
antioxidants

Article

Hydroxytyrosol Supplementation Modifies Plasma
Levels of Tissue Inhibitor of Metallopeptidase 1
in Women with Breast Cancer

Cesar Ramirez-Tortosa 1 , Ana Sanchez 2, Cristina Perez-Ramirez 2,3, Jose Luis Quiles 3,4 ,
María Robles-Almazan 5, Mario Pulido-Moran 2,3 , Pedro Sanchez-Rovira 5

and MCarmen Ramirez-Tortosa 2,3,*
1 UGC de Anatomía Patológica Hospital San Cecilio de Granada, Avda. Conocimiento s/n,

18071 Granada, Spain; cesarl.ramirez.sspa@juntadeandalucia.es
2 Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada,

18071 Granada, Spain; anasf@correo.ugr.es (A.S.); cperezramirez87@gmail.com (C.P.-R.);
mpulido87@gmail.com (M.P.-M.)

3 Institute of Nutrition and Food Technology, Biomedical Center Research, Avda. Conocimiento s/n,
18071 Granada, Spain; jlquiles@ugr.es

4 Department of Physiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
5 Department of Medical Oncolgy, Jaen Hospital, 23007 Jaen, Spain;

maria.robles.exts@juntadeandalucia.es (M.R.-A.); oncopsr@yahoo.es (P.S.-R.)
* Correspondence: mramirez@ugr.es; Tel.: +34-95-824-3885

Received: 1 July 2019; Accepted: 8 September 2019; Published: 11 September 2019
����������
�������

Abstract: The etiology of breast cancer can be very different. Most antineoplastic drugs are not
selective against tumor cells and also affect normal cells, leading to a wide variety of adverse
reactions such as the production of free radicals by altering the redox state of the organisms.
Therefore, the objective of this study was to elucidate if hydroxytyrosol (HT) (an antioxidant present
in extra virgin olive oil) has a chemomodulatory effect when combined with the chemotherapeutic
drugs epirubicin and cyclophosphamide followed by taxanes in breast cancer patients. Changes in
plasma levels of matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of metalloproteinases 1
(TIMP-1) throughout the chemotherapy treatment were studied. Both molecules are involved in cell
proliferation, apoptosis, neoangiogenesis, and metastasis in breast cancer patients. Women with
breast cancer were divided into two groups: a group of patients receiving a dietary supplement of
HT and a control group of patients receiving placebo. The results showed that the plasma levels of
TIMP-1 in the group of patients receiving HT were significantly lower than those levels found in
the control group after the epirubicin-cyclophosphamide chemotherapy.
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1. Introduction

Most antineoplastic drugs are not selective against tumor cells; they also affect normal cells,
leading to a wide variety of adverse events in some tissues of the body. These adverse events are derived
from the mechanism of action of these drugs, including the production of free radicals, which affect
the redox state of the organism [1,2].

Oxidative stress is the consequence of an imbalance in the redox state. The increase in reactive
oxygen species (ROS) and free radicals generated in multiple metabolic pathways contributes to this
imbalance due to an increase in oxidation, which can lead to tissue damage [3].
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These ROS represent an important factor in carcinogenesis and can play a role in the three stages
of cancer: initiation, promotion, and tumor progression. Free radicals cause oxidative damage in
the DNA, contributing to the mutagenesis, which is essential for the process of tumor initiation.
This damage caused by free radicals can be minimized by enzymes such as catalase, superoxide
dismutase or glutathione peroxidase; or by other non-enzymatic antioxidant mechanisms (vitamins A,
C and E, selenium and reduced glutathione (GSH) [4] and maximized by cytochrome P450, xanthine
oxidase, and NADPH oxidases [5].

In the stage of cancer promotion, ROS can interact with surface or intracellular receptors (tyrosine
kinases receptor (RTKs), thus modulating signaling pathways (MAPK-and PI3 Kinase dependent)
and physiological mechanisms related to proliferation, apoptosis, angiogenesis, and others [6].

The malignant transformation of tumor cells is generally characterized by an increase in motility,
invasiveness, genetic instability and angiogenesis. These characteristics are acquired during the stage
of tumor progression [5]. There is evidence that ROS can promote the stabilization of alpha subunit of
hypoxia-inducible factor (HIF-1α), crucial in the process of neovascularization and angiogenesis [7].
Other studies reveal that NADPH oxidase 1 (NOX-1), which catalyzes the production of ROS,
can promote angiogenesis through the regulation of receptors for vascular endothelial growth factor
(VEGF) and the activity of matrix metalloproteinases (MMPs) [8].

Hydroxytyrosol (HT) is a polyphenol with a phenethyl alcohol structure. The chemical name of
HT is 3,4-dihydroxyphenylethanol. This compound is in minor amount in extra virgin olive oil, in
particular, in the water-soluble fraction. Hydroxytyrosol is generated from the hydrolysis of oleuropein,
this process occurs during the maturation of olives, the storage of the oil and the preparation of
table olives. This compound is also present in olive leaves and in different types of wine at various
concentrations (higher in red wine) [9–11].

Numerous studies have been conducted with isolated HT and with various olive oils rich in
HT. The antioxidant, anti-inflammatory, and antiatherogenic effects of HT have been demonstrated,
as well as its role in the prevention and modulation of various diseases, including cancer [12]. Many of
the anti-tumor properties of HT may be due to other activities, such as its ability to modulate
the antioxidant system and to eliminate ROS [10,13,14]. Several studies conducted in vitro and in vivo
have demonstrated the antitumor activity of HT. Granados-Principal et al. [15] showed that HT has
an antitumor effect in Sprague-Dawley rats with experimental breast cancer by inhibiting cancer
cell growth and proliferation. However, there are no clinical trials published to date demonstrating
the antitumor effect of HT in humans with breast cancer.

MMPs are zinc-dependent proteolytic enzymes, involved in tumor invasion and metastasis,
because MMPs play a fundamental role in the degradation and remodeling of the extracellular matrix.
In addition, other activities have been attributed to MMPs, such as participating in the regulation of
cell proliferation and the release of growth factors and contributing to the angiogenesis characteristic
of tumor cells [16,17].

The expression of MMP-9 has been shown to be induced by transcription factors, such as Fos
and Jun, both produced through the Ras/Raf/ERK pathway, which is known to be an activating pathway
for cell proliferation [18]. Several authors have associated higher plasma levels of MMP-9 with a worse
prognosis. Thus, Scarpa et al. [19] and Lawicki et al. [20] found a direct association between high
plasma levels of MMP-9 and a lower tumor differentiation, associating with a worse prognosis.

Furthermore, tissue inhibitor of metalloproteinases (TIMPs) are a family of proteins capable of
inhibiting the activity of MMPs through their binding to the catalytic site through non-covalent bonds.
Thus, TIMPs play a key role in maintaining the balance between the deposition of the extracellular
matrix and its degradation, this role is played through the binding to the MMPs and, consequently,
the regulation of the activity of MMPs. In addition, other functions have also been attributed
to TIMPs, such as participating in cell proliferation, apoptosis, angiogenesis, tumor invasion,
and metastasis [21,22].
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Some studies have showed a relationship between higher TIMP-1 levels and a worse prognosis in
patients with breast cancer. Lawicki et al. [23] found higher plasma levels in advanced cancer stages,
thus being able to establish a relationship with a worse prognosis. The same conclusions were found
by Lawicki et al. [20] and by Schrohl et al. [24], who showed that the plasma of women with mammary
tumor metastasis presented higher levels of TIMP-1 than those women with primary tumors, showing
both studies a relationship between plasma levels of TIMP-1 and more advanced stages of cancer and,
therefore, a more unfavorable prognosis [22].

Based on the above, the objective of the present study was to elucidate whether HT improves
the antitumor response of women with breast cancer undergoing neoadjuvant chemotherapy (treated
with epirubicin and cyclophosphamide followed by taxanes). We also aim to elucidate if this effect
could be produced by modulating the plasma levels of MMP-9 and TIMP-1, leading to a decrease in
cell proliferation and, therefore, improving the prognosis of the patients.

2. Materials and Methods

Two experimental groups were established to investigate the effect of dietary supplementation
with HT in breast cancer patients undergoing neoadjuvant chemotherapy: patients in Group A (n = 20)
were supplemented with HT at a single dose of 15 mg/day administered as hard capsules; and patients
in Group B (control group n = 20) received a placebo hard capsule. The placebo capsules had
the same pharmaceutical form and color as the usual format of the supplement. The manufacturing
entity was the only one that kept information about the packaging corresponding to the supplement
and the placebo. This information was only revealed once the study was completed. The capsules
used in the study were supplied by Probelte Pharma S.A. (Murcia, Spain) following all the quality,
stability, conservation, and labeling controls for human dietary supplements. Placebo capsules
consisted of 96% Eliano MD2 (maltodextrin), 2% tricalcium phosphate and 2% magnesium stearate.
Hydroxytyrosol capsules consisted of 63.5% Eliano MD2 (maltodextrin), 2% tricalcium phosphate,
2% magnesium stearate and 34.5% Mediteanox. Mediteanox™ is a natural extract obtained of
leaves and olives from olive tree (Olea europaea) of Jaen grown in Spain. This extract is obtained by
a patented technology, using extraction procedures based on ultrapure water. The main component of
Mediteanox™ is the potent natural antioxidant HT (15 mg/capsule). Toxicology Tests support the safety
of Mediteanox™.

The design of this study was a triple-blind randomized trial with parallel groups (supplemented
with HT or placebo). The study population consisted of those patients selected by the Breast
Committee for neoadjuvant therapy according to the criteria included in the Clinical Practice Guideline
prepared by the Subcommittee at Jaen Hospital. All the patients signed an informed consent for
their inclusion in the study prior to their participation. The study was conducted in accordance with
the Declaration of Helsinki, and the protocol was approved by the Ethics committee of Jaen Hospital,
Spain (code: PI-0695-2012).

The following inclusion criteria were considered to participate in the clinical trial: luminal (A or B)
tumor phenotype, receiving neoadjuvant therapy based on anthracyclines and taxanes and signed
the Informed Consent. The exclusion criteria were: metastatic disease at diagnosis, Her2-positive or
triple-negative phenotypes, history of mental illness, detection in the initial interview of a psychological
profile that might lead to a low adherence to the supplementation regiment, women who only received
hormonal therapy as neoadjuvant treatment and women with known allergies to foods or compounds
derived from the olive tree.

The overall sample size was estimated based on the data obtained in the study published by
Vera-Ramírez et al. [25]. Matched blood samples were collected from each patient in T1, T2 and T3 cycles
of chemotherapy. Approximately 5 mL of blood was taken from each patient, by venous puncture,
drawn into an ethylene diamine tetra-acetic acid (EDTA)-containing tube (Vacutainer®EDTA Tubes;
BD, Franklin Lakes, NJ, USA), and centrifuged at 1000× g for 15 min. The plasma was kept in a separate
tube and frozen at −80 ◦C. The sample was recruited consecutively to its identification and sequentially.
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Patients were randomly assigned to one of the groups. The final number of patients included in
the study was 40 (n = 20 per experimental group). The timeline of the study is shown in Figure 1.
The analytical determinations were measured at three time points—T1, T2, and T3—as described in
Figure 1.

The habitual diet of the patients was daily checked with 24 h dietary recalls using food records of
measured and weighed food intake and all recipes of homemade dishes for one week. In particular,
three recall days were registered at the day of recruitment by a dietician at T1, T2, and T3 time points.
Another four days (including one weekend day) were registered by the patient, starting on the first day
after recruitment, with further supervision by the dietician. The content of macronutrients and selected
micronutrients in the diet was calculated using the computer program ALIMENTACION Y SALUD
0698.046 (BitASDE General Medica Farmaceutica, Valencia, Spain) (data not shown).

Figure 1. Timeline of the clinical study. T1: study start, total time of the period 63 days, three cycles of
chemotherapy with epirubicin and cyclophosphamide, 21 days each cycle. T2: star of treatment with
taxanes, total time of the period 63 days, three cycles of chemotherapy, 21 days each cycle. T3: end of
chemotherapy treatment and pre-surgery day. HT dose 15 mg/d from T1 until T3.

2.1. Plasma Metalloproteinase-9 (MMP-9) Assay

Plasma samples were stored at −80 ◦C, so before making the determinations, they were thawed
gradually at 4–10 ◦C approximately in the refrigerator. The dilutions of the samples have always been
performed in cold to maintain their integrity and to ensure reliable results.

Plasma levels of MMP-9 were measured with the kit “Enzyme-linked Immunosorbent Assay Kit
for Matrix Metalloproteinase 9” from the commercial company Cloud-Clone Corp. (Cloud-Clone
Corporation, Houston, TX, USA).

To perform the plasma determination of MMP-9, plasma samples were first diluted at a 1:100
dilution, using 0.01 mol/L PBS prepared extemporaneously as solvent. Then, the standards were
prepared according to the kit protocol. Subsequently, once samples and diluted standards were
prepared, 100 µL of each sample, the blank and the standards were added into the corresponding wells
and incubated for one hour at 37 ◦C, after which the liquid was removed from the wells and 100 µL of
Detection Reagent A (containing antibody specific against MMP-9) were added to each well, and plates
were incubated again at 37 ◦C for one hour. Then, the plate was washed three times with the washing
buffer included in the kit. Next, Detection Reagent B (containing the conjugated secondary antibody)
was added and the plate was incubated at 37 ◦C for 30 min. After this process, the plate was washed
five times with the washing buffer and 90 µL of substrate was added into each well. The plate was
placed in an incubator at 37 ◦C for 15 min isolated from the light, after which an intense blue coloration
occurred, which turned yellow after the addition of 50 µL of stop solution. Finally, the absorbance of
the plate was measured in a spectrophotometer at 450 nm.

Plasma levels of MMP-9 present in the samples was obtained by entering the optical density (OD)
results obtained into the online desktop tool MyAssays (www.myassays.com).

With this application, a standard curve of 4 parameters was drawn and the OD values measured
in plasma samples were extrapolated, thus obtaining the levels of MMP-9 expressed in ng/mL.

www.myassays.com
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2.2. Plasma Tissue Inhibitor of Metalloproteinases-1 (TIMP-1) Assay

Plasma levels of TIMP-1 were measured with the “Enzyme-linked Immunosorbent Assay Kit for
Tissue Inhibitors of Metalloproteinase 1” from the commercial firm Cloud-Clone Corp. (Cloud-Clone
Corporation, Houston, TX, USA).

Once the diluted samples and standards were prepared, 100 µL of each sample, the blank
and the standards were added into the corresponding wells and incubated for one hour at 37 ◦C,
after which the liquid was removed from the wells and 100 µL of Detection Reagent A (containing
specific antibody against TIMP-1) were added to each well, and plates were incubated again at 37 ◦C for
one hour. Then, the plate was washed three times with the corresponding washing buffer. Subsequently,
the Detection Reagent B containing the conjugated secondary antibody was added and the plate was
incubated at 37 ◦C for 30 min, then the plate was washed five times with washing buffer. The next
step was the addition of 90 µL of substrate. The plate was maintained at 37 ◦C for 15 min in the dark,
thus generating an intense blue color that turned yellow after the addition of 50 µL of stop solution.
Finally, the absorbance of the plate was measured in a spectrophotometer at 450 nm.

The final concentration of TIMP-1 in the samples was determined by entering the OD results
obtained into the online desktop tool MyAssays (www.myassays.com). With this application, a standard
curve of four parameters was drawn and the OD values corresponding to plasma samples were
extrapolated, thus obtaining the levels of TIMP-1 expressed in ng/mL.

2.3. Statistical Analysis

The results are expressed as mean and standard error of the mean. Before performing the statistical
analysis, the normality and homogeneity of the variances were verified using the Kolmogorov-Smirnoff

and Levene tests. When the variance followed a normal distribution and it was homogeneous,
the Bonferroni test was used. Whereas, when the variances were not homogeneous, the nonparametric
Kruskall-Wallis, U-Mann-Whitney, and Tamhane tests were used. An analysis of the variance (ANOVA)
was performed to find out if there were differences among time points (T1, T2 and T3) for each
experimental group (A and B). The significance was established at p < 0.05. The Student’s t test was
performed to find differences between Group A and Group B for the same time point. All the statistical
analyses were performed using the SPSS software version 22.0 (IBM Corp., Armonk, NY, USA).
The results are shown in bar graphs. Bars not sharing superscript letters are statistically different
(p < 0.05).

3. Results

3.1. Characteristics of the Population and Homogeneity of the Experimental Groups at the Beginning of
the Study

Table 1 shows the most important clinical and anatomopathological variables of the group treated
with HT and the control group of patients with breast cancer. Table 1 indicates that the groups were
homogeneous at the beginning of the study because no significant differences (p > 0.05) were found
between both experimental groups.

All patients took every day the hard capsule containing HT or the placebo capsule during
the neoadjuvant chemotherapy until the pre-surgery day (T1, T2, and T3) (Figure 1). No adverse
reactions were caused by these capsules, and they were well accepted and tolerated by all patients.
The daily food intake of the patients decreased due to the chemotherapy treatment. The intake of extra
virgin olive oil was recorded in all patients throughout the study (approximately 10–15 mL/day in
both groups).

www.myassays.com
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Table 1. Clinical variables of the experimental groups at the beginning of the study.

Variable
Group

A (Hydroxytyrosol) Group B (Placebo) p Value

% %

Age (years) 51.20 ± 2.02 - 50.85 ± 1.80 - 0.80

Weight (Kg) 68.05 ± 3.13 - 68.34 ± 2.90 - 0.88

BMI 26.67 ± 1.11 - 27.57 ± 1.31 - 0.91

% Estrogen Receptor (biopsy) 92.75 ± 2.47 - 86.15 ± 5.55 - 0.53

% Progesterone Receptor (biopsy) 57.55 ± 8.02 39.8 ± 8.07 0.12

% Ki67 (biopsy) 21.79 ± 3.34 - 32.90 ± 5.11 - 0.14

Subtypes of breast cancer (biopsy)
% Luminal A - 50 - 25

% Luminal B - 50 - 75

Data are expressed as mean ± SEM. BMI: Body Mass Index. p < 0.05 is considered statistically significant.

3.2. Plasma Levels of MMP-9 in Breast Cancer Patients

Figure 2 shows plasma MMP-9 levels in Group A (HT) and in Group B (Placebo) of women
with breast cancer undergoing neoadjuvant chemotherapy at the beginning of the study (T1), after
epirubicin-cyclophosphamide treatment (T2) and, finally, after taxane treatment (T3). No significant
differences were found between Group A and Group B at each time point (TI, T2, and T3).

Figure 2. Plasma levels of MMP-9 in women with breast cancer. Values are shown as the mean± standard
error of the mean. Bars not sharing superscript letters are statistically different at p < 0.05 for each
experimental group (lowercase for Group A treated with hydroxytyrosol and uppercase for Group B
treated with placebo) at each time point (TI, T2 and T3).

However, there is a very pronounced decrease in the level of MMP-9 throughout the chemotherapy
(T1-T2) (from 172.68 ± 16.5 to 109.82 ± 12.5 ng/mL for group A and from 244.91 ± 41.9 to
113.16± 18.6 ng/mL for group B). The Bonferroni test showed that the level of MMP-9 in T1 is significantly
higher than the level found in T2 and T3 (93.11 ± 11.6 ng/mL for group A and 85.22 ± 10.2 ng/mL for
group B) (p < 0.05) in both groups.

Moreover, a decrease in MMP-9 plasma level was found after the chemotherapy with taxane
(T3), although this change was not statistically significant, which indicates that the combination of
epirubicin plus cyclophosphamide is responsible for the pronounced decrease in plasma levels of
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MMP-9 throughout the chemotherapy course. This is of great interest, since the fact of achieving such
a marked decrease in plasma levels of MMP-9 may be related to a better prognosis for patients.

3.3. Plasma Levels of TIMP-1 in Breast Cancer Patients

Figure 3 shows the average plasma levels of TIMP-1. The results have been obtained by
differentiating the samples belonging to Group A and Group B during blood collection at different
time points.

Figure 3. Plasma levels of the tissue inhibitor of metalloproteinases I (TIMP-1) in women with breast
cancer. Values are shown as the mean ± standard error of the mean. Bars not sharing superscript letters
are statistically different at p < 0.05 for each experimental group (lowercase for Group A treated with
hydroxytyrosol and uppercase for Group B treated with placebo) at each time point (TI, T2 and T3).

The results show that Group A presents significant differences in the plasma levels of TIMP-1
between T1 and T2 (from 194.94 ± 12.95 ng/mL to 152.93 ± 12.99 ng/mL). There is also a significant
difference in TIMP-1 levels between T1 and T3 (from 194.94 ± 12.95 ng/mL to 152.98 ± 11.89 ng/mL).
However, no significant difference in plasma levels of TIMP-1 was found in Group B between T1
and T2 (from 217.21 ± 18.93 ng/mL to 177.31 ± 20.30 ng/mL). Therefore, Group B only showed statistical
significance for plasma levels of TIMP-1 between the time points T1 and T3 (217.21 ± 18.93 ng/mL
vs. 164.77 ± 12.52 ng/mL). These values indicate that, the group treated with HT, at the time point
at which patients were treated with epirubicin and cyclophosphamide, show a significant decrease in
plasma levels of TIMP-1 compared to those patients who took the placebo. These results show that HT
is exerting some effect on the plasma levels of TIMP-1.

4. Discussion

MMP-9 and TIMP-1 have been linked to the prognosis of breast cancer [21,22]. Therefore, we
suggest that HT, due to its antioxidant, anti-proliferative, and anti-tumor activity, could modulate
plasma levels of these biomarkers and improve the prognosis of patients. Thereby, this compound
could be included as a supplement during breast cancer chemotherapy.

In this study, no significant differences in plasma levels of MMP-9 were found between the group
treated with HT and the group that received the placebo. In contrast, other studies have shown that HT
at a dose of 1–10 µmol/L decreased the expression of MMP-9 in cultures of bovine aortic endothelial
cells [26] and monocytes, attributing it an antiangiogenic activity [27]. This inconsistency in the results
could be explained by the fact that the cited study was performed on a culture of cells from vascular
tissue but not on tumor cells.
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Furthermore, plasma levels of both MMP-9 and TIMP-1 have decreased significantly from T1
to the end of treatment with taxane (T3), which indicates that chemotherapy acts as a modulator of
the plasma levels of both proteins. However, it is noteworthy that for both proteins (MMP-9 and TIMP-1),
plasma levels only dropped significantly at the end of the epirubicin-cyclophosphamide treatment (T2)
but there were not significant differences between T2 and after treatment with taxane (T3).

Regarding MMP-9, we found that in a study in which doxorubicin (anthracycline),
cyclophosphamide and 5-fluorouracil were administered, the authors did not find a decrease in
the plasma levels of MMP-9 throughout the treatment [28]. In an assay performed on glioma cell lines,
it was found that epirubicin decreased the secretion of MMP-9 by about 50%, which suggests a potential
antiproliferative and antimigratory role of epirubicin in this type of cells [29]. This inhibitory role of
epirubicin on MMP-9 had already been found in a study conducted by Karakiulakis et al. [30], where
the activity of type IV collagenases was measured, being diminished by anthracyclines. All these
studies are consistent with our results.

Moreover, the group receiving a HT supplement showed a significant decrease in TIMP-1 levels
from T1 to T2, corresponding to the time interval in which patients have received different cycles of
combined chemotherapy of epirubicin and cyclophosphamide. In contrast, no statistically significant
differences in the plasma levels of TIMP-1 were found between T1 and T2 in the control group.
To explain the observed results of HT supplement on plasma levels of TIMP-1, the authors suggest
the following mechanism.

NFkB is a transcription factor activated in response to bacterial or viral stimuli, growth factor
or inflammatory molecules. Activation of NFkB is a common characteristic of many tumors [31].
Moreover, some studies conducted by Illesca et al. [32] and Valenzuela et al. [33] have concluded
that the activation of the transcription factors Nrf2 and PPAR-delta and the down-regulation of
NFkB and SREBP-1c appear as important mechanisms mediating the beneficial effect of HT in
metabolic disturbances in white adipose tissue. In addition, Liu et al. [34] stated that NFkB activation
significantly increased the transcription of TNF-alfa, which can elicit NFkB signaling, subsequently
causing an up-regulation of TGF-B [31]. TGF-B induces TIMP-1 gene expression in fibroblasts [35].
The above-mentioned shows that HT can downregulate NFkB and it could decrease TNF-alfa and TGF-b
levels as described for other antioxidant agents, such as silymarin in rat liver injury induced by CCl4 [36]
causing a decrease in plasma levels of TIMP-1 in women with breast cancer.

5. Conclusions

A supplementation with 15 mg/day of HT combined with chemotherapy treatment based on
epirubicin plus cyclophosphamide decreases plasma levels of TIMP-1 in women with luminal subtype
breast cancer, showing that the selected combination is of choice for improving the prognosis of patients
with this pathology. Finally, to elucidate the exact mechanism by which HT leads to a decrease in
TIMP-1 level, future research studies should be performed on clinical trials.
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20. Lawicki, S.; Głażewska, E.; Sobolewska, M.; Będkowska, G.; Szmitkowski, M. Plasma Levels and Diagnostic
Utility of Macrophage Colony-Stimulating Factor, Matrix Metalloproteinase-9, and Tissue Inhibitor of
Metalloproteinases-1 as New Biomarkers of Breast Cancer. Ann. Lab. Med. 2016, 36, 223–229. [CrossRef]

21. Jackson, H.W.; Defamie, V.; Waterhouse, P.; Khokha, R. TIMPs: Versatile extracellular regulators in cancer.
Nat. Rev. Cancer 2017, 17, 38–53. [CrossRef]

22. Grunwald, B.; Schoeps, B.; Kruger, A. Recognizing the molecular multifunctionality and interactome of
TIMP-1. Trends Cell Biol. 2019, 29. [CrossRef] [PubMed]

23. Lawicki, S.; Zajkowska, M.; Glazewska, E.K.; Bedkowska, G.E.; Szmitkowski, M. Plasma levels and diagnostic
utility of VEGF, MMP-9 and TIMP-1 in the diagnosis of patients with breast cancer. Onco Targets Ther. 2016,
9, 911–919. [PubMed]

24. Schrohl, A.; Mueller, V.; Christensen, I.; Pantel, K.; Thomssen, C.; Bruenner, N. A Comparative Study of
Tissue Inhibitor of Metalloproteinases-1 Levels in Plasma and Tumour Tissue from Patients with Primary
Breast Cancer and in Plasma from Patients with Metastatic Breast Cancer. Tumor Biol. 2008, 29, 181–187.
[CrossRef] [PubMed]

25. Vera-Ramirez, L.; Sanchez-Rovira, P.; Ramirez-Tortosa, M.C.; Ramirez-Tortosa, C.L.; Granados-Principal, S.;
Fernandez-Navarro, M.; Lorente, J.A.; Quiles, J.L. Does chemotherapy-induced oxidative stress improve
the survival rates of breast cancer patients? Antioxid. Redox Signal. 2012, 15, 903–909. [CrossRef] [PubMed]

26. García-Vilas, J.; Quesada, A.; Medina, M. Hydroxytyrosol targets extracellular matrix remodeling by
endothelial cells and inhibits both Ex Vivo and In Vivo angiogenesis. Food Chem. 2017, 221, 1741–1746.
[CrossRef] [PubMed]

27. Scoditti, E.; Nestola, A.; Massaro, M.; Calabriso, N.; Storelli, C.; De Caterina, R.; Carluccio, M. Hydroxytyrosol
suppresses MMP-9 and COX-2 activity and expression in activated human monocytes via PKCα and PKCβ1
inhibition. Atherosclerosis 2014, 32, 17–24. [CrossRef] [PubMed]

28. Coskun, U.; Yamac, D.; Gulbahar, O.; Sancak, B.; Karaman, N.; Ozkan, S. Locally advanced breast carcinoma
treated with neoadjuvant chemotherapy: Are the changes in serum levels of YKL-40, MMP-2 and MMP-9
correlated with tumor response? Neoplasma 2007, 54, 348–352. [PubMed]

29. Wang, X.; Zhao, Z.; Chen, M.; Yuan, Q.; Li, Y.; Jiang, C. Epirubicin inhibits growth and alters the malignant
phenotype of the U-87 glioma cell line. Mol. Med. Rep. 2015, 12, 5917–5923. [CrossRef]

30. Karakiulakis, G.; Missirlis, E.; Maragoudakis, M.E. Basement membrane collagen-degrading activity from
a malignant tumour is inhibited by anthracycline antibiotics. Biochim. Biophys. Acta 1990, 1035, 218–222.
[CrossRef]

31. Hursting, S.D.; Hursting, M.J. Growth signals, inflammations, and vascular perturbations: Mechanistic
links between obesity, metabolic syndrome and cancer. Arterioscler. Thormb. Vasc. Biol. 2012, 32, 1766–1770.
[CrossRef]

32. Illesca, P.; Valenzuela, R.; Espinosa, A.; Echeverria, F.; Soto-Alarcon, S.; Ortiz, M.; Videla, L.A. Hydroxytyrosol
supplementation ameliorates the metabolic disturbances in white adipose tissue from mice fed a high-fat diet
through recovery of transcription factor Nrf2, SREBP-1C, PPAR-gamma and NF-KB. Biomed. Pharmacother.
2019, 109, 2472–2481. [CrossRef] [PubMed]

33. Valenzuel, R.; Illesca, P.; Echeverria, F.; Espinosa, A.; Rincon-Cervera, M.A.; Ortiz, M.; Hernandez-Rodas, M.C.;
Valenzuela, A.; Videla, L.A. Molecular adaptations underlying the beneficial effects of hydroxytyrosol in
the pathogenic alterations induced by a high-fat diet in mouse liver PPAR-a and Nrf2 activation and NF-kB
down-regulation. Food Funct. 2017, 8, 1526–1537. [CrossRef] [PubMed]

34. Liu, C.; Tao, Q.; Sun, M.; Wu, J.Z.; Yang, W.; Jian, P.; Peng, J.; Hu, Y.; Liu, C.; Liu, P. Kupffer cell are associated
with apoptosis, inflammations and fibrotic effects in hepatic fibrosis in rats. Lab. Investig. 2010, 90, 1805–1816.
[CrossRef] [PubMed]

http://dx.doi.org/10.3343/alm.2016.36.3.223
http://dx.doi.org/10.1038/nrc.2016.115
http://dx.doi.org/10.1016/j.tcb.2018.08.006
http://www.ncbi.nlm.nih.gov/pubmed/30243515
http://www.ncbi.nlm.nih.gov/pubmed/26966379
http://dx.doi.org/10.1159/000146863
http://www.ncbi.nlm.nih.gov/pubmed/18645261
http://dx.doi.org/10.1089/ars.2011.3993
http://www.ncbi.nlm.nih.gov/pubmed/21446882
http://dx.doi.org/10.1016/j.foodchem.2016.10.111
http://www.ncbi.nlm.nih.gov/pubmed/27979155
http://dx.doi.org/10.1016/j.atherosclerosis.2013.10.017
http://www.ncbi.nlm.nih.gov/pubmed/24401212
http://www.ncbi.nlm.nih.gov/pubmed/17845129
http://dx.doi.org/10.3892/mmr.2015.4220
http://dx.doi.org/10.1016/0304-4165(90)90120-L
http://dx.doi.org/10.1161/ATVBAHA.111.241927
http://dx.doi.org/10.1016/j.biopha.2018.11.120
http://www.ncbi.nlm.nih.gov/pubmed/30551508
http://dx.doi.org/10.1039/C7FO00090A
http://www.ncbi.nlm.nih.gov/pubmed/28386616
http://dx.doi.org/10.1038/labinvest.2010.123
http://www.ncbi.nlm.nih.gov/pubmed/20921949


Antioxidants 2019, 8, 393 11 of 11

35. Edwards, D.R.; Leco, K.J.; Beatudry, P.P.; Atadja, P.W.; Veillette, C.; Riabowol, K.T. Differential effects of
transforming growth factor-beta 1 on the expression of matrix metallo protinases and tissue inhibitiors of
metalloproteinases in young and old human fibroblast. Exp. Gerontol. 1996, 31, 207–223. [CrossRef]

36. Saber, S.; Goda, R.; El-Tanbouly, G.S.; Ezzat, D. Lisinopril inhibits nuclear transcription factor kappa B
and augments sensitivity to silymarin in experimental liver fibrosis. Int. Immunopharmacol. 2018, 64, 340–349.
[CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0531-5565(95)02010-1
http://dx.doi.org/10.1016/j.intimp.2018.09.021
http://www.ncbi.nlm.nih.gov/pubmed/30243070
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Plasma Metalloproteinase-9 (MMP-9) Assay 
	Plasma Tissue Inhibitor of Metalloproteinases-1 (TIMP-1) Assay 
	Statistical Analysis 

	Results 
	Characteristics of the Population and Homogeneity of the Experimental Groups at the Beginning of the Study 
	Plasma Levels of MMP-9 in Breast Cancer Patients 
	Plasma Levels of TIMP-1 in Breast Cancer Patients 

	Discussion 
	Conclusions 
	References

