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Abstract: Sirtuin 1 (Sirt1) is an essential modulator of cellular metabolism and has pleiotropic effects.
It was recently reported that Sirt1 overexpression in kidney tubule ameliorates cisplatin-induced acute
kidney injury (AKI). However, whether pharmacological activation of Sirt1 also has a beneficial effect
against the disease remains unclear. In this study, we aimed to evaluate whether SRT1720, a potent and
specific activator of Sirt1, could ameliorate cisplatin-induced AKI. We found that SRT1720 treatment
ameliorated cisplatin-induced acute renal failure and histopathological alterations. Increased levels of
tubular injury markers in kidneys were significantly attenuated by SRT1720. SRT1720 treatment also
suppressed caspase-3 activation and apoptotic cell death. Increased expression of 4-hydroxynonenal,
elevated malondialdehyde level, and decreased ratio of reduced glutathione/oxidized glutathione
after cisplatin injection were significantly reversed by SRT1720. In addition, SRT1720 treatment
decreased renal expression of pro-inflammatory cytokines and prevented macrophage infiltration
into damaged kidneys. We also showed that the therapeutic effects of SRT1720 were associated
with reduced acetylation of p53 and nuclear factor kappa-B p65 and preservation of peroxisome
function, as evidenced by recovered expression of markers for number and function of peroxisome.
These results suggest that Sirt1 activation by SRT1720 would be a useful therapeutic option for
cisplatin-induced AKI.
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1. Introduction

Cisplatin is a chemotherapy drug used for the treatment of many different types of cancer,
including ovarian, testicular, bladder, and lung cancer [1–3]. However, approximately 25–30% of
patients treated with cisplatin suffer from acute kidney injury (AKI), and thereby this complication
limits its clinical use. Although some strategies including intensive hydration have been used, there is
no satisfactory treatment to protect against cisplatin-induced AKI.

Sirtuin 1 (Sirt1) is a histone deacetylase implicated in regulating metabolic responses to nutrient
availability [4]. Numerous studies suggest that Sirt1 is mainly responsible for modulation of energy
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metabolism in metabolic tissues [5]. In addition, Sirt1 is also known to inhibit cell apoptosis,
inflammatory responses, and oxidative stress through deacetylating a variety of substrates including
p53 [6,7] and p65 subunit of nuclear factor kappa-B (NF-κB) [8,9]. Thus, Sirt1 has been recognized as
a useful therapeutic target for the therapy of numerous inflammatory diseases. It was shown that Sirt1
overexpression in kidney tubules ameliorates cisplatin-induced AKI by inhibiting apoptotic cell death
and oxidative stress [10]. However, whether pharmacological activation of Sirt1 also has a beneficial
effect against cisplatin-induced AKI has not yet been fully determined.

SRT1720 is a small molecule that potently and specifically activates Sirt1 [11]. Sirt1 activation
by SRT1720 was shown to extend the lifespan of rodents [12] and to ameliorate diet-induced obesity
and metabolic dysfunction [11,13]. Moreover, SRT1720 treatment suppressed ovalbumin-induced
airway inflammation [14] and protected against cigarette smoke-induced lung injury [15]. Liver injury
after hepatic ischemia-reperfusion [16] and multiorgan injury in sepsis [17] were also attenuated by
SRT1720. In this study, we aimed to evaluate whether SRT1720 treatment could ameliorate against
cisplatin-induced AKI.

2. Materials and Methods

2.1. Animals and Drug Treatment

Seven-week-old male C57BL/6N mice (Samtako, Daejeon, South Korea) were adapted to the facility
for 1 week before study. The mice were randomly grouped into the following groups (n = 8 for each
group): control (Con), cisplatin alone (CP), and SRT1720 in combination with cisplatin (CP+SRT1720).
To induce AKI, mice were intraperitoneally injected with cisplatin (15 mg/kg in 0.9% normal saline).
Control mice were intraperitoneally injected with an equal volume of the vehicle. To investigate the
effects of SRT1720 (Santa Cruz Biotechnology, Santa Cruz, CA, USA) on cisplatin-induced AKI, mice
were intraperitoneally injected with SRT1720 (20 mg/kg) [16,17] for 3 days. The treatment with SRT1720
started 1 h before cisplatin injection. Mice were sacrificed 72 h after cisplatin injection. All animal
experiments were performed according to the animal protocols approved by the Institutional Animal
Care and Use Committee of the Catholic University of Daegu (DCIAFCR-180809-13-Y).

2.2. Histology and Immunohistochemistry

Kidneys were rapidly removed from each mouse and then fixed in 4% phosphate-buffered
paraformaldehyde. The tissues were embedded in paraffin and then thin sections were made from
the paraffin blocks. The sections were incubated with hematoxylin and eosin (H&E) stain and
periodic acid Schiff (PAS) stain. Images were captured using the NIKON A1+ confocal microscope
(Nikon, Tokyo, Japan). The degree of tubular injury was scored as previously described [18].
For immunohistochemical staining, the kidney sections were probed with antibodies against kidney
injury molecule-1 (Kim-1; Abcam, Cambridge, MA, USA), neutrophil gelatinase-associated lipocalin
(NGAL; Santa Cruz Biotechnology), 4-hydroxynonenal (4-HNE; Abcam), or Galectin-3 (Abcam).

2.3. Evaluation of Renal Function and Oxidative Stress

Creatinine and blood urea nitrogen (BUN) levels in plasma, malondialdehyde (MDA) levels
in kidney tissues, and reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio in kidney tissues
were analyzed using commercial kits according to the manufacturer’s instructions.

2.4. Western Blot Analysis

Protein was isolated from kidney tissues and loaded onto a gradient polyacrylamide gel.
The resolved proteins were transferred onto a nitrocellulose membrane and the membrane was
incubated with the following primary antibodies: anti-Kim-1 (Abcam), anti-cleaved caspase-3 (Cell
Signaling, Danvers, MA, USA), anti-Bax (Santa Cruz Biotechnology), anti-cleaved poly(ADP-ribose)
polymerase-1 (PARP1; Cell Signaling), anti-acetyl-p53 (Lys379; Cell signaling), anti-p53 (Cell Signaling),
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anti-interleukin-6 (IL-6; Abcam), anti-tumor necrosis factor-α (TNF-α; Abcam), anti-acetyl-NF-κB
p65 (Lys310; Cell Signaling), anti-NF-κB p65 (Cell Signaling), and anti- glyceraldehyde 3-phosphate
dehydrogenase (GAPDH; Cell Signaling) (Cell Signaling) antibody. The membrane was washed and
incubated with horseradish peroxidase-conjugated secondary antibodies, and signals were detected
using an enhanced chemiluminescence detection system (Thermo Fisher Scientific, Waltham, MA, USA).
The protein expression levels were normalized against GAPDH.

2.5. Terminal Deoxynucleotidyl Transferase -Mediated Deoxyuridine Triphosphate Nick End Labeling
(TUNEL) Staining

Apoptosis was examined in the kidney sections using the in situ Cell Death Detection Kit
(Roche Diagnostics, Indianapolis, IN, USA), according to the manufacturer’s instructions. Briefly,
the kidney sections were deparaffinized in xylene, rehydrated using descending grades of ethanol,
and permeabilized for 30 min at room temperature with proteinase K in 10 mM Tris-HCl, pH 7.4–8.
After washing, the sections were incubated in the TUNEL reaction mixture for 1 h at 37 ◦C. Nuclei were
counterstained with 4′,6-diamidino-2-phenylindole (DAPI). Images were captured using the NIKON
A1+ confocal microscope.TUNEL-stained apoptotic cells were counted in five randomly chosen fields
(×200 magnification) per kidney.

2.6. Gene Expression Analysis

Total RNA extraction from kidney tissue was performed using TRIzol reagent and one microgram
of each sample was reverse transcribed into cDNA by using oligo (dT)18 primers and the AccuPower
RT Premix (Bioneer, Daejeon, South Korea) according to the manufacturer’s instructions. Quantitative
real-time RT-PCR was performed using the Real-Time PCR 7500 system (Applied Biosystems, Foster
city, CA, USA) and Power SYBR Green PCR Master Mix (Applied Biosystems). Sequences of specific
primers are listed in Table 1. GAPDH was used to normalize the expression levels of the other genes.

Table 1. Primers used for quantitative real-time RT-PCR.

Gene Primer Sequence (5′→3′) Product Size
(bp)

PEX14 1 Forward: GCCACCACATCAACCAACTG
Reverse: GTCTCCGATTCAAAAGAAGTCCT 97

catalase Forward: CAAGTACAACGCTGAGAAGCCTAAG
Reverse: CCCTTCGCAGCCATGTG 74

GAPDH 2 Forward: ACTCCACTCACGGCAAATTC
Reverse: TCTCCATGGTGGTGAAGACA 170

1 Peroxisomal membrane protein 14. 2 Gyceraldehyde 3-phosphate dehydrogenase.

2.7. Statistical Analysis

Data are represented as the mean ± standard error of the mean (SEM) and analyzed using one-way
ANOVA followed by a post-hoc Bonferroni’s multiple comparison test. p < 0.05 was considered
statistically significant.

3. Results

3.1. SRT1720 Ameliorated Cisplatin-Induced AKI

Cisplatin-treated mice developed acute renal failure, as assessed by elevated levels of creatinine
and BUN at 72 h after cisplatin injection (Figure 1A,B). The cisplatin-induced renal dysfunction
was significantly attenuated by SRT1720. Histological staining of the kidney sections showed that
cisplatin-treated mice displayed histopathological alterations such as dilated and cast-filled tubules
(Figure 2A,B). The cisplatin-induced structural damages were also attenuated by SRT1720.
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Figure 1. Effects of SRT1720 on renal function in mice treated with cisplatin. (A) Plasma creatinine.
(B) Plasma blood urea nitrogen (BUN). *** p < 0.001 vs. control (Con). ## p < 0.01 and ### p < 0.001 vs.
cisplatin alone (CP).

Figure 2. Effects of SRT1720 on renal histology in mice treated with cisplatin. (A) Representative
images of hematoxylin and eosin (H&E) and periodic acid Schiff (PAS) staining. Scale bar: 50 µm.
(B) Tubular injury score. *** p < 0.001 vs. Con. ### p < 0.001 vs. CP.

To further investigate the effect of SRT1720 in tubule injury, we evaluated expression of NGAL and
Kim-1 in kidneys. Immunohistochemical staining revealed that administration of SRT1720 reduced
elevated level of NGAL and Kim-1 in damaged tubules of mice treated with cisplatin (Figure 3A).
Consistently, the increased protein level of Kim-1 after cisplatin injection was markedly decreased by
SRT1702 (Figure 3B,C).
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Figure 3. Effects of SRT1720 on renal expression of neutrophil gelatinase-associated lipocalin (NGAL)
and kidney injury molecule-1 (Kim-1) in mice treated with cisplatin. (A) Representative images of
immunohistochemical staining using anti-NGAL or anti-Kim-1 antibody. Scale bar: 50 µm. (B) Western
blots of Kim-1 level in kidneys. (C) Quantification of Kim-1 level. ** p < 0.01 vs. Con. # p < 0.05 vs. CP.

3.2. SRT1720 Suppressed Cisplatin-Induced Cell Apoptosis

To explore the underlying mechanisms for the preventive actions of SRT1720 against
cisplatin-induced AKI, we carried out TUNEL staining of the tissues to identify apoptotic cells.
Administration of SRT1720 markedly decreased the number of TUNEL-stained apoptotic cells in kidney
after cisplatin injection (Figure 4A,B). Moreover, the increased protein level of activated caspase-3,
cleaved PARP1, and Bax in kidneys of mice treated with cisplatin was also significantly attenuated by
SRT1720 (Figure 4C–F).
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Figure 4. Effects of SRT1720 on apoptotic cell death in kidneys of mice treated with cisplatin. (A) Representative
imagesof terminaldeoxynucleotidyl transferase-tediateddeoxyuridinetriphosphatenickendlabeling(TUNEL)
staining. Scale bar: 50 µm. (B) Number of TUNEL-stained cells. (C) Western blots of cleaved caspase-3,
cleaved poly(ADP-ribose) polymerase-1 (PARP1), and Bax levels in kidneys. (D) Quantification of cleaved
caspase-3 level. (E) Quantification of cleaved PARP1 level. (F) Quantification of Bax level. * p < 0.05, ** p < 0.01,
and *** p < 0.001 vs. Con. # p < 0.05 and ### p < 0.001 vs. CP.

3.3. SRT1720 Suppressed p53 Acetylation in Mice Treated With Cisplatin

To obtain a more mechanistic insight into the effect of the Sirt1 activator, we examined protein
levels of Srit1 and acetylated p53 (Lys379) in kidneys of SRT1720-treated mice. We observed that the
acetylated p53 level was significantly elevated in kidneys of mice treated with cisplatin alone compared
to control mice (Figure 5A,B), while the Sirt1 level was not changed (Figure 5A,C). SRT1720 treatment
markedly suppressed the increased acetylation of p53, without affecting Sirt1 expression. Collectively,
these findings suggest that Sirt1 activation by SRT1720 attenuates cisplatin-induced apoptotic cell
death, presumably through deacetylating p53.

Figure 5. Effects of SRT1720 on Sirtuin 1 (Sirt1) expression and p53 acetylation in kidneys of
cisplatin-treated mice. (A) Western blots of acetyl-p53, p53, and Srit1 levels in kidneys. (B) Quantification
of acetyl-p53 level. (C) Quantification of Sirt1 level. *** p < 0.001 vs. Con. ## p < 0.01 vs. CP. NS,
not significant.
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3.4. SRT1720 Decreased Cisplatin-Induced Oxidative Stress and Preserved Peroxisome Function

We next explored the effect of SRT1720 on the renal oxidative stress induced by cisplatin.
Immunohistochemical staining revealed that SRT1720 treatment significantly attenuated increased
renal expression of 4-HNE in mice treated with cisplatin (Figure 6A). Moreover, SRT1720 significantly
reversed elevated levels of MDA (Figure 6B) and reduced the GSH/GSSG ratio (Figure 6C) in kidneys
of mice treated with cisplatin.

Figure 6. Effects of SRT1720 on renal oxidative damage in mice treated with cisplatin. (A) Representative
images of immunohistochemical staining using anti-4-hydroxynonenal (4-HNE) antibody. Scale bar:
50 µm. (B) Renal malondialdehyde (MDA) level. (C) reduced glutathione (GSH)/oxidized glutathione
(GSSG) ratio in kidneys. *** p < 0.001 vs. Con. # p < 0.05 and ### p < 0.001 vs. CP.

It has been shown that cisplatin reduces peroxisome number and impairs its function [19],
and kidney tubule-specific overexpression of Sirt1 suppresses oxidative stress through preservation of
peroxisome function [10]. Thus, we next evaluated the effect of SRT1720 on mRNA level of peroxisomal
membrane protein 14 (PEX14), a marker for the number of peroxisomes, and level of catalase, a marker
for peroxisome function. We found that mice treated with cisplatin alone exhibited a dramatic
reduction in mRNA expression of PEX14 and catalase compared to control mice and these changes
were largely reversed by SRT1720 (Figure 7A,B). Taken together, these results suggest that SRT1720
reduces cisplatin-associated oxidative stress, probably through preservation of peroxisome function.

Figure 7. Effects of SRT1720 on markers of peroxisome number and function in mice treated with
cisplatin. Real-time RT-PCR analysis of PEX14 (A) and catalase (B) in kidneys. *** p < 0.001 vs. Con.
# p < 0.05 and ## p < 0.01 vs. CP.

3.5. SRT1720 Attenuated Cisplatin-Induced Inflammatory Responses

We next evaluated the effect of SRT1720 on cisplatin-induced inflammation. We observed
that increased protein expression of TNF-α (Figure 8A,B) and IL-6 (Figure 8A,C) in kidneys of



Antioxidants 2019, 8, 322 8 of 12

cisplatin-treated mice was greatly attenuated by SRT1720. To identify macrophages, kidney sections
were probed with anti-Galectin-3 antibody. As shown in Figure 8D, administration of SRT1720
attenuated cisplatin-induced accumulation of Galectn-3-positive cells in kidneys.

Figure 8. Effects of SRT1720 on renal inflammation in mice treated with cisplatin. (A) Western blots of
tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels in kidneys. (B) Quantification of TNF-α
level. (C) Quantification of IL-6 level. (D) Representative images of immunohistochemical staining
using anti-Galectin-3 antibody. *** p < 0.001 vs. Con. # p < 0.05 and ## p < 0.01 vs. CP.

3.6. SRT1720 Reduced Acetylation of NF-κB p65 In Mice Treated With Cisplatin

Given that NF-κB is a key transcriptional factor for regulating inflammation, we next examined
the effect of SRT1720 on NF-κB activation. We found that cisplatin markedly elevated acetylation of
lysine 310 of NF-κB p65 (Figure 9A,B). Administration of SRT1720 significantly reduced the protein
level of acetylated p65 in kidneys of mice treated with cisplatin. These findings suggest that Sirt1
activation of SRT1720 inhibits NF-κB, probably by deacetylating p65 subunit.

Figure 9. Effects of SRT1720 on acetylation of nuclear factor kappa-B (NF-κB) p65 in kidneys of
mice treated with cisplatin. (A) Western blots of acetyl-NF-κB p65 and NF-κB p65 levels in kidneys.
(B) Quantification of acetyl-NF-κB p65 level. *** p < 0.001 vs. Con. # p < 0.05 vs. CP.

4. Discussion

In this study, we showed that Sirt1 activation by SRT1720 significantly attenuated acute renal
failure and histopathological alterations in cisplatin-treated mice through suppression of apoptotic cell
death, oxidative stress, and inflammation. These therapeutic effects of Sirt1 activation were associated
with deacetylation of p53 and NF-κB p65 and preservation of peroxisome function. These findings
reveal the preventive role of SRT1720 against cisplatin-induced AKI.

Acetylation, one of the post-translational modifications, is a molecular process of transferring
acetyl groups. Deacetylation is its reverse reaction and is mediated by histone deacetylases [20].
Among them, Sirt1 can deacetylate numerous substrates involved in energy metabolism and aging [4,5].
It has been suggested that the histone deacetylase is also critically involved in the modulation of
inflammatory responses [9]. Recently, it was reported that Sirt1 overexpression in renal tubules exerted
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protective effects against cisplatin-induced AKI [10]. Previous studies also showed that resveratrol,
a naturally occurring Srit1 activator, ameliorates cisplatin-induced AKI [21,22]. However, given that
resveratrol is not Sirt1-specific [23,24], these studies were not sufficient to clearly demonstrate the effect
of pharmacological activation of Sirt1 against cisplatin-induced AKI. SRT1720 is a small molecule that
potently and specifically activates Sirt1 [11]. In this study, we found that administration of SRT1720
ameliorates acute renal failure in cisplatin-treated mice, as represented by decreased levels of creatinine
and BUN. Because cisplatin treatment induces structural damages in kidneys, especially tubular
injuries [25–27], we further examined the effect of SRT1720 on levels of NGAL and Kim-1. We found
that tubular injuries in kidneys of cisplatin-treated mice were also markedly prevented by SRT1720,
as evidenced by reduced expression of NGAL and Kim-1. Taken together, these results strongly
support the notion that Sirt1 would be a useful pharmacological target for cisplatin-induced AKI.

The mechanisms by which cisplatin causes AKI involve multiple processes. Among them,
tubular cell apoptosis is considered an essential process in cisplatin-induced AKI [1–3]. In this study,
administration of SRT1720 significantly inhibited caspase-3 activation and subsequent cleavage of
PARP1 after cisplatin injection. Increased Bax expression in kidneys of cisplatin-treated mice was also
significantly suppressed by SRT1720. Moreover, TUNEL assay confirmed the anti-apoptotic effect of
SRT1720. In agreement with our findings, it was reported that tubule-specific overexpression of Sirt1
protected against cisplatin-induced AKI, and overexpression of Sirt1 in a cultured proximal tubule cell
line prevented cisplatin-induced cell apoptosis [10].

The tumor suppressor p53 has a strong pro-apoptotic function and thereby its expression is tightly
regulated in cells [6,7]. Normally, a low level of p53 protein is maintained via ubiquitination-dependent
degradation. However, under stressful conditions, p53 protein is quickly accumulated and activated.
Stabilization of p53 is controlled by its posttranslational modifications. Among them, acetylation
enhances its site-specific DNA binding activity [28]. It has been shown that p53 plays a key role
in cisplatin-associated renal injury [29,30]. Recently, cisplatin was reported to be able to increase
acetylation of p53 at lysine 379 in renal tubular cells [31]. In this study, we observed that mice treated
with cisplatin alone exhibited an increase in acetylation of p53 (Lys379) in kidneys. We also found that
SRT1720 significantly reduced acetylation of p53 (Lys379) and the protein level of Bax, a transcriptional
target of p53, in kidneys after cisplatin injection. Consistent with our findings, a previous study
demonstrated that silencing of p53 by siRNA ameliorated cisplatin-induced apoptosis and histological
damage in kidneys [32]. Collectively, these results suggest that Srit1 activation by SRT1720 attenuates
cisplatin-induced cell apoptosis, probably through deacetylating p53.

Oxidative stress is also tightly associated with the development of cisplatin-induced AKI [1–3].
Furthermore, Sirt1 overexpression in renal tubules was shown to suppress cisplatin-induced oxidative
stress through preventing peroxisomal dysfunction [10]. In this study, increased lipid peroxidation, as
measured by an elevation both in 4-HNE and MDA levels, was significantly suppressed by SRT1720.
SRT1720 also significantly reversed a reduction of the GSH/GSSG ratio in kidneys of mice treated
with cisplatin. Moreover, SRT1720 significantly reversed cisplatin-induced reduction in mRNA
expression of PEX14, a marker for the number of peroxisomes, and catalase, a marker for peroxisome
function, in kidneys. Catalase, an enzyme with potent antioxidant properties, is mainly located
in peroxisomes [33]. Previous studies reported the suppressive effect of cisplatin on catalase activity
in mice kidney [34,35]. In addition, Sirt1 overexpression prevented oxidative stress-induced tubular
cell apoptosis by increasing catalase level [36]. Catalase overexpression in renal tubules was shown
to decrease oxidative stress and tubular cell apoptosis [37]. Collectively, these findings suggest that
Sirt1 activation by SRT1720 attenuates cisplatin-induced oxidative stress, at least in part, through
preservation of peroxisome function.

Inflammatory responses in kidney tissues are responsible for the development of cisplatin-induced
AKI [1–3]. Among various mediators of renal injury, TNF-α is recognized as a critical mediator in the
development of inflammation after cisplatin treatment. It was demonstrated that inhibition of TNF-α
ameliorated renal dysfunction and histopathological alterations after cisplatin injection [38]. TNF-α has
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also been suggested as a key mediator in expression of pro-inflammatory cytokines and recruitment
of immune cells into kidney tissues in cisplatin-induced AKI [39,40]. Although there remains some
controversy, it has been suggested that macrophage infiltration into damaged kidneys is a crucial process
in cisplatin-induced AKI [41]. In this study, cisplatin significantly increased TNF-α and IL-6 levels
in kidneys. The number of galectin-3-positive macrophages was also increased after cisplatin injection.
All these changes were significantly reversed by SRT1720. These results indicate that SRT1720 effectively
suppresses cisplatin-induced inflammatory responses in kidneys. However, we think that SRT1720
also could directly affect immune cell activities to suppress cisplatin-induced renal inflammation,
because previous studies have shown the regulatory role of Srit1 in the immune system [9].

NF-κB is a major transcription factor responsible for controlling expression of pro-inflammatory
mediators. Thus, to obtain a more mechanistic insight into the effect of Sirt1 activation on inflammatory
responses induced by cisplatin, we next evaluated the effect of SRT1720 on NF-κB signaling.
We found that acetylation of NF-κB p65 (Lys310) was markedly increased in kidneys after cisplatin
injection. This posttranslational modification was significantly reversed by SRT1720. These results are
in agreement with a previous study that demonstrated the suppressive effect of Sirt1 overexpression
on acetylation of NF-κB p65 at lysine 310 in cisplatin-treated renal tubular cells [42]. It was also
demonstrated that Sirt1 binds with NF-κB p65 and deacetylates it, resulting in suppression of its
transcriptional activity [8]. Collectively, our findings suggest that reduced acetylation of NF-κB p65 by
SRT1720, at least in part, contributes to the preventive effect of SRT1720 against renal inflammation
induced by cisplatin.

5. Conclusions

In conclusion, our data showed that Sirt1 activation by SRT1720 attenuates cisplatin-induced
AKI by inhibiting apoptotic cell death, oxidative stress, and inflammation, probably via deacetylation
of p53 and NF-κB p65 and preservation of peroxisome function. These results strengthen the
idea that pharmacological activation of Sirt1 may be a promising therapeutic strategy against
cisplatin-induced AKI.
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