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Abstract: The immunological response in bacterial meningitis (BM) causes the formation of reactive
oxygen and nitrogen species (ROS, RNS) and activates myeloperoxidase (MPO), an inflammatory
enzyme. Thus, structural oxidative and nitrosative damage to proteins and DNA occurs. We aimed
to asses these events in the cerebrospinal fluid (CSF) of pediatric BM patients. Phenylalanine (Phe),
para-tyrosine (p-Tyr), nucleoside 2’-deoxiguanosine (2dG), and biomarkers of ROS/RNS-induced
protein and DNA oxidation: ortho-tyrosine (o-Tyr), 3-chlorotyrosine (3Cl-Tyr), 3-nitrotyrosine
(BNO,-Tyr) and 8-oxo-2’-deoxyguanosine (80OHAG), concentrations were measured by liquid
chromatography coupled to tandem mass spectrometry in the initial CSF of 79 children with BM and
10 without BM. All biomarkers, normalized with their corresponding precursors, showed higher
median concentrations (p < 0.0001) in BM compared with controls, except SOHdG/2dG. The ratios
o-Tyr/Phe, 3Cl-Tyr/p-Tyr and 3NO,-Tyr/p-Tyr were 570, 20 and 4.5 times as high, respectively.
A significantly higher 3CIl-Tyr/p-Tyr ratio was found in BM caused by Streptococcus pneumoniae,
than by Haemophilus influenzae type b, or Neisseria meningitidis (p = 0.002 for both). In conclusion,
biomarkers indicating oxidative damage to proteins distinguished BM patients from non-BM,
most clearly the o-Tyr/Phe ratio. The high 3Cl-Tyr/p-Tyr ratio in pneumococcal meningitis suggests
robust inflammation because 3CI-Tyr is a marker of MPO activation and, indirectly, of inflammation.

Keywords: oxidative stress; protein damage; myeloperoxidase; bacterial meningitis; developing countries

1. Introduction

Despite improved vaccination programs and antibiotics, bacterial meningitis (BM) remains the
tenth leading cause of global under-5 deaths [1]. If not fatal, it can lead to serious sequelae such
as cognitive deficit, hearing loss, motor deficit, seizures, visual impairment, or hydrocephalus [2].
The neuronal damage is caused by the direct effect of the microorganisms entering the subarachnoid
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space (SAS) and the host’s strong inflammatory reaction [3,4]. When recognizing bacterial components
in the SAS, Toll-like and other receptors of the innate immune system cause activation of nuclear
factor kappa B (NF-«B). This in turn regulates the expression of pro-inflammatory cytokines and
chemokines [5].

Consequently, polymorphonuclear leukocytes (PMNs) are attracted to the focus of infection.
Stimulated PMNs activate their nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
complex (NOX2), which, using oxygen as a substrate, produces high amounts of superoxide anion
(Oye-). Superoxide anion dismutates into hydrogen peroxide (H;O,), which by the action of
myeloperoxidase (MPO) further combines with protons and chloride ions, leading to the formation of
hypochlorous acid (HCIO, Figure 1). Hypochlorous acid plays an important role in killing bacteria and,
during inflammation, in modifying biomolecules in the host [6,7]. Moreover, in the presence of transition
metals, hydrogen peroxide can be converted into highly reactive ferryl species (Fenton reaction) [8].
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Figure 1. Synthesis of 3-chlorotyrosine. MPO = myeloperoxidase; H,O, = hydrogen peroxide; O,e— =
superoxide; C1~ = chloride; SOD = Superoxide dismutase.

In addition to NOX2, another antimicrobial system of the PMN is the inducible nitric oxide synthase
pathway (iNOS) that produces nitric oxide (NO). Peroxynitrite (ONOQO"), also a pro-inflammatory and
cytotoxic reactive oxidant, is generated by the reaction of nitric oxide and superoxide anion [5].

Oxidative/nitrosative stress is characterized by the generation of increased amounts of reactive
oxygen/nitrogen species (ROS/RNS) that exceed the capacity of the cellular antioxidant defense
system. Under these circumstances, the pro-oxidant status leads to structural and/or functional
oxidative/nitrosative damage to proteins, DNA and lipids that can be assessed by the detection of
specific metabolites in different biofluids [9-11]. Hence, phenylalanine (Phe) is used as a sentinel for
protein damage because, in contrast to other amino acids, it has only one physiological end-product,
para-tyrosine (p-Tyr, Figure 2).

In situations of oxidative stress (Figure 2), ferryl species and peroxidases oxidize Phe to
ortho-tyrosine (o-Tyr) and meta-tyrosine (m-Tyr), whereas peroxynitrite or hypochlorous acid attack
p-Tyr producing 3-nitrotyrosine (3NO,-Tyr) or 3-chlorotyrosine (3Cl-Tyr), respectively. O-Tyr, 3SNO,-Tyr
and 3Cl-Tyr are considered reliable biomarkers of oxidative protein damage [12,13]. In addition, the
3Cl-Tyr/p-Tyr ratio is a reliable biomarker of tissue inflammation. 8-Oxo0-2’-deoxyguanosine (SOHdG)
is produced by the oxidation of the nucleoside 2’-deoxyguanosine (2dG), and the ratio SOHdG/2dG is
employed as an index of oxidative DNA damage [11].
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In BM, the host’s inflammatory response is potentially a life-threatening phenomenon where
oxidative/nitrosative stress plays a major pathophysiological role [5,14]. For better understanding of
the underlying pathophysiological mechanisms we aimed to asses which metabolites derived from
oxidative/nitrosative stress and MPO activation best characterize the oxidative/nitrosative damage and
inflammatory response in the cerebrospinal fluid (CSF) in children with BM.

Phe —» p-Tyr

Pathophysiologic conditions
Phe ——» o-Tyr, m-Tyr

ONOO-
Phe — . p-Tyr 3NO2-Tyr

HClO

Phe —— p-Tyr ——» 3C1-Tyr

Figure 2. Under physiological conditions, phenylalanine (Phe) is enzymatically oxidized to
para-tyrosine (p-Tyr) by the action of phenylalanine hydroxylase. Under pathophysiological conditions,
Phe is oxidized by ferryl species and peroxidases into ortho-tyrosine (o-tyr) and meta-tyrosine (m-tyr),
and p-Tyr by peroxynitrite (ONOQO™) into 3-nitrotyrosine (3NO,-Tyr) or by hypochlorous acid (HCIO)
into 3-chlorotyrosine (3CI-Tyr).

2. Materials and Methods

2.1. Study Design and Patients

The patient data was collected from a prospective single-center study carried out in the Pediatric
Hospital of Luanda, Angola, from 2005 to 2008 [15]. Children aged 2 months to 13 years with suspected
BM (n = 723) were included. BM was considered confirmed if the child with signs and symptoms of
BM had positive CSF culture, positive CSF polymerase chain reaction (PCR), positive blood culture,
or at least two of the following criteria: CSF pleocytosis > 100 cells/mm? (predominantly polymorphs),
a positive Gram-stain result, positive latex-agglutination test, or serum C-reactive protein (CRP)
> 40 mg/L. All children were treated with cefotaxime for seven days but were randomized to receive
it either by slow continuous infusion or by boluses every six hours for the first 24 h. In addition,
the patients received high-dose paracetamol or placebo for the first 48 h. Oral glycerol was given to all
children as adjuvant treatment. The details of the original study are explained elsewhere [14].

The current post-hoc analysis focuses on a sub-cohort including 79 patients with confirmed BM
from whom a CSF sample taken at presentation to the Pediatric Hospital of Luanda was available.
The samples were stored at —80 °C until processing. Ten control samples from 2018, which were
anonymous pool samples from children of whom a central nervous system infection was suspected
but eventually excluded, were provided by Helsinki University Hospital, Department of Virology.

2.2. Standards and Reagents

The analytical standards employed for the determinations were purchased from Sigma-Aldrich
(St. Louis, MO, USA) for o-Tyr, Phe, 3NO,-Tyr, 3Cl-Tyr, p-Tyr, SOHdG and 2dG (>96% w/w purity).
The isotopically labeled compounds used as internal standards were deuterated phenylalanine
(Phe-Ds) from CDN Isotopes (Pointe-Claire, QC, Canada); 8—Oxo—2’—deoxyguanosine—l3C15N2
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(80OHAG-3C®N,) and 2’-deoxyguanosine-13C15N2 (2dG-13C'>N,) from Toronto Research Chemicals
(Toronto, ON, Canada); and deuterated para-tyrosine (p-Tyr-D,) from Cambridge Isotope Laboratories
(Tewksbury, MA, USA). The purity of all isotopic labeled compounds was > 98% w/w. Milli-Q® grade
water (>18.2 MQ)) was used from a Milli-Q® Integral system (Darmstadt, Germany). Solvents used
(Methanol (CH3OH) and acetonitrile (CH3CN)) (LC-MS grade) were obtained from JT Baker (Deventer,
The Netherlands) and sodium hydroxide, phosphoric acid, and formic acid (HCOOH) were purchased
from Panreac Quimica (Barcelona, Spain).

2.3. Sample Preparation and Analysis Employing Liquid Chromatography Coupled to Tandem Mass
Spectrometry (LC-MS/MS)

The CSF samples were thawed on ice, homogenized for 30 s employing a Vortex® mixer, followed
by centrifugation (15 min, 4 °C, 10,000 g). Fifty microliters of the CSF supernatant was diluted with
50 uL of CH3OH:H,O:HCOOH (15:85:0.1 v/v).

A working solution containing Phe, p-Tyr, o-Tyr, 3Cl-Tyr, 3NO,-Tyr, 2dG, and 8OHdG was
prepared by mixing the corresponding volumes of individual stock solutions prepared in H,O (0.1% v/v
HCOOH). Standard solutions used for calibration, covering the concentration ranges shown in Table 1,
were prepared from the working solution by serial dilution. A mixture of internal standard solutions
(IS) containing Phe-Ds, p-Tyr-D,, 8OHdG-'*C!®N, and 2dG-'3C'>N, was prepared by mixing the
corresponding volumes of working solutions in H,O (0.1% v/v HCOOH).

All biomarkers were quantified simultaneously, employing an LC-MS/MS system according to
previously validated methods [12,16] with slight modifications. The Acquity—Xevo TQ-S system
(Waters, Milford, MA, USA) was employed for the analysis, operating in positive electrospray mode
(ESI*). The ESIinterface parameters were: 3.50 kV, source temperature: 120 °C, desolvation temperature:
300 °C, N flux for cone and desolvation: 25 and 680 L h~!, respectively.

Multiple reaction monitoring (MRM) was employed as a method of tandem mass spectrometry
with all dwell times of 5 ms, ensuring a minimum of 10 data points per peak. The MRM instrumental
parameters are summarized in Table 1. Chromatographic separation was carried out on an Acquity
UPLC BEH C8 (2.1 x 100 mm, 1.7 pm) reversed phase column from Waters under a CH3CN (0.1% v/v
HCOOH):H,0 (0.1% v/v HCOOH) binary gradient. The gradient ran as follows: from 0.0 to 1.25 min
1% v/ CH3CN (0.05% v/v HCOOH) (i.e., channel B) and from 1.25 to 3.0 min %B increased to 98%.
The return to initial conditions was achieved at 3.75 min and conditions were maintained for 0.75 min for
system re-equilibration. Flow rate, column temperature, and injection volume were 400 uL min~!, 55 °C
and 5 pL, respectively. During LC-MS/MS analysis, samples were stored at 4 °C in the autosampler.
MassLynx Mass Spectrometry Software (version 4.1) from Waters (Waters, Milford, MA, USA) was
employed for data acquisition and processing. The standards for calibration were analyzed in the
same batch as the samples. Linear response curves for each analyte were calculated, employing
internal standards as indicated in Table 1. Signals obtained from samples were interpolated in the
corresponding calibration lines for obtaining absolute concentration values.

2.4. Statistical Analysis

Phe, p-Tyr, 2dG and their derivatives o-Tyr, 3Cl-Tyr, 3NO,-Tyr, and 8OHdG were measured from
the CSF samples taken on admission. The protein and DNA biomarker concentrations were normalized
with their corresponding precursors. The values below the limit of quantification (LOQ) were replaced
by their corresponding 0.5 x LOQ.

All data were analyzed with Statview® software, version 5.0.1 (SAS institute, Cary, NC, USA).
The Mann-Whitney U test and Kruskal-Wallis test were used when appropriate.
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Table 1. Analytical parameters and figures of merit.
. S y=a+bx Daughter Ion
Retention Calibration mfz Internal
Analyte 2 . ' 2 A4
nalyte Time + s [min] Range R alnm?] b [nM] Parent Ion Cone [V] CE [eV] mfz Standard
Quantification
Phenylalanine (Phe) 2.32 +0.01 0.2-400 uM  0.954 16.4 0.01 166.1 20 20 91.0 Phe-Dj
Para-tyrosine (p-Tyr) 1.01 £ 0.01 0.2-400 uM 0.999 38.8 0.03 1821 20 10 910 p-Tyr-d;
Ortho-tyrosine (o-Tyr) 1.80 + 0.01 1-2000nM  0.999 -0.1 0.15 : . p-Tyr-d,
3-chlorotyrosine (3CI-Tyr) 1.90 + 0.01 2-4000nM  0.999 2.1 1.68 216.0 20 15 170.0 Phe-Ds
3-nitrotyrosine (3NO,-Tyr) 2.33 +0.01 1-2000nM  0.995 8.0 2.87 227.1 25 10 181.0 Phe-Ds
2-deoxyguanosine (2dG) 1.45 + 0.03 1-2000nM  0.999 -0.3 0.41 268.0 25 15 152.0 2dG-13C15N
8-0x0-2/-deoxyguanosine (SOHAG) 2.04 + 0.02 1-500nM  0.999 0.1 0.35 284.0 30 15 168.0 8OHAG-13C1°N
Phenylalanine-ds (Phe-Ds) 2.32+0.01 - - - 171.5 30 20 125.0 -
p-Tyrosine-d; (p-Tyr-Ds) 1.01 + 0.02 - - - 184.1 20 10 138.1 -
2-Deoxyguanosine-"*C1°N (2dG-13C15N) 1.45 + 0.02 - - - 271.0 15 10 155.0 -
8-Ox0-2’-deoxyguanosine-13C1°N (8OHAG-13CI>N) 2.04 +0.03 - - - 287.0 30 15 171.0 -

CE: Collision Energy.
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2.5. Ethics

After approval of the study protocol by the Luanda Children’s Hospital ethics committee in 2005
the study was registered as ISRCTN62824827. Each child’s legal guardian signed an informed consent
prior to the start. The study was conducted according to the principles of the Declaration of Helsinki.

3. Results

Of the 79 BM patients (38 female, median age 12 months), the most common identified
causative agent was Streptococcus pneumoniae (n = 40), followed by Haemophilus influenzae type b
(Hib, n = 24) and Neisseria meningitidis (n = 11). The other agents (n = 4) were Escherichia coli, Proteus
vulgaris, Pseudomonas and Salmonella. Twenty-eight (35%) children died and the case fatality rate
for pneumococcal, meningococcal and Hib meningitis was 40% (16/40), 18% (2/11) and 29% (7/24),
respectively. The patient characteristics are listed in Table 2.

The concentrations of Phe (Rho 0.353, p = 0.0018), p-Tyr (Rho 0.449, p < 0.0001), o-Tyr (Rho 0.432,
p = 0.0002), 3Cl-Tyr (Rho 0.359, p = 0.0005), 3NO,-Tyr (Rho 0.399, p = 0.0004) and the ratio o-Tyr/Phe
(Rho 0.403, p = 0.0004) correlated positively with the CSF leukocyte count in BM patients. A negative
correlation existed between the concentrations of Phe (Rho —0.26, p = 0.02449, p-Tyr (Rho -0.413,
p = 0.0003), 3C1-Tyr (Rho —0.261, p = 0.022) and CSF glucose.

The median CSF levels of protein and DNA oxidation biomarkers and the ratios to their precursors
in BM patients and controls are listed in Table 3. The BM patients showed a significantly higher median
concentration (p < 0.0001) in all other biomarkers except the SOHdG/2dG ratio when compared to the
control patients. The ratios o-Tyr/Phe, 3Cl-Tyr/p-Tyr and 3NO,-Tyr/p-Tyr were 570, 20 and 4.5 times as
high, respectively (Table 3).

When comparing the three most common types of BM, pneumococcal meningitis differed
significantly with a higher 3Cl-Tyr/p-Tyr ratio from Hib (p = 0.031) or meningococcal disease (p = 0.002)
(Table 4).

Table 2. Baseline characteristics of bacterial meningitis (BM) patients in Luanda with analyzed
admission cerebrospinal fluid (CSF) samples.

VARIABLE BM (n =79)
Age in months, median (IQR) 12 (7-42)
Weight for age below—2SD 19 (24%)
Duration of illness days, median (IQR) 4 (3-7)
Previous antibiotics * 30/74 (41%)
Glasgow coma score, median (IQR) 11 (7-14)2
Another focus of infection 19 (24%)

Cerebrospinal fluid
Leukocyte count (x106/L), median (IQR)
Glucose concentration (mg/dL), median (IQR)
Blood
CRP * on day 1 or 2 (mg/L), median ** (IQR)
Glucose (mg/dL), median (IQR) ***

1740 (353-3515)
17 (9-26) P

154 (81-161) ©
85 (62-111) 4

Hemoglobin day 1 or 2 (g/dL), median (IQR) 7.5(6-9) ¢
Causative agent

Streptococcus pneumoniae 40/79 (51%)

Haemophilus influenzae type b 24/79 (30%)

Neisseria meningitidis 11/79 (14%)

Other bacteria 4/79 (5%)

ap=78bn=78n=3449%=752¢n=77*Number of patients of whom data were available are shown.; #CRP
stands for C-reactive protein; ** When CRP level exceeded 160 mg/L it was marked as 161 mg/L; *** Lowest glucose
onday 1.
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Table 3. Comparison of the admission median cerebrospinal fluid (CSF) concentrations (IQR) in nmol/L of biomarkers of ROS/RNS-mediated stress to proteins,
DNA and inflammation between children with and without bacterial meningitis. Mann-Whitney U test.

VARIABLE BM, Luanda (n = 79) Control, Helsinki (n = 10) p Value Ratio BM/Contol
Phenylalanine (Phe) 88,346 (51,535-166,316)  6558.0 (5249.76—8473) <0.0001 135
Para-tyrosine (p-Tyr) 64,214 (31,197-152,125) 13,239 (10,096—17,677) <0.0001 4.9
Ortho-tyrosine (o-Tyr) 162.12 (65.23-2194.9) 0.02 (0.020) <0.0001 8100
3-chlorotyrosine (3Cl-Tyr) 42334 (134.84-1311.95)  4.155 (4.155) <0.0001 102
3-nitrotyrosine (3NO,-Tyr) 90.48 (59.37—135.47) 2.745 (1.181-4.61) <0.0001 32.7
2’deoxiguanosine (2dG) 303.57 (91.32-1329.69) 0.768 (0.768-3.538) <0.0001 395
8-0x0-2’-deoxyguanosine (8OHdG)  3.895 (3.895-17.778) 0.043 (0.043) <0.0001 90.6
Ratio 3CI-Tyr/p-Tyr 0.007 (0.003-0.022) 3.531 x 1074 (2.498 x 107%-0.001) <0.0001 19.8
Ratio o-Tyr/Phe 0.002 (0.001-0.013) 3.4995 x 1076 (2.85 x 1070-6.665 x 10™°) < 0.0001 572
Ratio 3NO,-Tyr/p-Tyr 0.001 (0.001-0.002) 2.235 x 1074(1088 x 10™4—4.444 x 107%) <0.0001 45
Ratio 8OHAG/2dG 0.025 (0.005-0.063) 0.056 (0.012—0.056) 0.428 0.45

Table 4. Comparison of the admission median cerebrospinal fluid (CSF) concentrations (IQR) in nmol/L of markers of ROS/RNS-mediated stress to proteins, DNA and
inflammation in children with different etiologies of bacterial meningitis. Kruskal-Wallis test.

Streptococcus pneumoniae  Haemophilus influenzae  Neisseria meningitidis p Value
VARIABLE n =40 n=24 n=11
Phenylalanine (Phe) 84,788 (43,702-131,709) 90,950 (58,433-172,710) 166,203 (46,372-219,475)  0.4454
Para-tyrosine (p-Tyr) 59,871 (39,143—-135,736) 53,641 (28,876-112,299) 153,636 (30,053-226,175)  0.4902
Ortho-tyrosine (o-Tyr) 155.77 (60.51-1973.3) 109.175 (50.75-1212.4) 687.97 (95.335-6987.8) 0.3539
3-chlorotyrosine (3Cl-Tyr) 719.72 (289.6—2654.7) 317.17 (104.79-1251.7) 246.17 (101.36—497.2) 0.0568
3-nitrotyrosine (3NO;-Tyr) 77.26 (52.49-125.0) 91.91 (79.130-158.63) 107.28 (57.94—144.99) 0.39
2’-deoxiguanosine (2dG) 521.94 (104.37-6199.1) 161.98 (93.29-536.1) 84 (54.26—281.38) 0.0213
8-ox0-2’-deoxyguanosine (SOHAG) 4.103 (3.895-23.83) 3.895 (3.895-8.655) 3.895 (3.895-8.619) 0.3452
Ratio o-Tyr/Phe 0.001 (0.001-0.011) 0.001 (0.001-0.013) 0.011 (0.002-0.033) 0.2968
Ratio 3Cl-Tyr/p-Tyr 0.012 (0.005—-0.028) 0.004 (0.002—-0.018) 0.002 (0.002—-0.033) 0.0021
Ratio 3NO,-Tyr/p-Tyr 0.001 (0.001-0.002) 0.002 (0.001-0.003) 0.001 (0.001-0.002) 0.287
Ratio SOHAG/2dG 0.02 (0.004-0.059) 0.025 (0.011-0.058) 0.046 (0.026-0.072) 0.1647
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4. Discussion

Protein oxidation biomarkers and especially the o-Tyr/Phe ratio in CSF samples of children with
BM reflected the presence of oxidative/nitrosative stress as compared to children without a central
nervous system infection. Furthermore, both 3Cl-Tyr, a stable compound that indicates inflammation,
and the 3Cl-Tyr/p-Tyr ratio may thus serve as a fingerprint for the MPO-catalyzed oxidation reaction
(Figures 1 and 2).

According to different animal models [4,5,14,17] and a few human studies [10,18,19] ROS/RNS are
formed in activated PMNs during the inflammatory response of the host once bacteria have reached
the SAS. This cascade probably plays an important role in the pathophysiology of BM and thus,
it is essential to clarify the characteristics and extent of oxidative stress in human BM. Interestingly,
in experimental animal models of pneumococcal meningitis, radical scavengers and antioxidants have
alleviated the intracranial complications and neuronal injury [4,5,14].

Direct measurement of ROS/RNS, antioxidant activities and different oxidative damage biomarker
concentrations have been used to measure the degree of oxidative/nitrosative stress in the human
BM studies [10,18,19]. Firstly, the direct measurement of the highly reactive and short-lived radicals
is demanding, and secondly the measurements of antioxidation activities are not only dependent of
oxidative stress but of other regulatory mechanisms [20]. Thus, our approach was to measure stable
oxidation byproducts.

The high CSF leukocyte count, diagnostic for BM, correlated with the concentrations of Phe and
its derivatives. Thus, to eliminate the influence of the expected lower CSF leukocyte count of our
control patients, we normalized the biomarker concentrations to their precursors instead of employing
absolute concentrations when comparing BM to non-BM. We interpreted the increased Phe and p-Tyr
in BM patients as linked to the elevated CSF protein concentration, which unfortunately, due to the
limited resources in Luanda, we were unable to determine. Another perspective to consider is the
alteration of amino acids, and the fluctuation in their levels in situations of inflammation. Elevated Phe
concentrations and Phe/Tyr ratios has been reported in patients with chronic conditions, such as HIV-1
infection or cancer, with a background of immune activation and inflammation [21].

Pneumococcal meningitis is one of the most severe forms of BM, where the case fatality ranges
from 16% to 37%, and neurological sequelae develop in 30% to 52% [22]. The outcome of BM probably
relates to the severity of inflammation, especially in the SAS [22]. Here, pneumococcal meningitis,
when checked at presentation to hospital, showed the highest 3Cl-Tyr/p-Tyr ratio in the CSF and
the difference was significant when compared with Hib or meningococcal meningitis. This finding,
indicative of robust inflammation, accords with the known disease severity of this type of BM [23].
The low CSF glucose concentration in BM and its correlation with 3Cl-Tyr and its precursors further
support this finding—low CSF glucose is a well know prognostic indication of dismal outcome [23].

The number of studies investigating MPO activity in childhood BM is limited. Miric et al.
found that the MPO activity measured in CSF was enhanced on admission, 3 to 5 days later,
and before discontinuation of BM treatment, compared to a control group with other types of
meningeal irritation [24]. An experimental study in neonate rats with induced Streptococcus agalactiae
meningitis [25] showed a remarkable MPO activity from 24 to 96 h in the hippocampus and from 6 to
96 h in the cortex. Our series indirectly confirmed MPO activation, and to our knowledge, is the first
where 3CI-Tyr/p-Tyr was determined as a biomarker for protein damage and as an indirect indicator
for MPO activation in CSF in childhood BM.

3NO;-Tyr is used as a biomarker for peroxynitrite formation. An increase in the concentration of
3NO;-Tyr in the initial CSF samples was found previously in adult BM [26]. High CSF concentrations
of 3NO,-Tyr were also associated with an unfavorable outcome of BM. However, 3NO,-Tyr can be a
product of different metabolic pathways and thus does not serve as a specific biomarker for ONOO™
formation [12].

In one study, the CSF 8OHdG concentration was significantly higher in early BM than in
aseptic meningitis or in children without any meningitis [27]. Furthermore, the 8OHdG concentration
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decreased along with the clinical and laboratory improvement of BM [27]. We assessed the SOHdG/2dG
ratio and did not observe an increment compared with the control patients. The lack of comparison to
the precursor, in addition to the differing method applied (e.g., ELISA) in the biomarker quantification
might explain this discrepancy between studies. Nonetheless, the high specificity of the LC-MS/MS
method enables multianalyte quantification of the biomarkers in a single sample and is thus highly
valuable with limited volume samples [28].

We acknowledge limitations in our study. This was a post-hoc analysis in which the data were
collected from a study originally designed for other purposes. For this reason, a sufficiently large CSF
sample was available from only around 11% of the entire series. Samples from BM patients had been
kept ultra-frozen for several years, while the control samples were more recent. However, all samples
were initially processed and stored at —-80 °C until analysis without additional freeze-thaw cycles to
minimize bias due to sample degradation. In addition, the patient and control groups were of different
origin, which raises the possibility of differing genetics influencing the results.

5. Conclusions

We conclude that protein oxidation biomarkers are elevated in childhood bacterial meningitis
as a sign of oxidative/nitrosative stress observed most clearly in the o-Tyr/Phe ratio. A recent review
on oxidative stress, aging and disease stated that studies based on observations made with bacteria,
plants and mammals suggest that abnormal tyrosine isomers (o-Tyr, m-Tyr) are not just markers of
oxidative stress but also mediators of its effects [29]. In addition, a high observed 3Cl-Tyr/p-Tyr ratio
indicates MPO activation and could serve as a biomarker for grading the severity of inflammation and,
orientate the clinician towards a pneumococcal infection.

Additional studies are needed for a better understanding of the host’s complex inflammatory
response in BM, and in determining the oxidative/nitrosative stress in relation to a dismal outcome.
Up to now, no clinical trials have been performed in BM patients testing adjuvant drugs interfering
with the intracranial complications and neuronal damage caused by ROS/RNS.
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