Enhanced Antioxidant Activity under Biomimetic Settings of Ascorbic Acid included in Halloysite Nanotubes

Andrea Baschieri,¹ Riccardo Amorati,¹ Tiziana Benelli, ² Laura Mazzocchetti,² Emanuele D'Angelo,² Luca Valgimigli,^{1,*} ¹University of Bologna, Department of Chemistry "G. Ciamician", Via S. Giacomo 11, I-40126 Bologna, Italy. ²University of Bologna, Department of Industrial Chemistry "Toso Montanari", Viale Risorgimento 4, I-40136 Bologna, Italy.

*luca.valgimigli@unibo.it.

Supplmentary Material

Table of contents	Page
Figure S1: Thermograms of HNT, HNT/AH ₂ and HNT + AH ₂ mixtures in air	2
Table S1. Release of ascorbic acid (AH ₂) from HNT/AH ₂ in acetonitrile at 298 K	2
Table S2. Release of ascorbic acid (AH ₂) from HNT/AH ₂ in buffered water at 298 K	2
Table S3. Summary of AH2 release from HNT/AH2.	3
Table S4. Stoichiometric factors for peroxyl radical trapping by AH_2 and HNT/AH_2	3
Figure S2. Spectrophotometric analysis of AH ₂ release from HNT/AH ₂ in acetonitrile	4
Figure S3. Spectrophotometric analysis of AH ₂ release from HNT/AH ₂ in buffered water	5
Figure S4. Ascorbic acid decay in methanol at 25°	6
Figure S5. Ascorbic acid decay in buffered water at 25°	6
Figure S6. Ascorbic acid decay in acetonitrile at 25°	6
Figure S7. UV-vis spectra of DPPH• reacting with AH ₂ and HNT/AH ₂	7
Scheme S1. Reaction of ascorbic acid (AH ₂) with DPPH• radical,	7
References	8

Figure S1. TGA thermograms of HNTs (_____), HNT/AH₂ (_____), M-1.0: AH₂+HNT (_____), M-4.4: AH₂+HNT (_____) and their first derivative curves (broken lines) under air atmosphere from 130 up to 800°C. The curves are cleared of the absorbed water contribute.

Table S1. Release of ascorbic acid (AH₂) from HNT/AH₂ expressed as mg in 3 mL of acetonitrile at 298 K (data correspond to experiments in Figure S2)

Entry	HNT/AH ₂ (mg)	Abs.	AH ₂ released (mg)	% AH ₂ ^a
1	1.9	0.2327	0.0444	2.33
2	1.8	0.2159	0.0412	2.29
3	3.2	0.4484	0.0856	2.67
mean ± SD				2.5±0.2

^a % Ascorbic acid released (w/w) from the weighted HNT/AH₂ sample

Table S2. Release of ascorbic acid (AH ₂) from HNT/AH ₂ expressed as mg in 3 mL of buffer	ed (pH =
7.4) water at 298 K (data correspond to experiments in Figure S3)	

Entry	HNT/AH ₂ (mg)	Abs.	AH ₂ released (mg)	% AH ₂ ^a
1	1.0	0.6915	0.0228	2.3
2	1.9	1.4154	0.0460	2.4
3	4.0	2.7029	0.0878	2.2
mean ± SD			2.3±0.1	

^a % Ascorbic acid released (w/w) from the weighted HNT/AH₂ sample

Table S3. Summary of AH_2 release (mean \pm SD) after 30 min, versus the amount loaded in HNT/AH₂, in buffered (pH 7.4) aqueous solution and in acetonitrile at 298K. Percentage refer to the weight of ascorbic acid over the weight of composite material HNT/AH₂

Solvent	AH ₂ load in HNT/AH ₂	AH ₂ released (%)
Acetonitrile	4.6 %	2.5±0.2%
Water (pH 7.4)	4.4 %	2.3±0.1%

Table S4. Antioxidant activity: number of radicals trapped by each antioxidant molecule, *n*, at different concentration of the antioxidant AH₂ (in parenthesis), measured in inhibited autoxidation experiments at 303 K (mean \pm SD, N = 3).

Sample	MeCN ^a	MeCN + 1% water ^a	Buffer pH=7.4 ^b
Sample	n	n	n
HNT	/	/	/
AH ₂	$ \begin{array}{r} 1.0 \\ (1.4x10^{-5}M) \\ 1.0 \\ (2.5x10^{-5}M) \\ 0.9 \\ 5 \end{array} $	$ \begin{array}{r} 1.1 \\ (1.4x10^{-5}M) \\ 0.9 \\ (2.5x10^{-5}M) \\ 0.9 \\ \end{array} $	$\begin{array}{c} 0.4 \\ (2.1 \times 10^{-5} \mathrm{M}) \\ 0.2 \\ (4.0 \times 10^{-5} \mathrm{M}) \\ 0.1 \\ \end{array}$
AH ₂ +HNT	(4.2x10 ⁻⁵ M) 1.2 ^c (7.0x10 ⁻⁶ M)	(3.8x10 ⁻⁵ M) 1.2 ^c (7.0x10 ⁻⁶ M)	(6.0x10 ⁻⁵ M) 0.7 ^c (1.0x10 ⁻⁵ M)
HNT/AH ₂	$ \begin{array}{r} 1.4 \\ (1.4x10^{-5}M) \\ 1.3 \\ (2.5x10^{-5}M) \\ 1.2 \\ (4.2x10^{-5}M) \end{array} $	1.4^{d} (1.4x10 ⁻⁵ M) 1.3 ^d (2.5x10 ⁻⁵ M) 1.2 ^d (4.2x10 ⁻⁵ M)	$\begin{array}{c} 0.8\\(2.1x10^{-5}M)\\0.5\\(4.0x10^{-5}M)\\0.4\\(6.0x10^{-5}M)\end{array}$

^aExperiment performed with Cumene (1.8 M), AIBN (0.05 M). ^bExperiment performed in Phosphate Buffer 0.1 M pH = 7.4, THF 3.1 M, [AAPH] 25 mM. ^c[HNT] = 0.25 mg/mL. ^dExperiment performed with Styrene (4.3 M), AIBN (0.05 M).

Figure S2. Spectrophotometric analysis of AH₂ release from samples of HNT/AH₂ in 3 mL acetonitrile, sonicated for 1 min., stirred for 24 min. and centrifuged for 5 min. to minimize light scattering due to HNT (top panel). The calibration line (lower panel, black circles) was obtained by addition of different volumes (reported in the insert in μ L) of a stock solution of genuine AH₂ 1.42 mM to 3 mL of acetonitrile. In lower panel experiments with HNT/AH₂ samples are shown as red stars. Numbering refers to table S1.

Figure S3. Spectrophotometric analysis of AH₂ release from samples of HNT/AH₂ in 3 mL aqueous buffer (pH = 7.4) sonicated 1 min., stirred 24 min and centrifuged 5 min. to minimize light scattering due to HNT (top panel). The calibration line (lower panel, black circles) was obtained by addition of different volumes (reported in the insert in μ L) of a stock solution of genuine AH₂ 1.65 mM to 3 mL of aqueous buffer. In lower panel experiments with HNT/AH₂ samples are shown as red stars. Numbering refers to table S2.

Figure S4. Ascorbic acid decay in methanol at 25°, analyzed to determine the reaction order. The best fit is obtained with the first order data analysis. The first order constant is 1.20×10^{-4} s⁻¹, which corresponds to a second-order rate constant of 0.06 M⁻¹s⁻¹ considering the solubility of oxygen in methanol (2.0 mM at 25°, 0.2 Atm¹).

Figure S5. Ascorbic acid decay in water at 25°, analyzed to determine the reaction order. The best fit is obtained with the first order data analysis. The first order constant is 1.18×10^{-4} s⁻¹, which corresponds to a second-order rate constant of 0.56 M⁻¹s⁻¹ considering the solubility of oxygen in buffered water (0.21 mM at 25°, 0.2 Atm²).

Figure S6. Ascorbic acid decay in acetonitrile at 25°, analyzed to determine the reaction order. The best fit is obtained with the first order data analysis. The first order constant is 3.93×10^{-5} s⁻¹, which corresponds to a second-order rate constant of 0.03 M⁻¹s⁻¹ considering the solubility of oxygen in acetonitrile (1.3 mM at 25°, 0.2 Atm³).

Figure S7. UV–vis (200–800 nm) absorption spectra of: (**A**) DPPH• 143 μ M in acetonitrile (dark blue) and after addition of ascorbic acid 57 μ M (pink), (**B**) DPPH• 143 μ M in acetonitrile (blue) and after addition of HNT/AH₂ 0.29 mg/mL (red).

Scheme S1. Reaction of ascorbic acid (AH₂) with DPPH• radical, explaining the observed stoichiometry.

References

1) Sato, T.; Hamada, Y.; Sumikawa, M.; Araki, S.; Yamamoto, H. Solubility of Oxygen in Organic Solvents and Calculation of the Hansen Solubility Parameters of Oxygen, *Ind. Eng. Chem. Res.*, **2014**, *53*, 19331–19337.

2) https://www.engineeringtoolbox.com/oxygen-solubility-water-d_841.html.

3) Li, Q.; Batchelor-McAuley, C.; Lawrence, N. S.; Hartshorne, R. S.; Compton, R. G. Anomalous Solubility of Oxygen in Acetonitrile/Water Mixture Containing Tetra-n-butylammonium Perchlorate Supporting Electrolyte; the Solubility and Diffusion Coefficient of Oxygen in Anhydrous Acetonitrile and Aqueous Mixtures, *J. Electroanal. Chem.*, **2013**, *688*, 328-335.