that urinary 8-OHdG
was the strongest predictor of nephropathy among several known risk factors [176]. Interestingly,
no significant association between leukocyte 8-OHdG and the development of nephropathy was
found [176]. On the other hand, no difference was found in urinary 8-OHdG levels in type 2 diabetic
patients with or without DN [170]. Furthermore, an RNA oxidation marker, urinary 8-OHG, was also
elevated in type 2 diabetic patients with and without complications compared to age-matched healthy
controls [171].

In long-standing type 1 diabetic patients, higher plasma 8-OHdG levels were independently
associated with increased risk of DN [177].

5.4. Antioxidants

Conflicting results have been reported about total antioxidant status in type 2 diabetic patients;
it was reduced [154,157,164,178,179], increased [180], or unchanged [181] compared to controls.

Results from studies examining SOD in type 2 diabetic patients are contradictory, results showed
either increased [179,182] or decreased [178,183] SOD activity compared to healthy controls. Studies
related to catalase and GSH-Px activity in type 2 diabetic patients compared to healthy controls are
also conflicting [105]. Inconsistent results on SOD, catalase, and GSH-Px were also reported in studies
comparing type 2 diabetic patients with or without complications [154,155,184,185]. Among patients
with complications, patients with DN were also included, but were not analysed separately in these
studies. In study by Bondor et al., patients with incipient diabetes-associated nephropathy (defined as
estimated glomerular filtration rate (eGFR) < 60 mL/min or urine albumin-to-creatinine ratio (UACR)
≥ 30 mg/g) were included [139]. No difference in SOD activity in patients with or without DN was
found [160]. Similar results were shown in other studies [158,161].

No difference in catalase and GSH-Px levels in type 2 diabetic patients with DN compared to
those without was found [161,186]. In patients with type 1 diabetes, associations between catalase
allelic variations and the prevalence and incidence of DN and ESRD were observed [187].

Haem oxygenases (HOs) are fundamental enzymes in haem catabolism [188]. The HO-1 isoform
acts as an antioxidant during oxidative injury [189]. Plasma HO-1 concentrations were significantly
increased in newly diagnosed type 2 diabetic patients compared to controls [190].

Furthermore, urinary HO-1 levels were significantly increased in diabetic patients with micro-
and macroalbuminuria compared to patients with normoalbuminuria and controls [191]. In patients
with normoalbuminuria, urinary HO-1 levels were also higher compared to controls [191]. HO-1 was
upregulated in lymphocytes in DN patients compared to healthy controls [162].

GSH was decreased in type 2 diabetic patients compared to controls [179,181,183]. Decreased
GSH was reported in type 2 diabetic patients with complications (including DN) compared to those
without [154]. Furthermore, comparing type 2 diabetic patients with and without DN, plasma GSH was
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significantly decreased in patients with nephropathy [157]. Interestingly, in the study by Chou et al.,
no difference in cellular GSH was found in type 2 diabetic patients with and without DN [161]. In the
same study, patients with the highest UACR had the lowest levels of vitamin C and vitamin C levels,
which correlated negatively with serum creatinine, urine albumin, and UACR [161].

6. Antioxidant Therapy

Oxidative stress is involved in the onset and progression of CKD, including DN. Therefore,
antioxidant therapy could be an important treatment strategy in these patients. Experimental studies
showed beneficial effects of antioxidant therapy in animals [192–196]. Results of antioxidant therapy
use in patients with CKD or DN are limited with conflicting results. As shown by a Cochrane database
systematic review (including therapy with vitamin E, coenzyme Q, acetylcysteine, bardoxolone
methyl, and human recombinant superoxide dismutase), the results of antioxidant therapy have been
disappointing in reducing the risk of cardiovascular and all-cause death or major cardiovascular
events in CKD patients [197]. However, the authors concluded that current evidence suggests that
antioxidant therapy in predialysis CKD patients may prevent progression to ESRD; this finding was
based on a very small number of events [197]. Some important review papers have been published in
recent years, presenting details of antioxidant therapy for CKD and DN [17,23,43,198,199]. Recently,
new medications with antioxidant effects (sacubitril/valsartan, etc.) have come into the spotlight
and future clinical trials will determine the efficacy of these or other new drugs in modulating the
pro-oxidant milieu of CKD [43,200,201].

7. Conclusions

Despite the aggressive blockade of the renin–angiotensin–aldosterone system, many patients with
diabetes still progress to ESRD. Oxidative stress is important in the development and progression
of DN. A number of pathways and molecules are involved in the induction of oxidative stress in
DN. The identification of biomarkers of oxidative stress contributes to our understanding of the
development and progression of DN toward ESRD. In this review, we have presented oxidative stress
biomarkers used in clinical studies in patients with CKD and DN. To date, these novel biomarkers of
oxidative stress cannot replace currently used biomarkers in DN development and progression (eGFR,
albuminuria/proteinuria).
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Ciulu-Costinescu, F.; Bubulica, M.V.; Chifiriuc, M.C. Markers of oxidative stress and antioxidant defense in
romanian patients with type 2 diabetes mellitus and obesity. Molecules 2017, 22, 714. [CrossRef]

182. Bandeira, S.M.; Guedes, G.S.; da Fonseca, L.J.; Pires, A.S.; Gelain, D.P.; Moreira, J.C.F.; Rabelo, L.A.;
Vasconcelos, S.M.L.; Goulart, M.O.F. Characterization of blood oxidative stress in type 2 diabetes mellitus
patients: Increase in lipid peroxidation and SOD activity. Oxid. Med. Cell. Longev. 2012, 2012, 819310.

183. Strom, A.; Kaul, K.; Brüggemann, J.; Ziegler, I.; Rokitta, I.; Püttgen, S.; Szendroedi, J.; Müssig, K.; Roden, M.;
Ziegler, D. Lower serum extracellular superoxide dismutase levels are associated with polyneuropathy in
recent-onset diabetes. Exp. Mol. Med. 2017, 49, e394. [CrossRef] [PubMed]

184. Lodovici, M.; Bigagli, E.; Luceri, C.; Mannucci, E.; Rotella, C.M.; Raimondi, L. Gender-related drug effect on
several markers of oxidation stress in diabetes patients with and without complications. Eur. J. Pharmacol.
2015, 766, 86–90. [CrossRef] [PubMed]

185. Grindel, A.; Guggenberger, B.; Eichberger, L.; Pöppelmeyer, C.; Gschaider, M.; Tosevska, A.; Mare, G.;
Briskey, D.; Brath, H.; Wagner, K.H. Oxidative Stress, DNA damage and DNA repair in female patients with
diabetes mellitus type. PLoS ONE 2016, 11, e0162082. [CrossRef]

186. Noce, A.; Fabrini, R.; Dessì, M.; Bocedi, A.; Santini, S.; Rovella, V.; Pastore, A.; Tesauro, M.; Bernardini, S.; Di
Daniele, N.; et al. Erythrocyte glutathione transferase activity: A possible early biomarker for blood toxicity
in uremic diabetic patients. Acta Diabetol. 2014, 51, 219–224. [CrossRef]

187. Mohammedi, K.; Patente, T.A.; Bellili-Muñoz, N.; Driss, F.; Monteiro, M.B.; Roussel, R.; Pavin, E.J.; Seta, N.;
Fumeron, F.; Azevedo, M.J.; et al. Catalase activity, allelic variations in the catalase gene and risk of kidney
complications in patients with type 1 diabetes. Diabetologia 2013, 56, 2733–2742. [CrossRef]

188. Choi, A.M.K.; Alam, J. Heme oxygenase-1: Function, regulation, and implication of a novel stress-inducible
protein in oxidant-induced lung injury. Am. J. Respir. Cell Mol. Biol. 1996, 15, 9–19. [CrossRef]

189. Nath, K.A. Heme oxygenase-1: A provenance for cytoprotective pathways in the kidney and other tissues.
Kidney Int. 2006, 70, 432–443. [CrossRef]

190. Bao, W.; Song, F.; Li, X.; Rong, S.; Yang, W.; Rong, S.; Yang, W.; Zhang, M.; Yao, P.; Hao, L.; et al. Plasma
heme oxygenase-1 concentration is elevated in individuals with type 2 diabetes mellitus. PLoS ONE 2010, 5,
e12371. [CrossRef]

191. Li, Z.; Xu, Y.; Liu, X.; Nie, Y.; Zhao, Z. Urinary heme oxygenase-1 as a potential biomarker for early diabetic
nephropathy. Nephrology 2017, 22, 58–64. [CrossRef]

http://dx.doi.org/10.1016/j.mrfmmm.2015.10.003
http://www.ncbi.nlm.nih.gov/pubmed/26520687
http://dx.doi.org/10.1016/j.jpba.2004.04.016
http://www.ncbi.nlm.nih.gov/pubmed/15351053
http://dx.doi.org/10.7717/peerj.7079
http://dx.doi.org/10.1007/s00125-002-0831-8
http://dx.doi.org/10.1007/s00125-017-4510-1
http://dx.doi.org/10.1016/j.jdiacomp.2014.12.007
http://dx.doi.org/10.3390/ijms151120290
http://dx.doi.org/10.1155/2016/2352361
http://dx.doi.org/10.3390/molecules22050714
http://dx.doi.org/10.1038/emm.2017.173
http://www.ncbi.nlm.nih.gov/pubmed/29147011
http://dx.doi.org/10.1016/j.ejphar.2015.09.041
http://www.ncbi.nlm.nih.gov/pubmed/26424110
http://dx.doi.org/10.1371/journal.pone.0162082
http://dx.doi.org/10.1007/s00592-013-0497-3
http://dx.doi.org/10.1007/s00125-013-3057-z
http://dx.doi.org/10.1165/ajrcmb.15.1.8679227
http://dx.doi.org/10.1038/sj.ki.5001565
http://dx.doi.org/10.1371/journal.pone.0012371
http://dx.doi.org/10.1111/nep.12719


Antioxidants 2020, 9, 925 22 of 22

192. Welt, K.; Weiss, J.; Martin, R.; Hermsdorf, T.; Drews, S.; Fitzl, G. Ginkgo biloba extract protects rat kidney
from diabetic and hypoxic damage. Phytomedicine 2007, 14, 196–203. [CrossRef] [PubMed]

193. Nascimento Gomes, G.; Barbos, F.T.; Radaeli, R.F.; Cavanal, M.F.; Mello Aires, M.; Zaladek Gil, F. Effect of
Dalpha-tocopherol on tubular nephron acidification by rats with induced diabetes mellitus. Braz. J. Med.
Biol. Res. 2005, 38, 1043–1051. [CrossRef] [PubMed]

194. Kim, S.S.; Galaher, D.D.; Csallany, A.S. Vitamin E and probucol reduce urinary lipophilic aldehydes and
renal enlargement in streptozotocin-induced diabetic rats. Lipids 2003, 35, 1225–1237. [CrossRef] [PubMed]

195. Tavafi, M.; Ahmadvand, H.; Tamjidipoor, A.; Delfan, B.; Khalatbari, A. Satureja khozestanica essential oil
ameliorates progression of diabetic nephropathy in uninephrectomized diabetic rats. Tissue Cell 2011, 43,
45–51. [CrossRef]

196. Ohno, T.; Takemura, G.; Murata, I.; Kagawa, T.; Akao, S.; Minatoguchi, S.; Fujiwara, T.; Fujiwara, H. Water
extract of the root of Lindera strychnifolia slows down the progression of diabetic nephropathy in db/db
mice. Life Sci. 2005, 77, 1391–1403. [CrossRef]

197. Jun, M.; Venkataraman, V.; Razavian, M.; Cooper, B.; Zoungas, S.; Ninomiya, T.; Webster, A.C.; Perkovic, V.
Antioxidants for chronic kidney disease. Cochrane Database Syst. Rev. 2012, 10, CD008176. [CrossRef]

198. Moreno, J.A.; Gomez-Guerrero, C.; Mas, S.; Sanz, A.B.; Lorenzo, O.; Ruiz-Ortega, M.; Opazo, L.; Mezzano, S.;
Egido, J. Targeting inflammation in diabetic nephropathy: A tale of hope. Expert Opin. Investig. Drugs 2018,
27, 917–930. [CrossRef]

199. Rapa, S.F.; Di Iorio, B.R.; Campiglia, P.; Heidland, A.; Marzocco, S. Inflammation and oxidative stress in
chronic kidney disease-potential therapeutic role of minerals, vitamins and plant-derived metabolites. Int. J.
Mol. Sci. 2019, 21, 263. [CrossRef]

200. Jing, W.; Vaziri, N.D.; Nunes, A.; Suematsu, Y.; Farzaneh, T.; Khazaeli, M.; Moradi, H. LCZ696
(Sacubitril/valsartan) ameliorates oxidative stress, inflammation, fibrosis and improves renal function
beyond angiotensin receptor blockade in CKD. Am. J. Transl. Res. 2017, 9, 5473–5484.

201. Kimura, Y.; Kuno, A.; Tanno, M.; Sato, T.; Ohno, K.; Shibata, S.; Nakata, K.; Sugawara, H.; Abe, K.; Igaki, Y.;
et al. Canagliflozin, a sodium-glucose cotransporter 2 inhibitor, normalizes renal susceptibility to type 1
cardiorenal syndrome through reduction of renal oxidative stress in diabetic rats. J. Diabetes Investig. 2019,
10, 933–946. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.phymed.2006.03.023
http://www.ncbi.nlm.nih.gov/pubmed/16781853
http://dx.doi.org/10.1590/S0100-879X2005000700007
http://www.ncbi.nlm.nih.gov/pubmed/16007275
http://dx.doi.org/10.1007/s11745-000-0639-2
http://www.ncbi.nlm.nih.gov/pubmed/11132182
http://dx.doi.org/10.1016/j.tice.2010.11.004
http://dx.doi.org/10.1016/j.lfs.2005.04.018
http://dx.doi.org/10.1002/14651858.CD008176.pub2
http://dx.doi.org/10.1080/13543784.2018.1538352
http://dx.doi.org/10.3390/ijms21010263
http://dx.doi.org/10.1111/jdi.13009
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Oxidative Stress 
	Sources of Oxidative Stress 
	Antioxidants 

	Oxidative Stress in CKD 
	Oxidative Stress and Glomerular Injury 
	Oxidative Stress and Interstitial Fibrosis 
	Oxidative Stress and Microvascular Dysfunction 
	Oxidative Stress and Chronic Inflammation 

	Biomarkers of Oxidative Stress in Patients with CKD 
	Lipid Peroxidation 
	Protein Oxidation 
	Nucleic Acid Oxidation 
	Antioxidants 

	Biomarkers of Oxidative Stress in Development and Progression of DN 
	Lipid Peroxidation 
	Protein Oxidation 
	Nucleic Acid Oxidation 
	Antioxidants 

	Antioxidant Therapy 
	Conclusions 
	References

