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Abstract: The brain is sensitive to aging-related morphological changes, where many
neurodegenerative diseases manifest accompanied by a reduction in memory. The hippocampus
is especially vulnerable to damage at an early stage of aging. The present transmission electron
microscopy study examined the synapses and synaptic mitochondria of the CA1 region of the
hippocampal layer in young-adult and old rats by means of a computer-assisted image analysis
technique. Comparing young-adult (10 months of age) and old (22 months) male Fischer (CDF)
rats, the total numerical density of synapses was significantly lower in aged rats than in the young
adults. This age-related synaptic loss involved degenerative changes in the synaptic architectonic
organization, including damage to mitochondria in both pre- and post-synaptic compartments. The
number of asymmetric synapses with concave curvature decreased with age, while the number of
asymmetric synapses with flat and convex curvatures increased. Old rats had a greater number of
damaged mitochondria in their synapses, and most of this was type II and type III mitochondrial
structural damage. These results demonstrate age-dependent changes in the morphology of synaptic
mitochondria that may underlie declines in age-related synaptic function and may couple to
age-dependent loss of synapses.
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1. Introduction

Aging is a physiological, progressive, and time-dependent process that results in accumulated
changes at the cellular and molecular levels. The brain is highly sensitive to the aging process, as
many neurodegenerative diseases clearly show [1–3]. The hippocampus is especially vulnerable to
damage at the early stage of aging [4], which results in the development of several age-dependent
neurodegenerative disorders, including Parkinson’s and Alzheimer’s diseases [5,6].

The hippocampus is one of the best-studied structures in the human and animal brain [7–10].
While the age-related decline in hippocampal volume has been well documented, most knowledge
of hippocampal relationships between structure and function has been discovered in the context of
neurological and neurodegenerative diseases [11,12]. The relationship between cognitive aging and
hippocampal structure in the absence of disease remains relatively understudied.

The human brain requires about 20% of the body’s total energy production to fulfill its function,
which is the highest energy consumption of any organ. During aging, accumulated changes in brain
cells impair energy metabolism, which leads to neurodegenerative disorders [13]. Mitochondria are
primarily responsible for producing ATP via oxidative phosphorylation in the inner mitochondrial
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membrane. ATP is required for all energy-dependent cellular processes, such as the regulation of
intracellular calcium homeostasis, synaptic plasticity, and the synthesis of neurotransmitters [14,15].
Aside from producing less ATP, damaged, and less functional mitochondria can induce the formation
of reactive oxygen species with cellular toxicity [16,17].

Accumulated structural alterations to mitochondria with age contribute to the regulation of
reduction–oxygenation (redox) homeostasis and lead to a decline in mitochondrial function [18]. This
decline might contribute to the age-dependent decline in brain function [19–21]. To our knowledge,
however, no detailed morphological studies have been performed on the structural changes to
mitochondria in the aging hippocampus.

Using transmission electron microscopy, the present study reports detailed ultrastructural
examinations of hippocampal synapses in young and old rats. Understanding the characteristics
of synaptic changes during aging should lead to the development of therapeutic strategies for
neurodegenerative disorders.

2. Materials and Methods

2.1. Experimental Animals

Male Fischer rats were purchased from Charles River Laboratories International. Groups of nine
young-adult rats (10 months old) and nine older rats (22 months old) were compared. The Georgetown
University Animal Care and Use Committee approved all animal experiments (ethical protocol code:
2017-0056), and the investigation conformed to the National Institutes of Health (NIH) Guide for the
Care and Use of Laboratory Animals.

2.2. Transmission Electron Microscopy (TEM)

Brains were removed from the Fischer rats at 10 (n = 9) and 22 (n = 9) months of age. The ventral
part of the hippocampus layer–the CA1 region was isolated and cut into ~1 mm3 cubes. Tissues
were fixed in a solution of 4% paraformaldehyde and 0.5% glutaraldehyde/0.2 M cacodylate and
then post-fixed with 1% osmium tetroxide and embedded in EmBed812. Ultrathin sections were
post-stained with uranyl acetate and lead citrate and examined in a Talos F200X FEG transmission
electron microscope at 80 kV located at the George Washington University Nanofabrication and Imaging
Center. Low-magnification imaging was followed by high-magnification imaging. Representative
images were acquired and recorded with TIA software.

2.3. Morphometric Analysis

Morphometric analyses of TEM images were performed with the Fiji Software on a sample of
15 systematically, uniformly, and randomly selected images. The total volume of the CA1 region of the
hippocampal layer was estimated using point counting according to Cavalieri’s principle. The total
number of synapses (310 from each group) was determined as the product of the total volume of the
CA1 region of the hippocampus layer and the numerical density of synapses [22]. The total number of
synaptic mitochondria (450 from each group) was determined by the morphometric technique using a
dot grid [23]. The coefficient of energy efficiency of mitochondria (CEEM) was defined as the product
of the number of mitochondrial cristae and the area of mitochondria [24]. The criteria for synaptic
curvatures were defined as previously described [25]. The determination of the types of mitochondria
has been described in Shults et al. [26].

2.4. Statistical Analysis

Means and standard errors were calculated. Comparisons between two groups were analyzed by
a two-tailed Student’s t-test, and comparisons among three or more groups were analyzed by one-way
analysis of variance (ANOVA) with a Student–Newman–Keuls post-hoc test using GraphPad Prism
(GraphPad Software, Inc., La Jolla, CA, USA). p < 0.05 was considered significant.
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3. Results

3.1. Synapses in the Hippocampus at 10 Months of Age

The ultrastructure of all synapses in the CA1 region of the hippocampus in young-adult rats
were generally identical. The numerical density of synapses was 9.45 µm2, comprising 7.76 µm2 and
1.69 µm2 asymmetric and symmetric synapses, respectively (Table 1). In the pre-synaptic compartment,
the vesicles are concentrated in the vicinity of the pre-synaptic membrane, forming the active zone.
The synaptic vesicles are oval or round in shape and uniform in size. The post-synaptic densities are
sharply defined, with uniformly distributed, electron-dense materials (Figure 1A). Most asymmetric
synapses had concave curvature (Figure 1A, arrow), with significantly fewer flat and convex curvatures,
as shown in Table 1. Synaptic mitochondria were usually oval in shape and varied from 0.3–0.8 µm in
size, containing transversally oriented cristae (Figure 1A, arrowheads). In most cases, the matrices
of pre-synaptic mitochondria were more electron-dense than those of post-synaptic mitochondria
(Figure 1A). Thus, the ultrastructural organization of the mitochondria corresponded to type I.

Table 1. Numerical density of synapses in the hippocampus, CA1 region (×108/mm3).

Fisher Rats Total Symmetric
Asymmetric

Total Flat Curvature Concave Curvature Convex Curvature

10 months 9.45 ± 0.9 1.69 ± 0.2 7.76 ± 0.2 1.78 ± 0.01 5.6 ± 0.01 0.38 ± 0.05

22 months 6.67 ± 1.5 1.28 ± 1.9 5.39 ± 0.5 2.53 ± 0.07 1.89 ± 0.02 0.97 ± 0.09
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Figure 1. Transmission electron microscopy (TEM) analysis of the hippocampus, CA1 region in
young-adult and old rats. (A) A representative TEM image of a young rat CA1 region, demonstrating
normal synaptic structure. The pre- and post-synaptic densities are sharply defined and contain electron–
dense materials that are uniformly distributed. The arrows show concave curvature of symmetric
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synapses. The arrowheads point to synaptic mitochondria with normal structure. Magnification
×14,000. (B) TEM image showing degenerative changes in the pre- and post-synaptic compartments.
The arrows point to synapses. Magnification ×14,000. (C) Means ± SEM, percent numerical density
of synapses in young-adult and old rats. (D) Means ± SEM, percent numerical density of damaged
synapses in young-adult and old rats. * indicates significant differences at p < 0.05.

3.2. Synapses in the Hippocampus at 22 Months of Age

In old rats, the synapses of the CA1 region of the hippocampus are characterized by significant
degenerative changes in the pre- and post-synaptic compartments. The numerical density of synapses
reduced from 9.45 µm2 to 6.67 µm2 (Table 1). The vesicles of the presynaptic sites were not concentrated
in the vicinity of the pre-synaptic membrane. Degenerative changes in the presynaptic compartment
from the “light type” of destruction, however, were also accompanied by the “dark type” as well
(Figure 1B). The “light type” of destruction is characterized by edema and reduced electron density
in the presynaptic compartments (Figure 1B, white arrow). The vesicles were distributed unevenly,
without the formation of the active zone. In this case, destroyed mitochondria (Figure 1B, white
arrowhead) accompanied a significant decrease in the number of synaptic vesicles. The “dark type” of
destruction includes increasing osmiophilic of the pre- and post-synaptic compartments, swelling of
mitochondria, and disruption to and glued osmiophilic vesicles (Figure 1B, black arrow, arrowhead).

In old rats, the synaptic vesicles connected with the synaptic membrane were reduced in number
and disorganized and had blurred pre-synaptic membranes (Figure 1B). The shapes and sizes of the
synaptic vesicles differed from the oval or round shapes in the young rats. In terms of their observed
disorganization, the vesicles did not fill the pre-synaptic compartments. These characteristics of vesicle
distribution observed in the rats are similar to Adams’ report in the human brain [27]. The total
number of synapses decreased by 29.4% with increased age (Figure 1C), and the numerical density of
the damaged synapses in old rats increased by 41.7% (Figure 1D).

While the total number of asymmetric synapses (Figure 2A,B, arrow) in old rats was comparable
to the number in young rats, the number of asymmetric synapses with concave curvature decreased to
1.89 µm2 from 5.6 µm2 (Table 1), a reduction to 28.3% from 72.1% with age (Figure 2C). The number of
asymmetric synapses with flat and convex curvatures (Figure 2A,B, arrowheads) increased by 19% and
10%, respectively (Figure 2D,E).

The pre- and post-synaptic mitochondria in the damaged synapses of aging rats were characterized
as abnormal, with non-distinct shape, non-uniform size, or both (Figure 2A,B, asterisks). Pre-synaptic
mitochondria were less often increased in size than were mitochondria in the post-synaptic compartment.
In both synaptic compartments, swollen, homogenized, and whirled cristae were observed,
corresponding to type II mitochondrial damage (Figure 3B, arrowheads), whereas the mitochondrial
structure in the synapses of young rats was normal or type I (Figure 3A, arrow). Compared to
presynaptic mitochondria, post-synaptic mitochondria exhibited more severe degenerative changes.
Crista homogenization and fragmentation in a significantly swollen electron–lucent matrix were
observed in most post-synaptic compartments that corresponded to type III mitochondrial damage
(Figure 3B, arrows). Type IV damaged mitochondria, with disrupted and discontinuous outer
membranes and deficient in cristae, were minimal in both synaptic compartments. The total numerical
density of damaged mitochondria in the synapses of old rats was up to 51.6% higher compared to
young rats (Figure 3C). Most mitochondrial structural damage in the old rats were of the types II and
III (Figure 3D). Morphometric analysis revealed that asymmetric synapses with concave curvature
contained 48% of the mitochondria with preserved structure (Figure 4A), while synapses with flat
curvature contained 53% of the damaged mitochondria (Figure 4B), and synapses with convex curvature
contained 24% of the damaged mitochondria (Figure 4C). Morphometric analysis of the TEM images
further revealed that energy production by the synaptic mitochondria, as determined by calculating
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the CEEM of the CA1 region of the hippocampus, reduced by 42.4% (Figure 5) in old compared to
young-adult rats.Antioxidants 2019, 8, x FOR PEER REVIEW  5 of 10 
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Figure 2. TEM analysis of asymmetric synapses in the hippocampus, CA1 region in young-adult and
old rats. (A) TEM image of young-adult rat, CA1 region. The arrows point to the asymmetric synapses
with concave curvature, whereas the arrowheads indicate asymmetric synapses with convex curvature.
The asterisks indicate synaptic mitochondria containing normal cristae. Magnification×14,000. (B) TEM
image of old rat, CA1 region. The arrows points to asymmetric synapses with concave curvature,
whereas the arrowheads indicate asymmetric synapses with flat curvature. The asterisks indicate
damaged synaptic mitochondria. Magnification ×14,000. (C) Means ± SEM, percent asymmetric
synapses with concave curvature in young-adult and old rats. (D) Means ± SEM, percent asymmetric
synapses with flat curvature in young-adult and old rats. (E) Means ± SEM, percent asymmetric
synapses with convex curvature in young-adult and old rats. * indicates significant differences at
p < 0.05.
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Figure 3. TEM analysis of structural changes in synaptic mitochondria of the hippocampus, CA1
region, in young-adult and old rats. (A) Representative TEM image of young-adult rats, CA1 region,
demonstrating normal structure of the synaptic mitochondria (arrow). Magnification ×33,000. (B) TEM
image of old rat showing damaged synaptic mitochondria. Arrowhead points to type II mitochondrial
damage, while the arrows indicate type III mitochondrial damage. Magnification ×33,000. (C) Means ±
SEM, percent numerical density of damaged mitochondria in young-adult and old rats. (D) Means ±
SEM, percent type of mitochondria in the synapses of old rats. * indicates significant differences at
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Figure 4. Numerical density of preserved and damaged mitochondria in synapses with different types
of curvature in the hippocampus, CA1 region in old rats. Bar graphs represent means ± SEM of percent
numerical density of mitochondria in the synapses with (A) concave, (B) flat, and (C) convex curvatures
in old rats. * indicates significant differences at p < 0.05.
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Figure 5. Coefficient of energy efficiency of synaptic mitochondria (CEEM) in the hippocampus, CA1
region, in young-adult and old rats. Means ± SEM, percent CEEM in synapses in young-adult and old
rats. * indicates significant differences at p < 0.05.

4. Discussion

The present study was designed to investigate age-related ultrastructural changes in the synapses
and synaptic mitochondria of the CA1 region of the hippocampal layer in young-adult and old rats
by transmission electron microscopy. We identified degenerative changes in mitochondria that are
relevant to age-dependent synaptic damage. As has been well-documented, aging is accompanied by
a decline in mitochondrial function, which might contribute to the age-dependent decline in brain
function [28,29]. However, no age-dependent ultrastructural changes in hippocampal synapses have
been defined.

The earlier study showed elevated markers of oxidative stress in the hippocampus that correlated
with a reduction in the number of synapses and the disruption of neurotransmitter transport [30].
The mitochondrial dysfunction caused by Ca2+ that seems to initiate mitochondrial failure also
contributes to the synaptic deficit observed during aging [31,32]. The mitochondria are organelles
that produce ATP, and their function is closely related to the mitochondrial ultrastructure. The
outer and inner mitochondrial membranes enclose and define the inter-membrane space and matrix
compartments. Invagination of the inner membrane forms cristae, where the respiratory chain
complex is situated, which in synapses, directly engages in mitochondrial function. Disturbance to the
mitochondrial crista ultrastructure thus contributes to deficits in ATP synthesis [33].

Mitochondrial reconstruction in hippocampal synapses during aging alters synaptic function,
which is determined by the number of symmetric and asymmetric synapses. An earlier study
determined that synapses with flat curvature are inactive, whereas synapses with curvature are in an
active, functional state, and a concave curvature indicates exocytosis [34]. The asymmetric synapses
with concave curvature contain mitochondria with preserved outer and inner membranes. Notably,
mitochondria in the pre-synaptic compartments are smaller and higher in the intensity of electron-dense
material, which exhibits more destructive changes with age, than post-synaptic mitochondria.

With age, the CA1 region of the hippocampus not only loses a number of synapses but also
experiences damaged ultrastructural synaptic architecture accompanied by damaged mitochondria.
The present study demonstrated that the number of asymmetric synapses with concave curvature
containing preserved mitochondria decreases during aging, while asymmetric synapses with flat
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curvature, that contain damaged mitochondria become dominant. Homogenization and fragmentation
of mitochondrial cristae in a swollen electron–lucent matrix, which results in sustained energy demand,
may decrease synaptic function of the CA1 region in the hippocampus and reduce plasticity of the
synaptic contact zone, which manifests as deficits in memory.

5. Conclusions

The present transmission electron microscopy study demonstrates that a decline in the
ultrastructural quality of mitochondria in the synapses of the CA1 region of the hippocampus
is associated with age-related damage to synapses and their reduction in numerical density. This new
understanding of the pathological mechanism of age-dependent destruction of synaptic mitochondria
in association with synaptic damage and loss in the CA1 region of the hippocampus should be useful
for designing therapeutic strategies to prevent or treat neurodegenerative disorders related to aging.
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