SUPPORTING INFORMATION

for

Synthesis, DFT Calculations and In Vitro Antioxidant Study on Novel Carba-Analogs of Vitamin E

Aneta Baj ¹, Jakub Cedrowski ², Ewa Olchowik-Grabarek ³, Artur Ratkiewicz ¹ and Stanislaw Witkowski ^{1,*}

¹ Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland

² Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland

* Correspondence: wit@uwb.edu.pl (S.W.)

Table of Contents

Synthesis of phosphonium salt 9	S2
Styrene autoxidation inhibited by compounds 1a, 1b, α -T, 1c, 4, 5 and 6 (Table 1S)	S3
Cumene autoxidation inhibited by compounds 4 , 5 and 6 (Table 2S)	S4
¹ H and ¹³ C NMR spectra of compound 6	S5-S6
¹ H and ¹³ C NMR spectra of compound 7	S7-S8
¹ H and ¹³ C NMR spectra of compound 8	S9-S10
¹ H and ³¹ P NMR spectra of compound 9	S11-S12
¹ H and ¹³ C NMR spectra of compound 11	S13-S14
¹ H and ¹³ C NMR spectra of compound 12	S15-S16
¹ H NMR spectrum of compound 13	S17
¹ H NMR spectrum of compound 14	S18

³ Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland

3,7,11-Trimethyldodecyl alcohol (7).

A mixture of farnesol (3 g, 13.5 mmol) and 10% Pd/C (0.3 g) in ethyl acetate (15 mL) and propan-2-ol (15 mL) was stirred and hydrogenated under atmospheric pressure at room temperature. After 24 h the reaction mixture was filtered through a pad of Celite and concentrated under reduced pressure. Yellow oily residue was purified by DFC (hexane/ethyl acetate, 8:2, v/v) to give compound 7 as a colorless oil (2.98 g, 97%). R_f = 0.43 (hexane/ethyl acetate, 8:2, v/v); ¹H NMR (400 MHz, CDCl₃): δ 3.71-3.66 (m, 2H, C<u>H</u>₂OH), 1.63-1.49 (m, 3H), 1.39-1.04 (m, 15H), 0.90 (d, *J* = 6.5 Hz, 3H), 0.87 (d, *J* = 6.6 Hz, 6H), 0.85 (d, *J* = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 61.23, 40.03, 39.95, 39.34, 37.48, 37.44, 37.35, 37.31, 37.25, 32.77, 32.76, 29.51, 29.49, 27.96, 24.79, 24.77, 24.35, 22.70, 22.60, 19.72, 19.66, 19.64, 19.60 ppm; IR (ATR): 3336, 2924, 1459, 1054 cm⁻¹.

3,7,11-Trimethyldodecyl bromide (8).

Compund **8** was prepared according to the method proposed by Sagara et al. with minor modifications [1]. NBS (2.705 g, 15.2 mmol) was added portionwise to a solution of compound **7** (2.9 g, 12.7 mmol) and Ph₃P (3.672 g, 14.0 mmol) in dry CH₂Cl₂ (50 mL) under argon at 0°C. After stirring for 18 h at room temperature solvent was removed with a rotary evaporator. The residue was dispersed in hexane and purified by FC (hexane as eluent) to obtain bromide **8** as a colorless oil (3.05 g, 82%). *R*_f = 0.91 (hexane). ¹H NMR (400 MHz, CDCl₃): δ 3.51-3.38 (m, 2H, C<u>H</u>₂Br), 1.90-1.87 (m, 1H), 1.71-1.64 (m, 2H), 1.57-1.50 (m, 1H), 1.48-1.02 (m, 13H), 0.90 (d, *J* = 6.2 Hz, 3H), 0.88 (d, *J* = 6.7 Hz, 6H), 0.85 (d, *J* = 6.4 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 40.10, 40.03, 39.34, 37.35, 37.27, 37.24, 37.21, 36.83, 36.76, 32.75, 32.73, 32.22, 31.67, 31.63, 27.97, 24.80, 24.79, 24.21, 22.71, 22.62, 19.72, 19.65, 18.99, 18.93 ppm; IR (ATR): 2924, 1459, 1378, 1259, 614 cm⁻¹.

Triphenyl(3,7,11-*trimethyldodecyl*)*phosphonium bromide* (9).

Mixture of bromide 8 (2.75 g, 9.4 mmol) and Ph₃P (2.473 g, 9.4 mmol) was stirred vigorously at 160°C for 24 h. After cooling to room temperature, Et₂O was added and concentrated under reduced pressure. White solid was triturated with cold ether, filtered, washed with cold ether and dried under high vacuum (80°C, 24 h) to give product **9** as a white solid (2.132 g, yield 41%). ³¹P NMR (161 MHz, CDCl₃): δ 25.26 ppm; ¹H NMR (400 MHz, CDCl₃): δ 7.86-7.42 (m, 15H), 3.71-3.65 (m, 2H), 2.03 (brs, 1H), 1.77-1.75 (m, 1H), 1.60-1.52 (m, 1H), 1.51-1.47 (m, 1H), 1.46-1.40 (m, 1H), 1.40-0.99 (m, 12H), 0.97 (d, *J* = 6.6 Hz, 3H), 0.84 (d, *J* = 6.6 Hz, 6H), 0.77 (d, *J* = 6.6 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 135.00, 134.97, 133.71, 133.61, 130.52, 130.40, 118.73, 117.88, 39.27, 37.26, 37.18, 37.17, 37.13, 36.66, 33.59, 33.56, 33.44, 33.42, 32.70, 29.43, 29.38, 29.34, 29.29, 27.89, 24.73, 24.70, 24.17, 24.13, 22.66, 22.56, 21.17, 20.67, 19.63, 19.51, 19.21, 19.15 ppm; IR (KBr): 2934, 1530, 1404, 1104, 701 cm⁻¹; MS (ESI+): *m/z* = 473.1 ([M-Br]⁺).

1. Sagara, Y.; Kato, T. Brightly Tricolored Mechanochromic Luminescence from a Single-Luminophore Liquid Crystal: Reversible Writing and Erasing of Images. *Angew. Chem. Int. Ed.* **2011**, *50*, 9128–9132.

Table 1S. The values of inhibition rate constant ($k_{inh} / M^{-1}s^{-1}$), number of peroxyl radicals trapped by one molecule of antioxidant (n) and the length of induction period (τ / s) calculated for autoxidation of styrene in chlorobenzene at 30°C, inhibited by compounds **1a**, **1b**, α -**T**, **1c**, **4**, **5** and **6**.

Structure of	No.	k_{inh}	n	τ [s]	ArOH
phenol	1.00	[M ⁻¹ s ⁻¹]		• [3]	[µM]
носоон	1	9.06×10^{5}	1.60	1450	5.02
	2	9.41×10 ⁵	1.55	1404	5.02
	3	8.56×10^{5}	1.77	1610	5.02
1a		(9.01±0.43)×10 ⁵	1.64±0.12		
HO COOCH3	1	1.35×10^{6}	1.61	1489	5.10
	2	1.54×10^{6}	1.73	1594	5.10
	3	1.50×10^{6}	1.74	1607	5.10
1b		(1.46±0.10)×10 ⁶	1.69±0.07		
HO O C ₁₆ H ₃₃	1	1.87×10^{6}	1.94	1778	5.07
	2	2.27×10^{6}	1.87	1712	5.07
	3	1.91×10^{6}	1.89	1729	5.07
α-Τ		(2.02±0.22)×10 ⁶	1.90±0.04		
HO	1	2.15×10 ⁶	1.92	1732	4.99
	2	2.33×10^{6}	1.84	1657	4.99
	3	2.26×10^{6}	1.90	1717	4.99
1c		(2.24±0.09)×10 ⁶	1.89±0.04		
носоон	1	2.83×10 ⁵	1.51	1452	5.33
	2	2.75×10 ⁵	1.48	1342	5.01
	3	2.88×10 ⁵	1.66	1508	5.01
4		(2.82±0.07)×10 ⁵	1.55±0.10		
HO COOCH ₃	1	3.06×10 ⁵	1.53	1051	3.80
	2	3.31×10^{5}	1.30	1781	7.56
	3	2.88×10^{5}	1.31	1796	7.56
5		(3.08±0.22)×10 ⁵	1.38±0.13		
HO C ₁₆ H ₃₃	1	2.92×10 ⁵	1.55	1371	4.03
	2	2.02×10 ⁵	1.46	863	2.69
	3	2.09×10 ⁵	1.60	944	2.69
6		(2.34±0.50)×10 ⁵	1.54±0.07		

Table 2S. The values of inhibition rate constant ($k_{inh} / M^{-1}s^{-1}$), number of peroxyl radicals trapped by one molecule of antioxidant (n) and the length of induction period (τ / s) calculated for autoxidation of cumene in chlorobenzene at 30°C, inhibited by compounds **4**, **5** and **6**.

Structure of phenol	No.	k _{inh} [M ⁻¹ s ⁻¹]	п	τ [s]	ArOH [µM]
носоон	1	2.74×10 ⁵	1.50	1258	3.81
	2	2.77×10 ⁵	1.58	1764	5.08
	3	2.14×10^{5}	1.53	1711	5.08
4		(2.55±0.36)×10 ⁵	1.54 ± 0.04		
HO COOCH ₃	1	2.95×10 ⁵	1.59	1614	4.64
	2	3.26×10 ⁵	1.75	1779	4.64
	3	3.11×10 ⁵	1.77	1804	4.64
5		(3.11±0.16)×10 ⁵	1.70±0.10		
HO C ₁₆ H ₃₃	1	2.92×10 ⁵	1.55	1371	4.03
	2	2.02×10^{5}	1.46	863	2.69
	3	2.09×10^{5}	1.60	944	2.69
6		(2.34±0.50)×10 ⁵	1.54 ± 0.07		

S9

S18