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Abstract: The açaí fruit (Euterpe oleracea Mart.) is well known for its high content of antioxidant
compounds, especially anthocyanins, which provide beneficial health properties. The incorporation
of this fruit is limited to food products whose processing does not involve the use of high temperatures
due to the low thermal stability of these functional components. The objective of this work was the
encapsulation of açaí fruit antioxidants into electrosprayed zein, a heat-resistant protein, to improve
their bioavailability and thermal resistance. First, the hydroalcoholic açaí extract was selected due
to its high polyphenolic content and antioxidant capacities, and, subsequently, it was successfully
encapsulated in electrosprayed zein particles. Scanning electron microscopy studies revealed that the
resulting particles presented cavities with an average size of 924 nm. Structural characterization by
Fourier transform infrared spectroscopy revealed certain chemical interaction between the active
compounds and zein. Encapsulation efficiency was approximately 70%. Results demonstrated the
effectiveness of the encapsulated extract on protecting polyphenolic content after high-temperature
treatments, such as sterilization (121 ◦C) and baking (180 ◦C). Bioaccesibility studies also indicated an
increase of polyphenols presence after in vitro digestion stages of encapsulated açaí fruit extract in
contrast with the unprotected extract.
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1. Introduction

In the last decade, the market for nutraceuticals has grown enormously due to accentuated
interest by consumers in their therapeutic effects for health disorders, including neurodegenerative
and cardiovascular diseases [1,2]. A broad variety of active compounds from natural sources has been
researched. The main active compounds from plants are polyphenols, secondary metabolites that
make up a large family of substances, from simple molecules to complex structures [3]. Numerous
studies have shown that certain fruit contains high levels of antioxidant active compounds. Specifically,
one fruit with great antioxidant capacity is açaí (Euterpe oleracea Mart.), which has recently emerged as
a promising source of energy, and nutritional and antimicrobial properties [4,5]. Preventing oxidative
stress in human endothelial cells and the therapeutic effect on neurodegenerative diseases have emerged
as bioactivities related to this fruit [6–9]. Açaí is a palm native to South America that grows mostly in the
Amazon estuary, in the north of Brazil. Some studies have also revealed this fruit significantly reduces
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the risk of atherosclerosis through antioxidant and anti-inflammatory activities [10,11]. The principal
flavonoid responsible for this anti-inflammatory activity is the flavone velutin [12]. Açaí fruit is also
composed by high content of polyphenolic compounds, especially anthocyanins, as major components
cyanidin-3-glucoside and cyanidin-3-rutinoside, and phenolic acids [13–15]. Açaí is commonly sold as
dehydrated powder to be added to food, in dietary supplements or beverages. However, its current
applications are limited to certain foods that do not include such high thermal processes as baking and
cooking due to the low stability of the polyphenols, principally the anthocyanins. These molecules
can be degraded at increased temperatures, leading to the loss of their functional properties [16].
Recently, a kinetic study of anthocyanin’s açaí thermal degradation by Costa et col. (2018) revealed
their degradations fitted a kinetic model of the first order [17]. On the other hand, it is also well known
that for natural bioactive compounds to present real benefits, they must be available for absorption after
the process of gastrointestinal digestion [18,19]. Thus, encapsulation of natural bioactive compounds is
an interesting alternative for performing a double purpose of extending possibilities of incorporation
into broader food matrices and enhancing bioavailability [20].

Although several procedures have been used to encapsulate active compounds, such as spray
drying, lyophilization, and emulsification, these techniques present disadvantages, such as the
complexity of the equipment, use of high temperatures, non-uniform conditions in the drying chamber
and lack of particle size control [21]. In recent years, a technology that has received special attention is
electrospinning and/or electrospraying [22]. Research studies have clearly shown electrospraying and
electrospinning are techniques with functional advantages such as sustained release property, high
encapsulation efficiency, and enhanced stability of encapsulated food bioactive compounds [22]. This
technique consists of spinning polymeric solutions through high electric fields that exceed the forces of
surface tension in the solution of charged polymers. At a certain voltage, fine jets of solution are expelled
from the capillary to the collector plate. The solvent evaporates and the segments of fibers or particles
are deposited randomly on a substrate. Depending on the specific conditions of polymer solution and
the equipment, the process can result in a stretched jet or dispersion of droplets [23]. Several bioactive
substances have been successfully encapsulated into electrosprayed particles by using a wide variety
of natural polymers as encapsulating materials, depending on the compound to be encapsulated [24].
Among the edible materials, carbohydrates, lipids, and protein have gained the most interest. The latter
have numerous advantages, such as increasing the bioavailability of the encapsulated compounds
and high binding capacity with active compounds [25]. Corn zein protein has been shown to be a
protein resistant to temperatures above 200 ◦C and has been used as an encapsulation material for
some compounds, such as curcumin, improving stability against different values of pH and ultraviolet
(UV) radiation [26,27]. Thus, this work presents the selection of a powerful açaí fruit extract, based on
its highest phenolic content and antioxidant activities, to be further encapsulated into electrosprayed
zein capsules. Although the limited use of açaí fruit in food formulations is evident due to its thermal
instability, few works have developed alternatives to protect its active compounds. These encapsulated
structures were morphological and structurally characterized and considered a suitable shell to impart
thermal protection and enhance the bioavailability of phenolic compounds.

2. Materials and Methods

2.1. Test Materials and Reagents

Freeze-dried and milled organic açaí fruit was obtained from “Healthy Foods”. Zein (Z 3625),
2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azinobis(3-ethylbenzothiazoline-6-sulphonate) (ABTS),
Folin–Ciocalteu phenol reagent, anhydrous sodium carbonate, gallic acid (GA), ferric 2,4,6-tripyridyl-
s-triazine (TPTZ) and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) were obtained
from Sigma–Aldrich (Santiago, Chile). Lipase (L3126) and pancreatin (P1750) from porcine pancreas,
pepsin (P6887) from porcine gastric mucosa, and porcine bile extract (B8631) were purchased from
Sigma–Aldrich (Sigma–Aldrich S.A., USA). NaOH, HCl and different salts to prepare simulated
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digestion fluids (KCl, KH2PO4, NaHCO3, NaCl, MgCl2.(H2O)6, (NH4)2CO3, and CaCl2.(H2O)2) were
purchased from Merck (Merck KGaA S.A., Darmstadt, Germany).

2.2. Selection of Açaí Fruit Extract

2.2.1. Preparation of Açaí Fruit Extracts

Active compounds from açaí fruit were extracted using absolute ethanol, ethanol 50%, and
distilled water in a 1:300 (solid (g):solvent (mL)) ratio to study the effect of the solvent polarity on the
extraction capacity of the most relevant antioxidant compounds. The extractions were carried out
at 40 ◦C for 3 h with an agitation of 150 rpm. Samples were centrifuged, filtered, and used for the
antioxidant assays and the analysis of polyphenolic content (PC). Extracts obtained were named “Aç1,
Aç2, Aç3” for extracts under ethanol, ethanol 50% and water, respectively.

2.2.2. Determination of Total Phenolic Content and Antioxidant Activity Studies

Total phenolic content (TPC) of the extracts was determined following the Folin–Ciocalteu
method [28]. 100 µL of each extract was mixed with 3100 µL of distilled water and 200 µL of
Folin–Ciocalteu reagent. The samples were taken to darkness for 5 min and 600 µL of anhydrous
sodium carbonate at 20% (w/v) was added [29]. The samples were shaken and brought back into
darkness for 2 h. The absorbance readings were performed at 765 nm. Results were expressed as mg of
gallic acid equivalent (mg GAE) g−1 of dried açaí.

Antioxidant evaluation of extracts was carried out through three antioxidant assays: Trolox
Equivalent Antioxidant Capacity (TEAC), 2,2-diphenyl-1-picrylhydrazil (DPPH), and Ferric Reducing
Antioxidant Power (FRAP). All antioxidant results were expressed as mg Trolox g−1 dried açaí.
Both TEAC and DPPH methods measure the antioxidant power of extracts by the percentage
inhibition of ABTS+• and DPPH• radicals, respectively, via both single-electron transference (SET) and
hydrogen-atom transference (HAT) mechanisms [30]. The cationic radical ABTS+• was generated from
an oxidation reaction of the ABTS reagent with potassium persulfate incubated in the dark at room
temperature for 16 h. ABTS+• working solution was obtained by dilution of the concentrated solution
until an absorbance value of 1 at 734 nm. 3 mL of working ABTS+• radical solution was mixed with
300 µL of each extract and three controls were prepared with the addition of 300 µL of water. DPPH
radical-scavenging activity of açaí extracts was evaluated according to the method described by Okada
and Okada with some modifications [31,32]. 5 mL of extracts were incubated with 0.5 mL of 6.4 × 10−4

DPPH solution for 30 min in the dark at room temperature, and absorbance was determined at 517 nm.
FRAP assay measures the antioxidant activity through reduction of ferric 2,4,6-tripyridyl-s-triazine
(TPTZ) to a colored product via SET mechanism. FRAP reagent was prepared by mixing 25 mL of
0.3 M acetate buffer (pH 3.6) with 2.5 mL of 10 mM TPTZ (2,4,6-tripyridyl-s-triazine) and 2.5 mL of
20 mM FeCl3. 2850 µL of FRAP reagent was mixed with 150 µL of each extract and the absorbance
was measured at 593 nm after 30 min of reaction at room temperature. The assays were performed in
triplicate and results were expressed as mg Trolox/g fruit.

2.3. Encapsulation of Açaí Extract with Highest Phenolic Content

2.3.1. Determination of Zein–Açaí Extract Solution Properties

The açaí extract to be encapsulated (Aç2) was selected according to the highest concentration of
active compounds by means of highest polyphenolic content and antioxidant capacities. Aç2 was
obtained following the same procedure as described in Section 2.2.1 and subsequently, this extract
was concentrated to a final concentration of 0.4 g dried açaí mL−1 using a rotary evaporator.
This concentrated extract was named AÇCC. Electrospinning solutions were prepared with 2 mL
of AÇCC, 8 mL of ethanol and zein was added at different concentrations (16, 18 and 20% w v−1).
The mixtures were gently stirred at room temperature for 1 h until homogeneous solutions were obtained
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(ZN16-AÇCC, ZN18-AÇCC, and ZN20-AÇCC, respectively). Additionally, three control solutions of zein
using 80% ethanolic solution were prepared at the same concentrations without the extract to study
the effect of the incorporation of açaí extract on the properties of the polymer solutions (ZN16, ZN18,
and ZN20, respectively).

The zein–açaí extract and control zein solutions were characterized by determination of viscosity
and conductivity. Viscosity was evaluated using the SC4-18 spindle at a deformation rate of 79.2 s−1.
In addition, the conductivity was measured using a conductivity meter from 0.01 to 1000 mS cm−1.
Both studies were performed in triplicate at room temperature.

2.3.2. Electrospinning Process of the Zein–Açaí Extract Solutions

The encapsulation was carried out using electrospinning equipment (Spraybase®power
SupplyUnit, Maynooth, Ireland) with a vertical standard configuration equipped with a capillary
connected to a high-voltage source. The technique was carried out at room temperature and 40%
relative humidity. Initially, the purpose was to reveal the optimal concentration of zein to obtain
electrosprayed capsules. In this process, the capillary was located 10 cm from the collector plate
using a voltage of 13 kV. Each zein–açaí extract solution was introduced in a 5 mL syringe, which
was expelled by the capillary during the process with an injection flow of 0.15 mL h−1. The first
samples were collected on a slide for easy observation by optical microscopy, and to obtain an initial
and fast appreciation of the morphology of the electrospun structures. Once the zein concentration
was fixed, the electrospinning parameters were studied to be able to fix the best conditions to obtain
electrosprayed particles through a homogeneous and stable process. Flow rate and distance between
capillary and collector were studied as follows: Samples S1, S2, and S3 with 10 cm distance and flow
rates 0.3, 0.4, and 0.5 mL h−1, respectively; and samples S4, S5, and S6 with 12 cm as distance and 0.3,
0.4, and 0.5 mL h−1, respectively.

2.4. Characterization of Electrosprayed Açaí-Containing Capsules

2.4.1. Morphological Analysis

The morphologies and size distribution of electrosprayed zein ZN/AÇEXT capsules resulting from
processing samples S1–S6 were observed. Electrosprayed structures were previously coated with
gold–palladium and analyzed by scanning electron microscopy (ZeissEVO MA10SEM, Oberkochen,
Germany) at 20 kV. Average particle diameters were analyzed with Image analyzer software (Image J v
1.37) (Bethesda, MD, USA).

2.4.2. Structural Analysis

Functional chemical group analysis of the samples was performed through spectrometer equipment
Bruker Alpha (Ettlingen, Karlsruhe, Germany) with transmission spectra accessory mode. Concentrated
açaí extract was previously lyophilized for further analysis (AÇEXT). Electrosprayed zein particles
without açaí (ZNe) were also analyzed to study possible chemical interactions between both components.
Pellets with samples and potassium bromide were prepared by pressure and the spectra were obtained
in a range from 4000 to 400 cm−1 with a resolution of 2 cm−1 and 64 scans.

2.4.3. Phenolic Loading Capacity (LC) and Encapsulation Efficiency (EE)

Loading capacity (%LC) was measured as the mass ratio between the total polyphenols content
(PT) determined in the ZN/AÇEXT capsules and the theoretical phenolic content incorporated during
the preparation of the capsules. 0.015 g of ZN/AÇEXT was dissolved with 1.2 mL of 80% ethanol for
PT measurement. Samples were filtered through a 0.22 µm filter and the supernatant was analyzed
following the Folin–Ciocalteu method described previously. It is worth mentioning that zein was also
analyzed and did not present phenolic content interference. The encapsulation efficiency (%EE) was
determined following the procedure of Idham, Muhamad & Sarmidi (2012) with some modifications [33].
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This test consisted of the determination of total polyphenols (PT) and surface polyphenols (PS) of the
encapsulated extract. 0.015 g of ZN/AÇEXT was weighed and mixed with 1.2 mL of distilled water
in an Eppendorf tube to measure PS. On the other hand, 0.015 g of ZN/AÇEXT was mixed with 1.2
mL of 80% ethanol for PT measurement. In both cases, the samples were vortexed for 30 s. Finally,
each sample was filtered through a 0.22 µm filter and the supernatants were analyzed following the
Folin–Ciocalteu method described previously. %EE was calculated following Equation (1):

% EE = (PT − PS) · PT−1
· 100 (1)

2.5. Thermal Properties of Zein–Açaí Capsules

2.5.1. Thermal Stability Test

Thermogravimetric analyses (TGA) of açaí fruit (AÇ), lyophilized hydroalcoholic açaí extract
(AÇEXT), and encapsulated (ZN/AÇEXT) were carried out using a Mettler Toledo Gas Controller GC20
Stare System (Schwerzenbach, Switzerland) TGA/DSC. Samples were heated from 30 to 600 ◦C at
10 ◦C/min under nitrogen atmosphere.

2.5.2. Stability of Total Phenolic Content of AÇ by Encapsulation

Phenolic content of AÇ, AÇEXT and ZN/AÇEXT samples were determined before (at room
temperature) and subsequently exposed to high-temperature conditions. These parameters were
selected in order to simulate common heat-treatment processes that these active capsules could suffer
when being used as nutraceuticals incorporated into food: (A) sterilization process: autoclaving at
121 ◦C and 15 psi for 15 min; and (B) baked process: 180–185 ◦C for 25 min.

2.6. In Vitro Digestion

Dispersions of açaí (AÇ), lyophilized hydroalcoholic açaí extract (AÇEXT), and encapsulated
(ZN/AÇEXT) were subjected to in vitro digestibility assays to evaluate their bioaccesibilities through the
analysis of phenolic content after a gastric and intestinal phase. In vitro gastric and intestinal phases
were prepared based on the consensus of the protocol for simulating static digestion method described
by the COST Action InfoGest [34]. Simulated gastric fluid (SGF) consisted of a stock gastric solution
(6.9 mM KCl, 0.9 mM KH2PO4, 25 nm NaHCO3, 47.2 mM NaCl, 0.12 mM MgCl2*6H2O, 0.5 mM
2NH4CO3), water, 0.3 M CaCl2, 1.0 M HCl, lecithin, and pepsin. At this stage, the different dispersions
were mixture with SGF in a 1:1 proportion and incubated at 37 ◦C for 90 min with continuous agitation
at 200 rpm, where pH of the mixture was monitored and controlled to a value of 2 through the addition
of 0.5 M HCl, and by using an automatic titrator (902 Titrando, Metrohm, USA). Simulated intestinal
fluid (SIF) consisted of a stock gastric solution (6.8 mM KCl, 0.8 mM KH2PO4, 85 nM NaHCO3, 38.4 mM
NaCl, 0.33 mM MgCl2.6H2O), water, 0.3 M CaCl2, 1.0 M NaOH, bile, pancreatin, and lipase. At this
stage, the mixtures obtained from the gastric phase were mixed with SIF in a 1:1 proportion and
incubated at 37 ◦C for 120 min with continuous agitation at 200 rpm. During this second stage, pH was
monitored and maintained at pH 7 by adding 0.5 M NaOH. The resulting aliquots after each stage of
in vitro digestion were collected and frozen at −18 ◦C, and phenolic content were evaluated following
the Folin–Ciocalteu method. All experiments were carried out in duplicate.

2.7. Statistical Analysis

One-way analyses of variance were carried out. The software SPSS version 11.5 (SPSS Inc.,
Chicago, IL, USA) was used. Differences in pairs of mean values were evaluated by the Tukey b-test at
a confidence interval of 95%. Data were represented as the average ± standard deviation.



Antioxidants 2019, 8, 464 6 of 16

3. Results and Discussion

3.1. Evaluation of Polyphenolic Content and Antioxidant Capacity of Açaí Extracts

Total phenolic content (TPC) and antioxidant capacities of açaí fruit extracts measured through
Folin–Ciocalteu, TEAC, DPPH, and FRAP methods are listed in Table 1. The extraction of natural
active compounds was highly influenced by the solubility of these compounds in the extractive solvent.
In this case, hydroalcoholic extraction achieved the greatest performance by extracting the highest
amount of phenolic and antioxidant compounds with different polarities related to both ethanol and
water [35]. A better solvation of the compounds, as a result of the hydrogen bond interactions between
the polar sites of the antioxidant molecules and both solvents, in comparison to whether each solvent
is used separately for extraction, has been demonstrated [36]

Table 1. Polyphenolic content and antioxidant capacities results of açaí fruit extracts.

Extract
TPC TEAC DPPH FRAP

(mg GAE/g) (mg Trolox/g) (mg Trolox/g) (mg Trolox/g)

Aç1 23.8 a
± 0.2 26.1 a

± 0.9 14.1 a
± 0.1 32.8 ± 0.7

Aç2 43.4 c
± 0.2 130.1 b

± 0.9 62.7 c
± 0.5 68.4 c

± 0.3
Aç3 35.4 b

± 0.4 122.4 b
± 2.0 51.2 b

± 1.2 57.2 b
± 0.6

Letters a–c indicate significant differences among the extracts of the same method.

The Folin–Ciocalteu method is broadly used to measure the content of total phenolic compounds in
plant products. It is based on the fact that the phenolic compounds react with the Folin–Ciocalteu reagent
at basic pH, giving rise to a blue coloration that can be easily spectrophotometrically determined [37].
The resulting TPC values indicated that the type of solvent directly affected the total number polyphenols
extracted. Other works have shown lower TPC values for açaí fruit pulp extracts, e.g., 31.7 ± 0.6 and
26.7 ± 0.5 mg GAE g−1 açaí when extractions were carried out by using 1% acetic acid aqueous solution
and a solvent mixture acetone/water 70:30, respectively [36,38]. Açaí fruit has been revealed to be the
fruit with the highest total polyphenolic content, followed by murtilla, calafate, and maqui, whose
TPC values were 34.9, 33.9, and 31.2 mg GAE g−1, respectively, according to the antioxidant database
directed by Speisky et al. [39]. Nevertheless, a reliable comparison of TPC values between studies is
very difficult to achieve because the lack of standardization of this assay and the extraction conditions
can imply several orders of significant difference in detected phenols [30].

The highest phenolic content and antioxidant capacity of açaí fruit pulp was obtained for the Aç2
extract, except for the TEAC assay, where the hydroalcoholic extract Aç2 and aqueous Aç3 values did
not present significant differences. This fact was due to the scavenging capacity of the compounds
that were extracted and their affinity with the radical. This assay demonstrated that radical ABTS+•

presented great affinity for hydrophilic systems [40], principally aqueous systems, and very poor
affinity for ethanolic extraction. The antioxidant capacity of extracts is the expression of the different
phenolic components, which behave through different mechanisms of interactions with oxidative
species. Therefore, it is necessary to perform more than one antioxidant method to reflect both lipophilic
and hydrophilic capacities. TEAC assay is based on the generation of the cationic radical ABTS+•

with blue–greenish coloration, which is applicable to both hydrophilic antioxidant systems as to the
lipophilic ones, while the DPPH assay uses the radical DPPH• dissolved in organic medium such as
ethanol and, therefore, is more applicable to hydrophobic systems [41]. Thus, in agreement with Floegel
et al. (2001), which compared both antioxidant methods by measuring antioxidant activities of different
groups of fruit, vegetables, and beverages, TEAC results were higher than DPPH values [42]. On the
other hand, FRAP assay revealed that Aç2 presented the highest antioxidant activity measured through
SET. Schauss et al. (2006) also demonstrated that antioxidant activity of this fruit measured through
ORAC method resulted in the highest reported scavenging activity values for a fruit or berry [43].
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3.2. Characterization of the Zein Extract Solutions

Zein concentration of electrospinning solutions was one of the main parameters that determined
the morphology of the fibers or capsules because they directly affected the viscosity and the conductivity
values. Table 2 shows viscosity and conductivity results of zein solutions. As expected, viscosity
significantly increased as the concentration of zein increased because this parameter is closely related
to the polymeric chain entanglement and intercalation [44].

Table 2. Viscosity and conductivity of polymer solutions with and without açaí extract used during
electrospinning process.

Zein concentration Viscosity (cP) Conductivity (mS cm−1)

(%, w/v) ZN ZN-AÇCC ZN ZN-AÇCC

16 18.2 a,x
± 0.3 20.6 a,y

± 0.2 694 b,x
± 4 750 b,y

± 6
18 21.9 b,x

± 0.2 26.7 b,y
± 0.6 685 a,x

± 1 717 a,y
± 1

20 27.2 c,x
± 0.9 30.0 c,y

± 0.3 655 a,x
± 3 716 a,y

± 7

Letters a–c indicate significant differences among the different zein concentration samples. Letters x, y indicate
significant differences between sample with and without açaí extract at the same zein concentration.

The incorporation of the açaí extract significantly increased the viscosity owing to the presence of
more solutes in the solution, which could increase entanglements of zein protein molecules [45]. When
the highest concentration of zein (20% w/v) was processed, the chains remained entangled enough to
resist the electric charges that tend to break the jet during the electrospinning process, resulting in
fiber formation. On the other hand, when using 16% (w/v) zein solution, the electric charge broke the
chains, resulting in dispersed droplets whose evaporation originated spherical particles or capsules
(see Supplementary Material Figure S1), thereby being the zein concentration selected.

The conductivity values of the solutions slightly decreased with increasing zein concentration
and significantly increased when the extract was added. Possibly, this fact could be related to the
presence of polyphenols solved in the hydroalcoholic extract that enhanced the conductivity [46]. When
conductivity increased, the difference in electric charges between the Taylor cone and the collector
plate increased, which promoted capsule development during the formation of droplets [44].

3.3. Morphological Studies of Açaí-Containing Zein Capsules

Once the zein concentration was fixed, samples S1–S6 were processed through an electrospinning
process to obtain particles with great homogeneity. The size and homogeneity are highly dependent
on electrospinning process parameters. The particle size distribution plots and Scanning Electronic
Microscopy (SEM) micrographs of the samples at different electrospinning encapsulation conditions
are shown in Figure 1. SEM micrographs of the electrosprayed zein–açaí capsules demonstrated
particles with cavities and similar shape to those found in previous works [47,48].

Samples S1, S2, S4, and S6 were found to have a smaller average particle size: 882, 924, 899,
and 896 nm, respectively, without significant differences between them. According to Duque et al.
(2013), when increasing the injection flow, there is less solvent evaporation time, so there can be
agglomerations of droplets and an increase in the diameter of particles [44]. This fact occurred with
samples S1 and S3, where, by increasing the flow from 0.3 to 0.5 mL h−1, the particle average diameter
increased from 0.88 to 1.13 µm. On the other hand, the distance between the tip of the capillary and
the collector plate also influenced on the homogeneity and morphology of the capsules. The sample
with the highest homogeneous particle size, based on the smaller standard deviation, turned out to be
sample S2. Hence, the parameters selected were 0.4 mL h−1 flow rate and 10 cm height.
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Lyophilized açaí extract spectra exhibited a similar pattern to other berries, such as maqui and
murta [51,52]. A broad sign with peak at 3383 cm−1 could represent some hydroxyl groups O–H and
aliphatic C–H from the polyphenolic compounds. The peak centered at 1615 cm−1 was assigned to
the C=C vibrations from aromatic systems. The region between 1500 and 1340 cm−1 (centered at
1413 cm−1) represented the deformation vibrations of phenolic O–H groups. A peak was distinguished
in the region of 1150 and 1040 cm−1, which was attributed to C–O stretching vibrations [53]. Although
ZN/AÇEXT presented similar bands to ZNe spectra, a certain displacement of these peaks was observed.
This fact indicated the presence of a certain intermolecular interaction between zein protein and
phenolics from açaí fruit extract. Zein protein, which contains mostly non-polar amino acids, favored
chemical interactions with phenolic functional groups, increasing the protection of active compounds.
Non-covalent hydrophobic interactions and hydrogen bonds were probably the main mechanisms of
interaction between zein and polyphenols [54,55].

3.5. Loading Capacity (LC) and Encapsulation Efficiency (EE)

The encapsulation efficiency (EE) concept has given rise to different definitions in various works
relating to compound encapsulation. In this study, EE was defined as the precise amount of active
compounds that was actually protected in the capsule. On the other hand, the performance of the
encapsulation process was distinguished as loading capacity (LC). Loading capacity (%LC) resulted in
(98.6 ± 1.6)% value, since theoretical phenolic content of ZN/AÇEXT capsules was 2104 mg gallic acid
g−1, and PT value after dissolution of ZN/AÇEXT was 2075 mg gallic acid g−1 ZN/AÇEXT. This value
justified the efficiency of this technology to encapsulate bioactive compounds without compromising
its activity. Similar loading capacity values between 85% and 95% were observed to encapsulate
other natural extracts by using the electrospinning technique, such as green tea extract in zein and
carotenoids from tomato peel extract in gelatin [45,48].

Encapsulation efficiency value is essential to study the number of active compounds trapped
in the capsule and the ability of the material to retain them [56]. EE value indicated (72.1 ± 1.7)% of
phenolic content from açaí fruit extract was efficiently encapsulated. EE depends to a large extent on
the affinity between the polymer matrix and active compounds. During the encapsulation process, the
açaí fruit extract as core material was mixed with the substance of zein and the generated droplets were
solidified by the evaporation of the ethanol and water [57]. Yao et al. (2016) also indicated that the EE
would also be influenced by variations in the morphology that arise in the fibers or capsules due to
the concentration of the solution and process conditions. In this study, the result indicated that more
than 70% of the extract was efficiently trapped and distributed inside the capsule [58]. A similar value
was found in the Flores et al. study of physical and storage properties of cranberry pulp encapsulated
in whey protein by spray drying [59]. In addition, it is important to consider the methodology used
to determine the efficiency, since EE results depend greatly on the methodology and, principally, the
solvents used for the extraction of components.

3.6. Thermal Studies of Zein-Containing Açaí Extract Capsules

3.6.1. Thermal Stability Test

Figure 3 shows the thermogravimetric curves (TGA) (Figure 3A) and their respective derivatives
(DTGA) (Figure 3B) of the samples. An initial stage of weight loss between 30 and 100 ◦C was observed
for all the compounds, which indicated a loss of water and some volatile compounds. The thermogram
of the electrosprayed zein particles presented a second degradation process between 270 and 450 ◦C,
with a peak of maximum degradation at 332.8 ◦C. This second stage is attributed to the main degradation
of the protein, causing changes in the structure due to the breakdown of low-energy intermolecular
bonds that maintain their conformation [26,27,60]. Lyophilized açaí fruit extract presented an early
degradation that started at approximately 100 ◦C, showing a maximum degradation at 162.5 ◦C.
This extract was mainly composed of anthocyanins, flavonoids highly sensitive to temperature [16].
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The anthocyanins of the extract were totally unprotected and exposed to degradation due to the
increase in temperature. When the extract was encapsulated, the thermogram presented a similar
degradation profile to zein. The incorporation of açaí fruit extract did not affect the protein stability.
The degradation of açaí fruit was not exhibited because zein effectively protected the extract, delaying
its degradation.
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(ZN/AÇEXT).

The main degradation of dehydrated fruit AÇ occurred at higher temperatures, approximately at
180–190 ◦C, and displayed two peaks of maximum degradation at 320.5 and 406 ◦C. This fact can be
possibly explained because the dehydrated fruit contained a food matrix based on husk and pulp that
could exert some protection to the active compounds, while the extract is a concentrated sample of
antioxidants totally exposed to heating [12,61].

3.6.2. Thermal Protection of Açaí Phenolic Compounds Encapsulated in Zein

The thermal stability of the encapsulated extract was also evaluated by determining the loss of
polyphenols when exposed to two thermal treatments of high-temperature processing: sterilization and
baking. In addition, the stability of the phenolic content of dehydrated açaí fruit (AÇ) and lyophilized
açaí extract (AÇEXT) was also analyzed. Figure 4 shows the loss of the phenolic content after each
heat treatment.

In the case of the commercial dehydrated açaí fruit, a phenolic content reduction greater than 40%
was displayed after both thermal processes without significant differences between both treatments.
In the case of the encapsulated extract, phenolic content loss values were 5% and 20% approx. after
sterilization and baking, respectively. Encapsulated açaí phenolic compounds presented a greater
stability against both treatments compared to two other samples of açaí fruit, principally during a
sterilization simulation process. Otherwise, during the baking process, the amount of phenolic loss
correlated with the amount of phenols on the surface (shown in Section 3.5) which were the phenolic
content available to degradation. This fact confirmed the protective effect of the encapsulation in zein by
the electrospinning technique, which was clearly demonstrated when comparing with AÇEXT phenolic
loss. The sterilization process (121 ◦C) was a lesser influence than the baked (180 ◦C) over lyophilized
açaí extract, exhibiting phenolic content reductions of 10 and 55%, respectively. Although sterilization
did not cause a large degradation rate, in the case of baking, it turned out to be the sample that suffered
the highest phenolic decrease, possibly due to higher temperature and longer exposure time. This fact
is in agreement with AÇEXT TGA thermogram (Figure 3B) that indicates AÇEXT present an early
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degradation that starts at 100 ◦C and the maximum degradation temperature occurs at approximately
160 ◦C. Thus, the sterilization process clearly affects the phenolic content to a lesser extent than baking
(180 ◦C), which occurs at a higher temperature than the maximum degradation. Other works have
already shown that temperature is a determining factor in the degradation of polyphenols. Pacheco et
al. studied the phytochemical composition and thermal stability of two commercial açaí species and
concluded that the changes in antioxidant capacity during warming were highly related to the loss
of anthocyanins because their polyphenols, such as phenolic acids and flavone glycosides, were not
significantly altered [62]. The thermal degradation of anthocyanins can lead to a variety of species
depending on the severity and nature of the heating. High temperature causes losses in the glycosidant
sugar of the molecules and the opening of the ring, producing the so-called “colorless chalcones”.

 
Figure 4. Loss of polyphenolic content (%) of the samples when subjected to thermal treatments. 
Values a, b, and c indicate significant differences between samples for the same thermal treatment. 
On the other hand, x and y indicate significant differences between thermal treatments for the same 
sample, determined through a one-way analysis of variance (ANOVA) (p < 0.05). 
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3.7. In Vitro Bioaccesibility Study

Phenolic content (PC) of AÇ, AÇEXT, and ZN/AÇEXT were determined after each stage of in vitro
digestion (gastric and intestinal stages) to evaluate phenolic content release within gastrointestinal
tract (GI) and to assess bioaccessibility at the end of digestion process. Bioaccessibility can be defined
as the fraction of a compound that is soluble in the gastrointestinal (GI) tract that is available for
absorption, or the fraction of a compound released from its matrix in the GI tract [63]. Therefore,
in this study, bioaccessibility was defined as phenolic content recovered from the intestinal phase
after in vitro digestion. Table 3 shows phenolic content of gastric and intestinal stages per gram of
each sample. Thus, significant differences to these values were because of their intrinsic phenolic
content between samples. In general, polyphenols from açaí samples without encapsulation showed a
moderate stability under gastric conditions since the phenolic content decreased between 20% and 35%
with respect to intrinsic content (Table 3).
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Table 3. Phenolic content as (mg gallic acid per gram) of açaí samples after in vitro digestive processes.

Sample Gastric Intestinal

AÇ 3044 b,y
± 32 988 a,x

± 108
AÇEXT 12,981 b,z

± 461 6462 a,z
± 402

ZN/AÇEXT 1486 a,x
± 148 2963 b,y

± 58

Letters a, b indicate significant differences among the different digestive stages of a sample. Letters x, y indicate
significant differences between samples during the same digestive process.

As with during thermal analyses (Section 3.6.1), pulp matrix from açaí fruit generated some
protection to açaí polyphenols during the gastric digestion phase. Other works have also shown
flavonoid oligomers were degraded to smaller units at low pH values [64]. These results agreed
with Gullón et al. (2015) who observed that the total phenolic recovery from pomegranate peel flour
(35.8%) decreased after gastric digestion. Results after intestinal stage demonstrated phenolic content
depended on açaí sample. Although AÇ polyphenols degraded to a lesser extent during the gastric
phase, the dried fruit pulp showed the greatest PC decrease after intestinal digestion phase, remaining
approx. 20% from initial phenolic content. On the other hand, although AÇEXT suffered a higher
reduction after gastric phase, the total PC loss was shorter than AÇ, with a PC reduction close to
60% with respect to non-digested samples. In general, these results suggested that several changes
in phenolic compounds as a chemical structure modification, reduction of their solubility due to pH,
and/or interaction with other compounds might have occurred during the duodenal stage [65,66].
On the other hand, encapsulated zein-containing açaí presented an interesting behavior because
phenolic content values increased after both in vitro digestion processes. During the gastric phase, the
phenolic components released from the zein capsules was approx. 60% with respect their intrinsic
content, and this value increased after the intestinal stage. This fact is probably due to the breakage
of the zein structures, thanks to the digestion of protein matrix, allowing the release of polyphenols.
Gómez-Mascaraque et al. (2019) also revealed an increase to antioxidant capacity derived from catechin
from zein and gelatin electrosprayed systems.

4. Conclusions

Polyphenolic content and antioxidant activity studies have demonstrated açaí to be the fruit with
the highest content of active compounds. Studies of electrospinning encapsulation for the development
of zein capsules containing hydroalcoholic açaí extract have also indicated the protective effect of these
protein structures. This fact was certainly due to the positive chemical interactions observed through
infrared spectroscopy between protein and active compounds from açaí extract. Zein was confirmed
to be an adequate protein for the encapsulation of thermal sensitive active compounds by improving
the thermal stability of polyphenols from açaí fruit when exposed to high-temperature treatments
related to processed foods. After in vitro digestion processes, açaí polyphenols were also protected
and diffused thanks to the breakage of zein protein electrosprayed capsules.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3921/8/10/464/s1,
Figure S1: Optical microscope images of electrosprayed samples.
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Abbreviations

TPC Total Phenolic content
AÇ dried açaí pulp
Aç1, Aç2, Aç3 açaí extracts under ethanol, ethanol 50% and water, respectively (3.3 mg açaí mL−1).
AÇCC concentrated açaí extract (0.4 g açaí mL−1)
AÇEXT lyophilized açaí extract
ZN16, ZN18 and ZN20 zein solutions at 16, 18 and 20% (w/v)
ZN-AÇCC zein solutions containing açaí concentrated extract
ZN/AÇEXT electrosprayed zein capsules containing açaí extract
ZNe electrosprayed zein capsules
TEAC Trolox Equivalent Antioxidant Capacity
DPPH 2,2-diphenyl-1-picrylhydrazil
FRAP Ferric Reducing Antioxidant Power
LC loading capacity
EE encapsulation efficiency
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