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Abstract: Grape pomace retains polyphenols in the peels and in the seeds after winemaking, which is
indicative of the high valorization potential of this industrial waste. There is strong evidence that
phenolics are robust antioxidants and confer photoprotection; thus, it is rational to apply these active
compounds from winemaking waste to sunscreens, in order to increase UV protection. Despite the
importance of this class of cosmetics to public health, more efficacious strategies are still needed
to overcome the problems caused by the photoinstability of some UV filters. The hydroethanolic
extract of Vitis vinifera L. grapes was obtained by percolation and then lyophilized. Six formulations
were developed: Type I—cosmetic base and UV filters; Type II—cosmetic base and extract; and Type
III—cosmetic base, extract and UV filters. Each formulation was prepared in the pHs 5 and 7. The
antioxidant activities of the samples were measured by DPPH• and expressed in Trolox® equivalents
(TE), and their photostability and in vitro sun protection factor (SPF) were analyzed by diffuse
reflectance spectrophotometry. The anti-radical efficiencies observed in the formulations with grape
extract were: (II) 590.12 ± 0.01 µmol TE g−1 at pH 5 and 424.51 ± 0.32 µmol TE g−1 at pH 7; (III)
550.88 ± 0.00 µmol TE g−1 at pH 5 and 429.66 ± 0.10 µmol TE g−1, at pH 7, demonstrating that
the UV filters, butylmethoxydibenzoyl methane, ethylhexyl methoxycinnamate and ethylhexyl
dimethyl 4-aminobenzoic acid had no influence on this effect. The photoprotective efficacy and
the photostability of formulation III containing the extract and UV filters at pH 5 suggested that a
synergism between the active molecules provided an 81% increase in SPF. Additionally, this was the
only sample that maintained a broad spectrum of protection after irradiation. These results confirmed
that the grape pomace extract has multifunctional potential for cosmetic use, mainly in sunscreens,
granting them superior performance.

Keywords: Vitis vinifera L.; grape pomace; phenolics; antioxidant activity; industrial waste
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1. Introduction

Grapes were introduced in southern region of Brazil in the 19th century with the arrival of Italian
immigrants to Serra Gaúcha, who had the tradition of producing wine for their own consumption [1].
Vitis vinifera L. is one of the most frequently-cultivated grape species, and it is economically important
for manufacturing food, wine and other beverages. Recently, other uses began to be explored due to
its chemical and widely-applicable characteristics [2], combined with high biocompatibility. Several
cosmetics containing grape extracts have been successfully marketed.

Incomplete extraction of compounds such as polyphenols during winemaking, leads to about
70% of the initial active substances remaining in grape pomace waste [3], 20–30% in peels and 60–70%
in seeds [4,5]. Considering the bioactive potentials of these polyphenols, especially flavonoids, the
valorization of this type of industrial waste provides a natural raw material of relatively low cost
and wide availability [6]. Grapes are rich in antioxidants with anti-inflammatory, antiallergenic,
anticarcinogenic, cardioprotective, antithrombotic and hair-stimulating activities [7]. The antioxidant
activity found in grape extracts has been attributed to the presence of phenolic compounds [8], including
the large class of flavonoids with low molecular weights, that shield the plant from photodamage.
There is evidence that these antioxidant molecules can also provide a photoprotective effect, which
provides their application in sunscreens [9].

The contribution of this class of cosmetics to public health has risen in the last decade, due to
an increased awareness of the importance of preventive measures in the fight against photodamage.
Despite recent advances in sunscreen formulations, more efficacious strategies are still needed to
overcome the problems caused by the photoinstability of some UV filters [10].

The purpose of our study was to further explore the antioxidant and photoprotective capacity
of grape-pomace extract by assessing its application in a sunscreen. The phenolic compounds in
the crude extract were identified by high performance liquid chromatography and electrospray
tandem mass spectrometry (HPLC-ESI-MS/MS). The in vitro sun-protection factor (SPF) and the
photostability of a formulation containing grape-pomace extract was measured using a diffuse
reflectance spectrophotometer with an integration sphere. Additionally, we determined the total
phenol content, expressed in gallic acid equivalents (GAE); the flavonoid content by reactions with
aluminum trichloride, expressed as quercetin equivalents (QE); and the antioxidant activity by DPPH•
inhibition assay, expressed in Trolox® equivalents (TE).

2. Materials and Methods

2.1. Chemicals and Reagents

Butylmethoxydibenzoylmethane and vinylpyrrolidone copolymer were purchased from Pharma
Special (São Paulo, Brazil). Ethylhexyl methoxycinnamate and ethylhexyl dimethyl 4-aminobenzoic acid
(ethylhexyl dimethyl PABA) were obtained from Fragon (São Paulo, Brazil). Phenoxyethanol/parabens
and anhydrous citric acid were obtained from Vital Especialidades (São Paulo, Brazil).
2,2-Diphenyl-1-picrylhydrazyl (DPPH•), Folin-Ciocalteu reagent, aluminum chloride hexahydrate
(AlCl3, 99%), gallic acid, (±)-6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid-Trolox®,
2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one and 3,3′,4′,5,6-pentahydroxyflavone
(quercetin ≥ 95%) were from Sigma-Aldrich (São Paulo, Brazil). Sodium hydroxide, sodium carbonate,
acetic acid and methanol were purchased from Synth (São Paulo, Brazil). Ethanol 96% (v/v) was
purchased from LS Chemicals (São Paulo, Brazil), and distilled.
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2.2. Plant Material

Plant material consisted of grape pomace from Cabernet Sauvignon (V. vinifera L.), mainly of skins
and seeds and with a minority of stalks. The fruits were harvested in March 2014 and collected by a
winegrower in the Valley of the Vineyards (29.2269◦ S, 51.1131◦ W) in the city of Caxias do Sul, RS,
Brazil. The harvest was properly transported to the Beraldo Di Cale winery in Jundiaí, SP, Brazil. After
maceration and alcoholic fermentation of mash for winemaking, the solid waste (fermented grape
pomace) was separated from the liquid part for this research. The pomace arrived damp and it was
dried in an oven with air circulation (Fabbe®, São Paulo, Brazil) at 40 ◦C for 5 days. The exsicata
was deposited in the Herbarium of the Institute of Biosciences at USP/SP, with Hübner identification
number A1.

A dried plant sample weighing 3.2 kg was ground in a knife and hammer mill, filtered through
the pores in the 1.0 mm sieve and later processed with ball mill. The hydroethanolic-lyophilized extract
was prepared with dry material, using a method adapted from the Brazilian Pharmacopoeia [11].
In brief, the powdered pomace remained in contact with the 70% hydroethanolic solution (v/v) by
maceration for 18 h, and was subsequently held for percolation. The percolate was concentrated at a
reduced pressure in an ascending film evaporator and then homogenized. The remaining aqueous
solution was dried in a Liotop® K202 lyophilizer (Liobras Industry Co., São Paulo, Brazil).

2.3. Analysis of Grape Pomace’s Dry Extract

2.3.1. Quantification of Phenolics and Flavonoids

Phenolic content was determined by Folin–Ciocalteu (FC) reagent with gallic acid as the
standard [12]. Samples were prepared in 10% ethanol at a concentration of 400 µg mL−1 for the extract
and standard dilutions of gallic acid (85 to 25 µg mL−1). A 20 µL aliquot of sample or standard was
added to each well of a 96-well plate, and then 30 µL of distilled water, 100 µL of 700 mM sodium
carbonate and 50 mL of FC were added.

Flavonoid content was determined using aluminum trichloride reagent (AlCl3) and quercetin
for the standard [13,14]. The solutions were prepared in 60% (v/v) ethanol at a concentration of
17.5 mg mL−1 with pomace extract and standard dilutions of quercetin (50 to 200 µg mL−1). An aliquot
of 20 µL of extract or standard in 60% (v/v) hydroethanolic solution was added to 20 µL of 2% AlCl3 in
each well of a 96-well plate, followed by 210 µL of 60% (v/v) ethanolic solution. The absorbance of each
sample was measured in triplicate with a Synergy HT Multi-Mode Microplate Reader (BioTek Industry
Co., Winooski, VT, USA) at 765 (phenolic content) and 427 nm (flavonoid content), after a two-hour
and thirty-min incubation protected from light.
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2.3.2. In Vitro Antioxidant Activity

The antioxidant activity of the extract was determined by using the free radical
2,2-diphenyl-1-picryl-hydrazyl (DPPH•) in methanol and Trolox®, as a standard [15]. Crude extract
was solubilized in methanol at concentrations of 1.0 mg mL−1 and subjected to ultrasound for 20 min.
Then, solutions were adjusted to pH values of 5 and 7. Sample aliquots (0.1 mL) were added to 3.9 mL
of a methanol solution containing 70 µM DPPH• and homogenized, and the mixtures were left standing
at room temperature (22.0 ± 2.0 ◦C) protected from light for 30 min. Afterwards, solutions were
evaluated by Thermo Scientific Evolution® 600 spectrophotometer (Thermo Fisher Scientific Industry
Co., Waltham, MA, USA) at a wavelength of 517 nm in quartz cuvettes with a 1.0 cm path length, in
triplicate. The antioxidant activity was compared to the linear regression analyses (R2 = 0.9941) of
standard Trolox solution (250 to 25 µg mL−1) and expressed as the mean ± standard deviation (n = 3)
in Trolox equivalents (mg QE g−1 extract).

2.3.3. HPLC and ESI–MS

Phenolic analysis of total grape pomace (skins, seeds and stalks) was performed with a methanol
solution with 10 mg mL−1 crude extract that was solubilized with ultrasound, filtered through a 0.45 µm
nylon filter and injected into the loop (20 µL) at a flow rate of 0.7 mL min−1 at ambient temperature [16].
The polyphenols were separated in a C18 reversed-phase column, Shim-pack VP-ODS (250 × 4.6 mm;
5 µm particle size) with a system controller CBM-20A (Shimadzu Co., Kioto, Japan) connected to
binary pumps LC-20AD (Shimadzu®) that had a UV/VIS SPD-20A detector (Shimadzu®), CTO-20A
(Shimadzu®) and self-injector SIL 20AC (Shimadzu®). The solvent system used to elute the compounds
was: A—0.1% acetic acid water solution, and B—methanol. The following gradient conditions were
used: 0–10 min (95% A/5% B); 10–60 min (50% A/50% B); 60–80 min (30% A/70% B); and 80–90 min
(95% A/5% B). A chromatographic profile of the extracts was obtained at a wavelength of 254 nm. The
identification of the compounds in grape pomace was performed in an AmaZon ETD (Bruker Co.,
Billerica, MA, USA) instrument with positive ion mode mass spectrometry using 27 psi and a capillary
voltage of 4500 V.

2.4. Formulations

A total of 6 cosmetic preparations with and without dry extract of red grape pomace were prepared
based on a hydrophilic copolymer of ammonium acryloyldimethyltaurate vinylpyrrolidone (cosmetic
base). The UV filters—butylmethoxydibenzoyl methane, a UVA filter, ethylhexyl methoxycinnamate, a
UVB filter and ethylhexyl dimethyl PABA, a UVB filter—were used. These emulsions are described
qualitatively and quantitatively (% w/w) in Table 1. Each formulation (Types I, II and III) was adjusted
to pH values of 5 and 7, and the UV filter concentration was in accordance with international legislation
and guidelines [17–19]. All samples were prepared in triplicate.
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Table 1. Qualitative and quantitative composition (% w/w) of the sunscreens with and without grape pomace extract (F1 to F6) at two pH values.

Ingredients (INCI a)
Concentration (% w/w)

Type I Type II Type III
F1 – pH 5 F2 – pH 7 F3 – pH 5 F4 – pH 7 F5 – pH 5 F6 – pH 7

Oil phase
Ethylhexyl methoxycinnamate 10.0 10.0 - - 10.0 10.0

Ethylhexyl dimethyl PABA 10.0 10.0 - - 10.0 10.0
Butyl methoxy dibenzoyl methane 5.0 5.0 - - 5.0 5.0

Mixture of phenoxyethanol and paraben esters * 0.1 0.1 0.1 0.1 0.1 0.1

Aqueous phase
Ammonium acryloyldimethyltaurate vinylpyrrolidone 2.0 2.0 2.0 2.0 2.0 2.0

Grape pomace extract of V. vinifera L. - - 10.0 10.0 10.0 10.0
Purified water 72.9 72.9 87.9 87.9 62.9 62.9

a INCI: International Nomenclature of Cosmetic Ingredients. * methylparaben, ethylparaben, propylparaben, butylparaben, and isobutylparaben. Formulations (I, II and III) were prepared
with pH values of either 5 and 7 with citric acid or sodium hydroxide (sufficient quantities).
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2.4.1. In Vitro Antioxidant Activity of the Formulations

The antioxidant activity of the formulations (F1–F6) was examined according to the method
described in item 2.3.2 [15,20–22]. Sample aliquots of formulations II and III (1 g) containing 10% crude
pomace extract were solubilized in methanol at concentrations of 1 mg mL−1 and sonicated for 20 min.
Then, samples were centrifuged at 2500 rpm for 20 min, and pH adjusted to 5 and 7. The supernatants
were used in the spectrophotometric analyses. A 100 µL aliquot of the diluted formulation was added
to 3.9 mL of a 70 µM DPPH•methanolic solution and homogenized. As described earlier, antioxidant
activity was expressed in Trolox equivalents (mg TE g−1 extract) as the mean ± standard deviation
(n = 3).

2.4.2. Photoprotection Efficacy and Photostability

The sun protection factor (SPF) of F1 to F6 was determined in vitro with a diffuse reflectance
spectrophotometer with an integration sphere (Labsphere Inc., North Sutton, NH, USA) [22–24].
Samples were weighed on an analytical balance (Shimadzu® AUY 220) and uniformly applied
over polymethylmethacrylate (PMMA) (HelioScreen® Helioplate HD 6, North Sutton, NH, USA)
plates at 0.75 mg cm–2, kept at room temperature (22.0 ± 2.0 ◦C) and protected from the light for
15 min. Subsequently, the absorbance of the photoprotective formulations was determined using the
wavelength range of 290–400 nm in triplicate, with seven different points of readings per plate of each
sample. The average spectral absorbance values were used to calculate the SPF, critical wavelength
and UVB/UVA rate of the formulations [25–28] by the UV2000® software (North Sutton, NH, USA).

A photostability test was performed to predict possible degradations due to the artificial radiation
emitted by the photostability chamber. A total of 0.0187 g of each sample was weighed and applied over
PMMA plates, in triplicate. Readings in Labsphere® UV-2000S Transmittance Analyzer, as described,
were at 0, 1 and 2 h after sun exposure simulated by Suntest CPS + (Atlas Co., Linsengericht, Germany)
which provided a radiation dose of 500 W m−2 with a temperature of 35 ◦C [26–28].

2.5. Statistical Analysis

Results were evaluated by one-way analysis of variance (ANOVA) followed by Tukey’s test.
Additionally, two-way ANOVA followed by Sidak’s post hoc test and a Student’s t-test with a confidence
interval at 95% (p < 0.05) were performed using Minitab version 17 and GraphPad Prism 6.0 statistical
software (San Diego, CA, USA).

3. Results and Discussion

3.1. Analysis of Grape Pomace’s Dry Extract

3.1.1. Quantification of Phenolics and Flavonoids

Grapes are sources of phenolic compounds that are extracted from seeds and skins during
winemaking. However, this extraction into the wine is incomplete and grape pomace retains a high
amount of such substances [29]. According to the literature, the wide variation in the phenolic content
of V. vinifera grapes can be attributed to cultivation constraints, such as (a) viticulture conditions,
genetic grapevine, maturation stage, edaphoclimatic factors and exposure to fungi; (b) oenology
parameters, time and storage temperature of postharvest samples, type and length of maceration,
pressing and fermentation; and (c) winemaking extraction process, cultivar, variety, sample type,
drying, solvent system, volume, time, milling, temperature, pH value, metal ions, light and oxygen
exposure and extraction technologies. It is highly likely that these factors change the chemical and
physical characteristics of the coproduct, and thus, their extensive biological activities [26–34].

The most common phenolic compounds derived from grapes are flavonoids, such as anthocyanins,
flavanols and flavonols [33]. Innumerable biological and pharmacological activities of flavonoids
against cellular and tissue injury have been described [34], such as anti-inflammatory, antioxidant [2,35],



Antioxidants 2019, 8, 530 7 of 16

anti-tumor, anti-allergic, anti-thrombotic, anti-diabetic and anti-atherosclerotic [36]. Due to a favorable
combination of bioactivity and safety, flavonoids from different plants have been used in cosmetic
products to combat skin aging, pollution and UV damage [33,36]. In the present study, the total
phenolic content from hydroethanolic extract was 3.01 ± 0.14 mg QE g−1 and the total flavonoid content
was 141.11 ± 3.38 mg GAE g−1.

3.1.2. In Vitro Antioxidant Activity

Interestingly, the antioxidant activity of the hydroethanolic extract of grape pomace changed
significantly at different pH values, being 707.00 ± 0.03 and 1098.00 ± 0.01 µmol TE g−1 at pHs 5 and 7,
respectively (Figure 1). The antioxidant activity of red grapes has been associated with polyphenolic
content [37,38]. Grape pomace’s (seeds, skin and peduncle) hydroethanolic extracts (water/ethanol
60%) were evaluated after crushing, pre-fermentation and after the first fermentation. The antioxidant
activity of the winery pomace decreased by approximately 36%, in comparison to the grape pomace,
which was attributed to a change in the phenolic composition due to the extraction of these into the
wine [38]. In our study, the 70% hydroethanolic extracts had an almost 10-fold superior antioxidant
activity compared to the results from Salazar and collaborators [38]. The 70% alcoholic solution may
have facilitated the release of less soluble and more stable substances, improving the antioxidant
effect. [3]. In another research, grape pomace extracts of white and red V. vinifera prepared with
water/acetone exhibited a range of free radical scavenging activity from 3.54 ± 0.06 to 28.20 ± 0.02 µmol
TE g−1. Such a reduced antioxidant activity may have been due to the extraction with acetone, a less
polar solvent. The red grape pomaces had the highest DPPH• scavenging capacity due to differences
in the polyphenolic content [39]. Literature indicates that the red grape varieties of the Mediterranean
(Grenache, Syrah, Carignan, Mourvèdre and Alicante) have higher antioxidant activity; however, it
should be noted that there were contrasts between the results for seeds and grape skins [3].
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mechanism, heterocyclic ring fission (HRF) and quinone methide (QM) cleavage [40–42]. 

Figure 1. Antioxidant activity of 1.0 mg mL−1 grape pomace extract (Vitis vinifera) at pH values 5 and 7
(n = 3). ** = p < 0.001.

3.1.3. HPLC and ESI-MS/MS

The phenolic compounds identified by the mass spectrometric analysis of the crude extract
included procyanidin dimers and trimers and thirteen compounds from three phenolic groups; namely,
one dihydroflavonol, five flavonols and seven anthocyanins (Figure 2 and Table 2). In previous studies
with the same and another kind of V.vinifera cultivars, the same compounds were identified. The
peak at 29.9–41.5 min showed the dimers and trimer of B-type procyanidin. The fragment ions have
well-known MS1 and MS2 fragmentation patterns caused by an established retro-Diels–Alder (RDA)
mechanism, heterocyclic ring fission (HRF) and quinone methide (QM) cleavage [40–42].
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Figure 2. Base peak chromatogram (BPC) of the crude Vitis vinifera L. extract in positive mode with procyanidins (dimer and trimer) and the identified flavonoids.
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Table 2. ESI-MS/MS of the phenolic compounds identified in the crude Vitis vinifera L. extract.

Peak MW
(Da)

RT
(min)

[M+H]+

(m/z)
MS/MS

(m/z)
Major Fragment Ion

(m/z) Formula Peak Identity References

1 578 29.9 579.26 561.34, 453.31, 427.23, 409.24, 291.10,
247.05

[M+H−H2O]+, [M+H−HRFC]+,
[M+H−RDA]+,

[M+H−RDA−H2O]+,
[M+H−QM]+

C30H26O12 B-type procyanidin dimers

[40–42]

2 578 31.6 579.26 543.33, 409.25, 291.10, 247.05, 200.88

3 578 33.7 579.25 561.19, 409.17, 291.11, 246,98

4 578 37.9 579.28 561.35, 453.29, 427.22, 409.23, 291.14

5 578

41.5

579.30 561.33, 453.31, 409.23, 291.11, 247.02,
164.98

6 866 867.38 697.34, 579.33, 409.25, 289.15

[M+H−RDA−H2O]+,
[M+H−QMC]+,

[M+H−QM−RDA−H2O]+,
[M+H−QMCD]+

C45H38O18 Trimer procyanidins

7 450 55.8 451 415.19
305.06

[M+H−2H2O]+

[M+H−Rham]+ C21H22O11 Di-hydroxyquercetin-O-rhamnose [43,44]

8 478 55.9 479.20 303.10 [M+H−Gluc]+ C21H18O13 Quercetin-O-glucuronide [40,45]

9 610 59.3 611.28 465.25
303.10

[M+H−Rham]+

[M+H-Rham−Glc]+ C27H30O16 Rutin [45]

10 464 59.6 465.21 303.07 [M+H−Glc]+ C21H18O13 Quercetin-3-O-glucoside [40,45]

11 560 59.7 561.14 399.21 [M+H−Glc]+ C26H25O14 Malvidin-3-O-glucoside pyruvate [45]

12 462 61.2 463.25 287.09 [M+H−Gluc]+ C21H18O12 Kaempferol-3-O-glucuronide [40,45]

13 302 63.4 303.15 303.08, 257.03 [M+H-H2O−CO]+ C15H10O7 Quercetin [40,45]

14 478 64.4 479.22 317.15 [M+H−Glc]+ C22H23O12 Petunidin-3-O-glucoside [43,44]

15 530 64.6 531.18 369.15 [M+H−Glc]+ C25H23O13 Peonidin-3-O-glucoside pyruvate [45]

16 492 65.3 493.22 331.16 [M+H−Glc]+ C23H25O12 Malvidin-3-O-glucoside [45]

17 678 67 679.33 661.69
585.31

[M+H−C6H6O]+

M+H−H2O]+ C25H23O13
Delphinidin-3-O-(6”-O-p-coumaryl)

glucoside pyruvate [45]

18 534 76.1 535.27 517.42
331.18

[M+H−2H2O]+

[M+H-acetylGlc]+ C23H25O12 Malvidin-3-(6”-O-acetylglucoside) [45]

19 654 81.1 655.32 636.75
331.17

[M+H−H2O]+

M+H−caffeoylGlc]+ C33H27O16 Malvidin-3-(6”-O-caffeoylglucoside) [45]

RT: retention time; MW: molecular weight; [M+H]+: molecular ion; MS2: fragment ions; RDA: retro-Diels–Alder; HRF: heterocyclic ring fission; and QM: quinone methide [42].
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3.2. Formulations

3.2.1. In Vitro Antioxidant Activity of the Formulations

In recent decades, personal care products formulated with plant extracts have gained significant
interest due to the numerous health benefits [46]. As shown in Figure 3, differences (p > 0.001) were
found between the formulations with and without grape pomace extract. However, no differences were
seen in the antioxidant activities of the formulations with grape pomace’s extract with and without UV
filters at the same pH value: formulation II—590.12 ± 0.01 µmol TE g−1 at pH 5 and 424.51 ± 0.32 µmol
TE g−1 at pH 7; formulation III—550.88 ± 0.00 µmol TE g−1 at pH 5 and 429.66 ± 0.10 µmol TE g−1, at
pH 7. It should be noted that, unlike the results obtained for the grape pomace extracts, the activity
was lower at pH 7.
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concentration (p < 0.0001). Post hoc test Sidak. ** = significant (p < 0.001), and ns = not significant
(p < 0.001).

3.2.2. In Vitro Photoprotection Efficacy and Photostability

SPF can be measured in vitro using artificial substrates and spectrophotometric techniques,
allowing the screening of the photoprotective efficiency of active compounds and sunscreen
formulations against skin damage caused by UV radiation [47,48]. Additionally, these in vitro
methods are efficient, economically convenient and ethical [49,50].

Results showed that formulation Type III, that combined filters and grape pomace extract, was
more effective against UVA and UVB radiations than the other samples, reaching SPF values above
76 and the critical wavelength of 380.00 nm at pH 5. As expected, no SPF was achieved with the
formulations without UV filters (Type II). The pH values of each formulation Type III sample influenced
SPF (Table 3 and Figure 4). It is interesting to note that these results were in accordance with the
in vitro antioxidant activity of the formulations described in the previous section. It is possible that
such an increase was also related to an increased stability of polyphenolic compounds and changes in
displacement of hyperchromic and bathochromic absorption bands at lower the pH [19,51].
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Table 3. In vitro SPF and critical wavelength (nm) values of sunscreens at different pH values and irradiation times.

Formulations pH
SPF * Critical λ **

T 0 T 1 T 2 T 0 T 1 T 2

I
F1 5.0 14.00 ± 1.70 H I 7.67 ± 1.53 J K L M N 6.67 ± 1.53 L M N O 381.67± 0.60 A B 380.33 ± 0.58 A B 380.00 ± 1.00 A B

F2 7.6 16.00 ± 1.70 G H I 7.67 ± 0.58 J K L M N 6.00 ± 0.00 L M NO 381.33± 0.60 A B 379.67 ± 0.58 A B 379.33 ± 0.58 A B

II
F3 5.2 1.67 ± 0.58 O 1.67 ± 0.58 O 1.67 ± 0.58 O 360.33± 1.50 D 364.67 ± 2.08 C D 366.00 ± 1.73 C D

F4 7.0 2.00 ± 0.00 O 2.00 ± 0.00 O 2.00 ± 0.0 O 365.33± 2.10 C D 368.67 ± 2.08 C 369.00 ± 2.65 C

III
F5 5.4 76.67 ± 3.21 B 26.33 ± 1.53 E 17.33 ± 0.58 F G H 380.00± 0.00 A B 377.67 ± 0.58 A B 376.67 ± 0.58 A B

F6 7.2 39.33 ± 2.08 D 16.67 ± 1.15 G H 12.33 ± 0.58 H I J 380.33± 0.60 AB 377.67 ± 0.58 AB 376.00 ± 1.00 B

* Estimated sun protection factor; ** critical wavelength (nm); T – irradiation time (hours); I—cosmetic base + filters UVA and UVB; II—cosmetic base + grape pomace; and III—cosmetic
base + UV filters + grape pomace. Different letters (A–O) represent statistically significant differences among groups. The results were expressed as the mean ± standard deviation (n = 3).
Statistical differences were determined using one-way ANOVA followed by Tukey’s test for comparisons between groups (level of significance of 0.05).
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Table 3 shows the SPF and critical wavelength values of the formulations containing grape pomace
at different pH values and irradiation times. Not only did formulation Type III provide the highest SPF
values, but it was also able to maintain a good protection after 2 h of irradiation (SPFs around 17 and 12
for pH 5 and 7, respectively, and critical wavelength around 376 nm for both). In contrast, formulation
Type I containing only UV filters provided lower initial SPF values, and after 2 h was only just above the
minimum labeled SPF of 6.00 and critical wavelength of 370.00 recommended by the main regulatory
agencies [28,50]. According to the guidelines, a broad-spectrum sunscreen protecting against UVA
and UVB radiation has to achieve SPF ≥ 15.00 and critical wavelength ≥ 370.00 nm [28,50]. It is well
known that there are other factors that may interfere with the final SPF of a sunscreen formulation.
Not only the concentration and combination of UV filters are critical, but also the emulsifiers, vehicles
and solvents used, the viscosity of the vehicle, active-vehicle, active-skin and vehicle-skin interactions
and others [52,53].

Formulating sunscreens with chemical UV filters is challenging due to their photoinstability.
Butylmethoxydibenzoyl methane, which attenuates UVA radiation at 340–400 nm, is commonly used
in photoprotective products, but can be degraded by approximately 50–90% after 60 min of UV
exposure [54]. Thus, one of the formulation strategies to obtain a broad spectrum of UV protection
and/or photostability in cosmetic products is the combination of organic filters or a blend of organic
and inorganic filters. For example, the combination of ethylhexyl methoxycinnamate and ethylhexyl
dimethyl PABA iswidely used in cosmetics against UVB radiation in the 290–340 nm range [54,55].
However, filter associations must be selected cautiously, since there are combinations of filters that
can result in instability of the system and the formation of photodegradation byproducts. Another
problem related to UV filters is that some sunscreens and UV stabilizers may migrate into sea and
groundwater and cause environmental damage [56,57]. For these reasons, there is a current trend
in the application of natural products to photoprotective systems to reduce their adverse effects on
consumers and the environment.

Flavonoids, alone, do not sufficiently attenuate or suppress the photochemical reactions catalyzed
by UV radiation, but the synergism between flavonoids and UV filters may reduce the formation
of deleterious degradation photoproducts; thus, boosting the photoprotection provided [58,59]. For
example, in a study using passion fruit seed extract (P. edulis) from juice processing, the authors
reported a synergistic effect of the flavonoids rich extract with inorganic pigments, consequently
increasing the SPF [49].
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In our work, the SPF values obtained in the formulation Type III containing extract and filters
showed the highest protection factors pre-irradiation (T0). After 2 h of exposure to artificial UV,
samples suffered some photodegradation; however, these values were two to three-fold higher than
those observed in formulation I, which only contained UV filters. In a similar study, a stability
improvement was detected for the polyphenolics from the skins of the red grape Cabernet Sauvignon
(V. vinifera L.) at an acidic pH [60], while another preliminary study observed that products with
poor photostability may have overestimated in vitro SPF values [61]. In the work of Martincigh et
al., ethylhexyl methoxycinnamate, benzophenone-3 and tert-butyl-methoxydibenzoylmethane in the
presence of grape seed extract improved the photostability of a methanol solution by 16.90% after 4 h
of UV irradiation. According to a previous study, grape seed extract produced photoproducts through
a radical deprotonation reaction, and these synergistically interacted with chemical filters, improving
UV protection [53].

4. Conclusions

A high antioxidant activity for formulations Type II or III at both pH 5 and 7 values was observed,
the activity being attributable to the phenolic substances identified in V. vinifera L. extract, including
procyanidine, dihydroflavoninol, flavonols and anthocyanins dimers and trimers, since the antioxidant
response was not significant in the formulation without extract (I). The SPF values of sample I, before
irradiation, at pH 5 and 7, were about 81% and 59% lower, respectively, than sample III. The comparison
between the results obtained with formulations II and III suggested a synergistic behavior with the
extract and the sunscreen system. The photoprotective response of formulation III after 2 h irradiation
at pH 5 was 2.5 times higher than that of the formulation I in same pH; in addition, it was the only one
that maintained good properties post-artificial UV irradiation. Therefore, our results are promising
and indicate that the antioxidants obtained from the winemaking residue can be used to increase the
efficiency of sunscreens without affecting ecosystems, and while using sustainable hydroethanolic
extraction, and enabling the economic and social development of renewable sources.
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