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Abstract: Background: Oxidative stress is crucial in the pathogenesis of atherosclerosis and acute
myocardial infarction (AMI). Under the generic terms “oxidative stress” (OS), many biomarkers
belonging to different pathways have been proposed. Aim: To compare the levels of recently proposed
OS-related parameters in acute coronary syndromes (ACS) and stable coronary artery disease (CAD),
to evaluate their effectiveness as additive risk or illness indicators of stable and acute ischemic
events, and their response over time during the course of AMI. Methods: 76 ACS, 77 CAD patients,
and 63 controls were enrolled in the study. Different OS-related biomarkers, including reactive
oxygen metabolites (ROM), the total antioxidant capacity (OXY), nitrite/nitrate (final nitric oxide
products, NOx), and Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), were evaluated.
Moreover, time response during AMI course (admission, and 6, 12, 18, 24, 36, and 48 hours after,
T0-T6, respectively) and correlation with traditional cardiovascular (CV) risk factors (age, gender,
hypertension, diabetes mellitus, dyslipidemia, smoking habit) were also assessed. Results: Over time,
ROM progressively increased while OXY and NOx decreased. Kinetics of LOX-1 during AMI shows
that this biomarker boosts early during the acute event (T1 and T2) and then progressively decreases,
being significantly lower from T0 to T6. Different OS-related biomarkers were differentially associated
with CV risk factors and CAD or ACS presence. Conclusion: Differences in OS-related biomarkers
(between groups, according to the response over time during AMI, and to the presence of CV risk
factors) confirmed OS involvement in the transition from healthy status to stable CAD and ACS,
although evidencing the heterogeneous nature of redox processes. In future, a multi-marker panel
including different biomarkers and pathways of oxidative stress could be evaluated as an additive
tool to be used in the CV prevention, diagnosis, patient stratification, and treatment.
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1. Introduction

Oxidative stress (increased oxidant generation with impairment of endogenous antioxidant
mechanisms) plays an important role in the pathogenesis of atherosclerosis, and it is increased by
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traditional cardiovascular (CV) risk factors (e.g., diabetes mellitus, dyslipidemia, smoking, gender,
and age) [1–3].

Assuming that traditional risk factors explain a large proportion of CV risk, they can be ineffective
in some cases, because they are unable to explain why some high-risk patients did not experience a
CV event, even in the long term, while a percentage of patients classified as low risk did (e.g., with
none or only one of the traditional CV risk factor) [4]. These patients may be better classified by
using alternative/additional biomarkers, giving targeted and appropriate management to those who
would need more [5]. Nonetheless, at the moment, the gain of a single biomarker over the predictive
power estimated with traditional risk factors is generally found to be limited [5]. Conversely, it is
important to mention that the discrimination power can be further improved when biomarkers with a
low degree of correlation, and as such belonging to independent pathways, thus reflecting different
pathophysiological events, are considered [5]. This concept may be true also for the oxidative stress,
where many oxidative stress-related biomarkers have been proposed, involving both the oxidative and
antioxidant counterparts, which reflect the many different pathways that the generic term “oxidative
stress” included [4]. Moreover, whether there are a number of common biological aspects between stable
coronary artery disease (CAD) and acute coronary syndromes (ACS), there are also differences between
these two clinical situations. Therefore, biomarkers reflecting various oxidative-related pathways may
vary in chronic CAD and ACS patients. Among the many biomarkers of oxidative stress recently
proposed, we considered some oxidative stress biomarkers, reflecting different redox-related pathways.

The measure of reactive oxygen metabolites (ROM) can quantify the oxidative stress status based
on the conversion of hydroperoxides to alkoxyl and peroxyl radicals under acidic conditions [6].
We previously evaluated analytical effectiveness and clinical reliability of ROM test together with
the total antioxidant capacity (OXY), which can be estimated in serum samples with a colorimetric
test [7,8].

Nitric oxide (NO) is related to endothelial dysfunction and to many CV risk factors and events
(e.g., hypertension, stroke, and heart failure) [9–11]. NO decreased production and availability is
mainly due to enhanced reactive oxygen species generation that directly inactivates NO, and induce
the reduction in NO synthesis and oxidation of its receptor, soluble guanylyl cyclase [12]. As direct
NO quantitative estimation is difficult, the evaluation of nitrite/nitrate (NOx), which are the final stable
metabolites of NO, is usually done [13].

Recently, great interest was elicited by lectin-like oxidized low-density lipoprotein (OxLDL)
receptor-1 (LOX-1), the major receptor for OxLDL [14]. Uptake of OxLDL through LOX-1 induces a
cascade of events implicated in the pathogenesis of atherosclerosis and plaque instability and reflected
by the increment of ROS, reduction of NO, monocytes recruitment, and apoptosis induction [15–17].
Expression of LOX-1 is induced by many inflammatory cytokines, oxidative stress, hemodynamic
stimuli, and OxLDL, and it is enhanced with the presence of CV risk factors [18–20].

The aim of the study was to evaluate the levels of new recently proposed oxidative-related
parameters, including ROM and OXY, in order to estimate their effectiveness as additive risk or
illness indicators of stable and acute coronary events, as well as NOx and LOX-1 available in a
subgroup of patients. For this purpose, the correlation between oxidative stress-related biomarkers
with traditional CV risk factors (aging, gender, hypertension, diabetes mellitus, dyslipidemia, smoking
habits), were also assessed. Moreover, as no study has reported the response over time of oxidative
stress parameters during acute myocardial infarction (AMI), we also aimed to evaluate the response of
these oxidative-related parameters during the course of AMI.

2. Materials and Methods

2.1. Patient Population

A total of 76 patients, hospitalized with a diagnosis of ACS (ST-segment and non-ST-segment
elevation myocardial infarction: STEMI and NSTEMI, or unstable angina) were retrospectively enrolled
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in the study (ACS group). The other 77 patients, admitted to our Institute due to documented
or suspected ischemic heart disease, and who underwent coronary angiography, were included as
stable CAD (CAD group), and 63 non-smoker subjects nor Type 2 diabetes (T2D), and no history
of past or present CAD, were considered as controls (CON group). Demographic and clinical
data, admission laboratory, and instrumental parameters were collected from the Institute electronic
databank. Arterial hypertension was defined when systolic blood pressure >140 mmHg and/or
diastolic pressure >90 mmHg or use of antihypertensive medication, T2D when fasting plasma glucose
>126 mg/dL or use of antidiabetic treatment, and dyslipidemia when total cholesterol was ≥200 mg/dL,
or triglyceride ≥150 mg/dL, or current use of lipid-lowering drugs. Smoking history was coded into
never smokers (who had never smoked), and smoking history (including ex and current smokers).
All these variables were coded in a dichotomized classification. Exclusion criteria included major
diseases like renal or liver diseases, or infectious, chronic inflammatory, or immunologic diseases or
malignancies. These conditions were assessed by physical examination and routine laboratory tests.

All subjects gave written informed consent for their participation in the study which was approved
by the local ethics committee in agreement with the principles outlined in the Declaration of Helsinki.
This study protocol has been approved by the local Ethical Committee, and registered to European
Clinical Trials Database (EudraCT: 2009-010869-23).

2.2. Blood Sampling and Biochemical Analysis

Blood samples were collected immediately after admittance in all AMI patients and at 6, 12, 18,
24, 36, and 48 hours after admission (T0-T6, respectively) in an AMI subgroup. Fasting samples were
collected from CAD and CON subjects in the morning. Blood samples were centrifuged at 2000× g
for 10 min (4 ◦C for ROM and OXY). Serum samples were immediately analyzed or stored at −80 ◦C
before assay (within 3 months).

We previously evaluated the analytical and clinical performance of D-Rom test (Diacron, Italy) in
asymptomatic subjects and coronary artery disease patient cohorts [7,8,21,22]. In brief, this assay is
based on the capacity of transition metals to catalyze peroxides in the sample and form alkoxy and
peroxy radicals, which then react with an amine, leading to the production of colored species that can
be spectrophotometrically detected [7]. The results are expressed as arbitrary units (AU).

OXY-Adsorbent assay (Diacron, Italy) is based on the ability of endogenous antioxidant capacity
to oppose the oxidant action of added hypochlorous acid [7,23]. All standards and samples should be
diluted 1:100 with distilled water before the analysis. Samples to be tested undergo the oxidant action
of a known-title HClO solution, in excess respect to the ability to be adsorbed from the antioxidants
present in the sample. After 10-minute incubation at 37 ◦C, residual HClO undergoes the reaction
with an alkyl-substituted aromatic amine, leading to the formation of pink-colored species that can
spectrophotometrically be detected (540 nm). The concentration of the colored complex is directly
proportional to the concentration of HClO and indirectly proportional to the antioxidant capacity of the
sample. Specifically, the evaluation of the absorbed quantity is obtained from the difference between
the absorbance of a white reagent (constituted only by HClO) and that of the sample antioxidant
capacity that buffers the oxidation induced by the acid. Sample concentration may be calculated
according to the following formula:

Sample concentration = ((Blank absorbance − Sample absorbance)/
(Blank absorbance − Calibrator absorbance)) × Calibrator concentration

The results are expressed as µmol of HClO consumed by 1 mL of sample (µmol HClO/mL).
At the time of NOx assay, samples were ultra-filtered through 30 KDa molecular weight cut-off

filters (Amicon) and centrifuged at 14,000× g for 10 min. NOx concentration in ultrafiltrates was
determined by an assay kit (Cayman, Ann Arbor, USA) based on the Griess reaction, as we previously
described [13,24,25]. In brief, this colorimetric assay consists of three main steps: (1) enzymatic
conversion of nitrate to nitrite by means of nitrate reductase; (2) incubation with Griess reagent
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for 10 min at room temperature to convert nitrite into a chromophore compound; (3) quantitative
estimation of nitrite concentration by spectrophotometric measurement of the absorbance at 540 nm
(ETI-system, Sorin Biomedica, Vercelli, Italy). The results were expressed as µmol/L.

The Human LOX-1 solid-phase sandwich ELISA (enzyme-linked immunosorbent assay,
Thermo Scientific, Waltham, MA, USA) utilized a target-specific antibody pre-coated in the wells of the
microplate, where samples, standards, or controls are then added and bind to the immobilized (capture)
antibody. The sandwich is formed by the addition of the second (detector) antibody, a substrate
solution is added that reacts with the enzyme-antibody-target complex to produce a spectrometrically
measurable signal. The intensity of this signal is directly proportional to the concentration of target
present in the samples. The results were expressed as ng/L.

Plasma high sensitivity Troponin T (hs-TnT) was performed by using ECLIA on the Elecsys
automated analyzer (Roche, Basel, Switzerland), and expressed as ng/L.

2.3. Statistical Analysis

Kolmogorov–Smirnov test was used to assess normality distribution of each variable. Continuous
data were presented as mean ± SD, unless differently specified. Categorical data are summarized
as numbers (percentages). Statistical analyses included Student’s t-test, simple regression analysis,
and Spearman’s correlation used to estimate the association between continuous variables, χ2 tests
used for comparing categorical characteristics, and analysis of variance (ANOVA) and Scheffe’s test as
post-hoc analysis. Owing to skewness, log transformation of hs-TnT was used for statistical analyses.
Log-transformed values were then back-transformed for data presentation.

The following variables were evaluated to assess the univariate correlation with ROM, and OXY,
LOX-1, and NOx, in AMI patients: hypertension, dyslipidemia, diabetes, smoking history, male gender,
age. Univariate predictors with a p-value <0.05 were entered in the multivariate model, to estimate
independent predictors for ROM, and OXY after adjusting for covariates.

A p-value <0.05 was considered significant and the confidence interval (CI) set at 95%.

3. Results

3.1. Study Population Characteristics

Clinical characteristics of the overall population are shown in Table 1. Relative to the other groups,
stable CAD patients were older, and with a higher percentage of males, dyslipidemia and T2D.

Table 1. Characteristics of study population.

Number CON (63) CAD (77) ACS (76) p Value

Age (Years) 64 ± 7 69 ± 9 66 ± 11 <0.05
Male gender 25 (40) 53 (69) 36 (47) <0.01
Hypertension 27 (42) 45 (59) 37 (49) ns
Dyslipidemia 16 (25) 51 (67) 39 (51) <0.001

Type 2 Diabetes 0 (0) 27 (35) 18 (24) <0.001
Smoking history 0 (0) 31 (41) 32 (42) <0.001

CON = controls; CAD = coronary artery disease patients; ACS = acute coronary syndrome patients. For definition
of hypertension, dyslipidemia, Type 2 Diabetes and smoking history, see Material and Method section.

3.2. Response over AMI Time of Oxidative Stress-Related Biomarkers

In Figure 1 are reported the response over time of LOX-1, ROM, NOx, and OXY in 15 patients
(mean and increment respect to admission, respectively). LOX-1 follows the response over time of
hs-TnT, reaching maximal values at 12 h after admission (p < 0.05 versus T0), successively decreasing
(Figure 1). Over time, ROM increased (from 406 to 531.7 AU) while NOx decreased (from 32.7 to
15.2 µM) (Figure 1). OXY levels decreased, without reaching statistical significance (from 282.6 to
258.4 µmol HClO/mL) (Figure 1).
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Figure 1. Time response during acute myocardial infarction (AMI) in 15 patients and in the small
box of the figure increase ratios respect to admission values of following oxidative stress-related
biomarkers; oxidized low-density lipoprotein receptor-1 (LOX-1), reactive oxygen metabolites (ROM),
high-sensitivity troponin T (hs-TnT), nitric oxide (NOx), antioxidant capacity (OXY), respectively.
Sampling points T0 were taken at admission, sampling points T1, T2, T3, T4, T5, and T6 at 6, 12, 18,
24, 36 and 48 h after admission, respectively. Results are reported as mean ± SEM. p < 0.1, p < 0.05,
p < 0.01, p < 0.001 versus baseline.

3.3. Reactive Oxygen Metabolites (ROM)

CAD patients showed higher mean ROM levels with respect to ACS group and healthy controls
(445 ± 126, 393 ± 116, and 342 ± 69 AU, respectively, p < 0.001; Figure 2). When CV risk factors shown in
Table 1 were evaluated, ROM values were found higher in patients presenting dyslipidemia (423 ± 130
vs. 371 ± 95 AU, p < 0.001) and T2D (443 ± 127 vs. 384 ± 111 AU, p < 0.01) respect to those without
these risk factors, and resulted higher in smokers and ex-smokers compared to non-smokers (419 ± 111
vs. 387 ± 118 AU, p < 0.05).

ROM concentration also increased with the number of CV risk factors (434 ± 131 and 364 ± 90 AU,
0–1 versus ≥2 risk factors, respectively, p < 0.001; Figure 2).

A logistic regression analysis was applied to verify the effect of significant variables in determining
increased ROM (>461 AU, 75th percentile), identifying CAD (Odds ratio, 95% CI, p; 12, 52.5–57, <0.01),
ACS (6.7, 1.4–32, <0.05), and T2D (2.5, 1.2–5.3, <0.05) as factors independently associated with elevated
ROM levels.
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Figure 2. Reactive oxygen metabolites (ROM) levels in the three groups (control (CON), coronary
artery disease (CAD), and acute coronary syndromes (ACS)), and according to number of risk factors
(determinants included are type 2 diabetes (T2D), hypercholesterolemia, hypertension, smoking history),
and antioxidant capacity (OXY) levels in CON, CAD, and ACS. Results are expressed as median and
interquartile range. p < 0.05, p < 0.001 versus baseline.

3.4. Antioxidante Capacity (OXY)

ACS patients showed lower OXY with respect to CAD patients and controls (304 ± 89 vs. 352 ± 77
and 394 ± 93 µmol HClO/mL, respectively, p < 0.001; Figure 2). OXY decreased progressively according
to smoking habits (316 ± 85, and 323 ± 79 vs. 357 ± 95 µmol HClO/mL, respectively in smokers,
ex-smokers, and non-smokers, p < 0.05), but did not correlate with levels or prevalence of the other CV
risk factors, neither with the total CV risk factor number.

The multivariate analysis identifies ACS (4.6, 2.1–9.9, <0.001) as the only independent risk factor
for reduced OXY (<341 µmol HClO/mL, 50th percentile).

3.5. Systemic Oxidative Stress Status

Patients in the three groups (CON, CAD, and ACS) or with different number of risk factors
were stratified in line with systemic oxidative stress categories (ROM > 461 AU, 75th percentile
and OXY < 341 µmol HClO/mL, 50th percentile) and reported in Figure 3 (p < 0.001 and p < 0.001,
respectively). No subjects in the CON group belonged to the highest oxidative status category. The two
higher oxidative stress categories were more frequent in CAD and ACS groups, and in subjects with
more than one CV risk factor.
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Figure 3. Number (percentage) of patients according to oxidative stress categories in control (CON),
coronary artery disease (CAD) and acute coronary syndromes (ACS) group, and number of risk factors
(Determinants included are type 2 diabetes (T2D), hypercholesterolemia, hypertension, smoking habits).

3.6. Nitrite/Nitrate (NOx)

NOx was available in 50 ACS patients and 12 controls, showing a mean value of 20 ± 13 and
30 ± 11 µmol/L, respectively (p < 0.05). Among the CV risk factors reported in Table 1, only T2D
presence resulted in associated NOx values (34 ± 20 vs. 21 ± 12 µmol/L, p < 0.05). No association with
the number of risk factors was observed.

3.7. Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 (LOX-1)

LOX-1 was available in 15 AMI patients, giving a mean value corresponding to 226 ± 112 ng/L.
Among all variables showed in Table 1, the only parameter significantly associated with LOX-1 was
aging (r = −0.6, p < 0.05).

4. Discussion

4.1. Reactive Oxygen Metabolites (ROM) and Antioxidant Capacity (OXY)

The evaluation of ROM and OXY has been largely evaluated in terms of analytical values
and clinical significance (levels in general populations and cardiovascular disease patients, as well
as predictors of adverse CV events in CAD) and in a different clinical setting by us and other
authors [6–8,26,27]. For the first time, we evaluated ROM and OXY response over time during AMI,
which showed a progressive increase and decrease, respectively, reflecting a progressive increment of
the systemic oxidative stress status during AMI course.

Interestingly, when both parameters were taken into account stratifying patients according to ROM
and OXY categories, none of the subjects in the control group presented values in the highest category
of oxidative stress, again suggesting elevated oxidative stress in ischemic disease. Nonetheless, stable
CAD patients showed higher ROM values also with respect to ACS patients, implying that systemic
oxidative stress status as measured by this assay likely reflects a chronic process. Instead, OXY, which
shows the total antioxidant capacity, appeared progressively reduced from CON to CAD and ACS
group. Different previous results suggested antioxidant consumption during AMI, especially during
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myocardial reperfusion injury. In particular, different vitamins (e.g., vitamins C, E, A, and β-carotene),
as well as antioxidant enzymes (e.g., glutathione peroxidase), have been found markedly dropped in
AMI patients [28]. Thus, findings in acute and stable CAD patients, as well as an antioxidant response
over time during ACS, confirmed the chronic fall and severe acute damage to the antioxidant system
in ischemic disease.

4.2. Nitrite/Nitrate (NOx)

NOx are end-product of NO metabolism, and as the majority of circulating nitrite/nitrate derived
from the l-arginine-nitric oxide pathway, their evaluation is a reliable indicator of NO production [29].
In our results, the reduction of NOx during AMI course, suggest NO impairment during acute ischemic
event. Moreover, blood NOx levels, reduced in AMI patients with respect to healthy subjects, likely
reflect endothelial dysfunction in this condition.

There are significant differences regarding NOx levels in available studies concerning CV disease
and risk. In two studies, NOx levels were found to be higher in AMI and CAD patients with respect to
controls [30,31]. Moreover, levels of NOx appeared significantly higher in relation to our results [30,31].
In this context, it must be taken into account that the activation of inducible NO synthase (iNOS, one of
the key enzymes generating NO), as a result of vascular inflammation and injury, may increase systemic
NOx levels, in absence of a recovery of the release of endothelial NO [32]. Moreover, variations related
to methodology and difference in clinical population or study characteristics may additional contribute
to these different results in terms of means. Instead, more recent data reported NOx values comparable
to our data in AMI patients, as well as in general populations [33–35].

4.3. Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 (LOX-1)

LOX-1 is highly expressed by intimal smooth muscle cells and in lipid-laden macrophages in
the advanced plaques, is released in the bloodstream at the time of plaque rupture, and as such has
been proposed as a marker of plaque instability [19]. Accordingly, in-house immunoassays, soluble
LOX-1 (sLOX-1) emerged as a potential diagnostic marker to identify ACS at the earliest stage, and
discriminate ACS without ST elevation or abnormal Q waves and ACS without TnT elevation from
non-ACS [20,36,37]. Interestingly, the peak time of sLOX-1 resulted even earlier than that of TnT
(around 24 h) [20]. However, in this previous study, samples were only taken at admission, and at 24 h,
whereas we collected more points within this time interval, observing that systemic LOX-1 response
over time follows hs-TnT trend during AMI, with a coincident peak at 12 h after admission for both
sLOX-1 and hs-TnT. Nonetheless, LOX-1 increment resulted lower than the one given by troponin
(about one and a half with respect to six times, respectively). Accordingly to previous data [20], we did
not observe any significant correlation between sLOX-1 with TnT or C reactive protein (inflammatory
biomarker) (unshown data), suggesting that sLOX-1 probably did not represent a marker for cardiac
necrosis or injury or inflammation, and that all together these biomarkers may underscore different
aspects of the multifaceted entity related to plaque development. In fact, primary events that cause
ACS, like the rupture of plaque with the formation of a thrombus, might be better identified with the
increase in sLOX-1 levels, while subsequent damage and necrosis of the heart muscle cells may be
more effectively reflected by the increase in TNP concentration. We cannot say exactly when serum
sLOX-1 may increase before the onset of ACS, however, levels of this biomarker were already high at
patient admission respect to the last point, not excluding that sLOX-1 may begin to rise even before the
onset of ACS.

More recently, the availability of ELISA kits, like the one produced by ThermoFisher and used
in the present study, may further increase reliability and reproducibility of results. Unfortunately,
data of LOX-1 were available only in a few AMI patients, and we cannot compare results levels in
CAD patients and controls. As a fact, we previously evaluated LOX-1 in controls and CAD, but a
comparison of present results is impossible, because, at that time, LOX-1 was measured by using an
in-house double-sandwich ELISA kit [38]. In general, there is still great variability between LOX-1
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results, especially because ELISA in-house methods may markedly differ according to sample types,
the conjugated antibody, and recognized epitopes [39–42].

5. Conclusions

The present results are in accordance with a number of previous studies highlighting higher
oxidative stress status (increased ROM and decreased OXY) in both stable and acute ischemic disease
compared with healthy controls, and the relationship between oxidative stress and presence and
number of CV risk factors. Moreover, ACS patients showed a more deteriorated antioxidant status
compared with stable CAD patients and healthy controls, suggesting that an acute coronary condition
has probably insufficient time to enhance the protective responses and adaptive mechanisms.

For NOx it is necessary to better understand when systemic NOx evaluation reflects endothelial
impairment and vascular damage (decreased levels) or a more generalized oxidative and inflammatory
status (increased levels).

Available data suggest that LOX-1 is not a marker for cardiac necrosis or inflammation, but it may
reflect additive events related to plaque instability, as it appeared significantly increased in patients at
the early phase of AMI, and as such it may have a possible additional diagnostic significance as well as
prognostic stratification value in AMI setting. However, in views of actual high inter-assay variability,
LOX-1 measurements should be interpreted in the context of the test used, because differences between
assays may have a large impact on the classification of healthy subjects and patients. The recent
development of commercial ELISA may contribute to overcome these problems, although further
efforts in terms of validation and standardization of the methods are needed in order to reach a
consensus on assay performance.

Data presented in this study are preliminary, and enrollment of other patients and controls
is currently underway to complete and confirm present results. The applicability of oxidative
stress-related biomarkers to study the pathogenesis and clinical outcome of ischemic disease derived
from the undoubted pivotal role of oxidative stress in atherosclerosis. Currently, some oxidative-stress
related biomarkers appear promising for future clinical use. It will be of critical importance to improve
methodological and standardization issues, demonstrate the value of the novel markers over traditional
risk factors in powered validation cohorts, and eventually develop an adequate multi-marker panel
targeted to cardiovascular prevention, diagnosis, patient stratification, and treatment.
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