SUPPLEMENTARY FIGURES

Figure S1. Multiple alignments of the Mrx proteins from different Actinobacteria. Cg, Corynebacterium glutamicum; Cd, Corynebacterium diphtheriae Mt, Mycobacterium tuberculosis; Re, Rhodococcus equi; Rery, Rhodococcus erythropolis; Nf, Nocardia farcinica. Most and least conserved regions are highlighted in red and blue, respectively. The CxxC active site of each Mrx is highlighted within black rectangles. The alignment was done with T-coffee (http://tcoffee.crg.cat).

Figure S2. Unrooted evolutionary distance tree based on amino-acid identity of putative mycoredoxins from different actinobacteria. The tree was constructed by maximum likelihood method using 18 Mrx homologues; the E. coli Grx was included as outgroup. Rery: Rhodococcus erythropolis; Nf: Nocardia farcinica; Mt: Mycobacterium tuberculosis; Re Rhodococcus equi; Cg: Corynebacterium glutamicum; Cd: Corynebacterium diphtheriae; Ec: Escherichia coli; Mrx: mycoredoxin; Grx: Glutaredoxin. The GenBank access numbers are in brackets. Scale represents amino acidic changes.

Figure S3. Artemis Comparison Tool (ACT) pairwise chromosome tBLASTx alignment of mycoredoxins (in yellow) in different Actinobacteria: M. tuberculosis (Rv), Rhodococcus equi (REQ), Corynebacterium glutamicum (Cgl) and Corynebacterium diphtheriae (DIP). Similarity between chromosome regions is depicted by coloured lines: in red, sequences in direct orientation; in blue, inverted sequences. Colour intensity represents sequence homology percentage, being pink/light blue the lowest and red/deep blue the highest.

Mrx2

Mrx3

Figure S4. Artemis Comparison Tool (ACT) pairwise chromosome tBLASTx alignment of mycoredoxins (in yellow) in R. equi (REQ) and Rhodococcus erythropolis (RER). Similarity between chromosome regions is depicted by coloured lines: in red, sequences in direct orientation; in blue, inverted sequences. Colour intensity represents sequence homology percentage, being pink/light blue the lowest and red/deep blue the highest.

A

B

Figure S5: Growth curves of R. equi 103S+ and $m r x$-null mutants strains cultured in TSB (means \pm SD of three replicates). (a) Triple $m r x$ deletion mutant and its $m r x$-complemented derivative strains. (b) Single deletion mrx mutants.

Figure S6. Macrophage infection assays with single and double $m r x$-null mutants. Intracellular survival in J774.A macrophages of the wild type type R. equi 1035^{+}strain, the virulence plasmid cured R. equi 103S- and single or double deletion mutants: $\Delta m r x 1, \Delta m r x 2, \Delta m r x 3, \Delta m r x 1 \Delta m r x 2$ and $\Delta m r x 2 \Delta m r x 3$. Bar charts of the means \pm SD of three independent experiments after 48 h post-infection. One-way ANOVA and post hoc Tukey's multiple comparison tests were performed to assess for statistical significance across conditions. ${ }^{* *}$ P-value $<0,01$.

Figure S7. Total fluorescence emitted by R. equi derivative strains expressing roGFP2. RFU: Relative Fluorescence Units. One-way ANOVA and post hoc Tukey's multiple comparison tests were performed to assess for statistical significance across conditions.

SUPPLEMENTARY TABLES

Table S1: Bacterial strains, cell lines and plasmids used in this study

Name	Genotype or characteristics	Reference
Escherichia coli DH5 α	F- $\varphi 80 \mathrm{~d}$ lacZ $\mathrm{M} 15 \Delta($ lacZYA-argF) U169 thi1 recA1 relA1 endA1 hsdR17 (rk-,mk+) gyrA96 supE44 λ	Strategene
Rhodococcus equi 103S ${ }^{+}$	Virulent strain containing pVAPA plasmid	Ladrón et al., 2003
R. equi 103S-	Virulence plasmid cured strain - R. equi 103S ${ }^{+}$derivative	Ladrón et al., 2003
R. equi $\Delta m r x 1$	$\Delta m r x 1$ deletion mutant - R. equi 103S ${ }^{+}$ derivative	This study
R. equi $\Delta m r x 2$	$\Delta m r x 2$ deletion mutant - R. equi $103 S^{+}$ derivative	This study
R. equi $\Delta m r x 3$	$\Delta m r x 3$ deletion mutant - R. equi 103S ${ }^{+}$ derivative	This study
R. equi $\Delta m r x 1 \Delta m r x 2$	$\Delta m r x 1 \Delta m r x 2$ deletion mutant $-\Delta m r x 1$ derivative	This study
R. equi $\Delta m r x 2 \Delta m r x 3$	$\Delta m r x 2 \Delta m r x 3$ deletion mutant $-\Delta m r x 2$ derivative	This study
R. equi $\Delta m r x 1 \Delta m r x 2 \Delta m r x 3$	$\Delta m r x 1 \Delta m r x 2 \Delta m r x 3$ deletion mutant $\Delta m r x 1 \Delta m r x 2$ derivative	This study
R. equi $\Delta m r x 1 \Delta m r x 2 \Delta m r x 3$ pSET152-mrx1	$\Delta m r x 1 \Delta m r x 2 \Delta m r x 3$ derivative, complemented with pSET152-mrx1	This study
R. equi $\Delta m r x 1 \Delta m r x 2 \Delta m r x 3$ pSET152-mrx2	$\Delta m r x 1 \Delta m r x 2 \Delta m r x 3$ derivative, complemented with pSET152-mrx2	This study
R. equi $\Delta m r x 1 \Delta m r x 2 \Delta m r x 3$ pSET152-mrx3	$\Delta m r x 1 \Delta m r x 2 \Delta m r x 3$ derivative, complemented with pSET152-mrx3	This study
R. equi $\Delta m r x 1 \Delta m r x 2 \Delta m r x 3$ pSET152-mrx1-roGFP2	$\Delta m r x 1 \Delta m r x 2 \Delta m r x 3$ derivative, complemented with pSET152-mrx1-roGFP2	This study
R. equi $\Delta m r x 1 \Delta m r x 2 \Delta m r x 3$ pSET152-mrx2-roGFP2	$\Delta m r x 1 \Delta m r x 2 \Delta m r x 3$ derivative, complemented with pSET152-mrx2-roGFP2	This study
R. equi $\Delta m r x 1 \Delta m r x 2 \Delta m r x 3$ pSET152-mrx3-roGFP2	$\Delta m r x 1 \Delta m r x 2 \Delta m r x 3$ derivative, complemented with pSET152-mrx3-roGFP2	This study
R. equi $\Delta m r x 1 \Delta m r x 2 \Delta m r x 3$ pSET152-roGFP2	$\Delta m r x 1 \Delta m r x 2 \Delta m r x 3$ derivative, complemented with pSET152-roGFP2	This study
R. equi 103S $+\mathrm{pSET} 152-$ roGFP2	103S+ derivative, complemented with pSET152-roGFP2	This study

J774A. 1	Mouse BALB/c monocyte macrophages	Sigma-Aldrich
pSET152	$\phi C 31$ integrase attP Apr ${ }^{\text {R }}$	$\begin{aligned} & \text { Bierman et al., } \\ & 1992 \end{aligned}$
pSelAct	Apr ${ }^{\text {R }}$, lacZ, $\operatorname{codA}: u p p$	van der Geize et al., 2008
pSET152-mrx1	pSET152 containing $m r x 1$ and 500 bp upstream	This study
pSET152-mrx2	pSET152 containing mrx2 and 500 bp upstream	This study
pSET152-mrx3	pSET152 containing $m r x 3$ and 500 bp upstream	This study
pSET152-mrx1-roGFP2	pSET152 containing $m r x 1$ fused to roGFP2 under the control of $\mathrm{P}_{\text {kan }}$	This study
pSET152-mrx2-roGFP2	pSET152 containing $m r x 2$ fused to roGFP2 under the control of $\mathrm{P}_{\text {kan }}$	This study
pSET152-mrx3-roGFP2	pSET152 containing $m r x 3$ fused to $r 0 G F P 2$ under the control of $\mathrm{P}_{\text {kan }}$	This study
pSET152-roGFP2	pSET containing roGFP2 under the control of $\mathrm{P}_{\text {kan }}$	This study
pSelAct $\triangle m r x 1$	pSelAct containing 1500 bp upstream and downstream of $m r x 1$	This study
pSelAct $\triangle m r x 2$	pSelAct containing 1500 bp upstream and downstream of $m r x 2$	This study
pSelAct $\triangle m r x 3$	pSelAct containing 1500 bp upstream and downstream of $m r x 3$	This study

Table S2: Primers used in this study

Name	Sequence	Target
Mrx1 Del F	CTAGTCTAGACGGTCGCGTCCAGCAAC	$1,500 \mathrm{bp}$ upstream of mrx1
$\begin{aligned} & \text { Mrx1 } \\ & \text { Mix } \mathrm{R} \end{aligned}$	CTAGAGGCCCAGGGCAGCTTCGGTAGTCAC	$1,500 \mathrm{bp}$ upstream of mrx1
Mrx1 Mix F	GTGACTACCGAAGCTGCCCTGGGCCTCTAG	$1,500 \mathrm{bp}$ downstream of $m r x 1$
Mrx1 Del R	CTAGTCTAGATGACGGATCGGCCGGAC	$1,500 \mathrm{bp}$ downstream of $m r x 1$
$\begin{aligned} & \text { Mrx2 Del } \\ & \text { F } \end{aligned}$	ATCTAGTATAGACCATCACGCACCCCGCATCT	$1,500 \mathrm{bp}$ upstream of $m r x 2$
$\begin{aligned} & \text { Mrx2 } \\ & \text { Mix } R \end{aligned}$	TCAGTCGAACTCGGGGGTCTGTGCTTGCAT	$1,500 \mathrm{bp}$ upstream of $m r x 2$
$\begin{aligned} & \text { Mrx2 } \\ & \text { Mix F } \end{aligned}$	ATGCAAGCACAGACCCCCGAGTTCGACTGA	$1,500 \mathrm{bp}$ downstream of $m r x 2$
$\begin{aligned} & \text { Mrx2 Del } \\ & \text { R } \end{aligned}$	ATCTAGTCTAGACCGGTGACGGCGACTTCGGC	$1,500 \mathrm{bp}$ downstream of $m r x 2$
$\begin{aligned} & \text { Mrx3 Del } \\ & \text { F } \end{aligned}$	CTAGTCTAGAGGGTCGAGGTCCGCGGTG	$1,500 \mathrm{bp}$ upstream of mrx3
$\begin{aligned} & \text { Mrx3 } \\ & \text { Mix R } \end{aligned}$	ATCAGCCTGCCGAGAGTCGCGACTGATCCAT	$1,500 \mathrm{bp}$ upstream of mrx3
$\begin{aligned} & \text { Mrx3 } \\ & \text { Mix F } \end{aligned}$	ATGGATCAGTCGCGACTCTCGGCAGGCTGAT	$1,500 \mathrm{bp}$ downstream of $m r x 3$
$\begin{aligned} & \text { Mrx3 Del } \\ & \text { R } \end{aligned}$	CTAGTCTAGAGCGTCGGCGTCGGATGCG	$1,500 \mathrm{bp}$ downstream of $m r x 3$
Mrx1 F	CTAGTCTAGAGCCCGACGAGCGCGAAC	Complementation of mrx1
Mrx1 R	CTAGTCTAGACTAGAGGCCCAGGGCCTG	Complementation of mrx1
Mrx2 F	CTAGTCTAGAAGAATGCCGCGGCGGTGAG	Complementation of $m r x 2$
Mrx 2 R	CTAGTCTAGATCAGCCTGCCGAGAGGTC	Complementation of $m r x 2$
Mrx3 F	ATCTAGTCTAGACGAGCTTGTCGTAACCGA	Complementation of mrx3
Mrx3 R	ATCTAGGTCTAGAGACCTCAGTCGAACTCGG	Complementation of $m r x 3$
Mrx1 F roGFP2	ATCTAGCATATGACTACCGAAGCTCCCG	$m r x 1$ fusion to roGFP2

Mrx1 R Mix ro	TGAACCACCACTAGTGAGGCCCAGGGCCTG	mrx1 fusion to roGFP2
Mrx1 F Mix ro	CAGGCCCTGGGCCTCACTAGTGGTGGTTCA	mrx1 fusion to roGFP2
Mrx2F roGFP2	ATCTAGCATATGCAAGCACAGACCCCAGG	mrx2 fusion to
Mrx2 R Mix ro	TGAACCACCACTAGTGTCGAACTCGGGGTC	roGFP2
Mrx2 F Mix ro	GACCCCGAGTTCGACACTAGTGGTGGTTCA	mrx2 fusion to
Mrx3 F roGFP2	ATCGAGCATATGGATCAGTCGCGACATCGG	roGFP2

