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Abstract: Currently, the majority of cell-based studies on neurodegeneration are carried out on two-
dimensional cultured cells that do not represent the cells residing in the complex microenvironment 
of the brain. Recent evidence has suggested that three-dimensional (3D) in vitro microenvironments 
may better model key features of brain tissues in order to study molecular mechanisms at the base 
of neurodegeneration. So far, no drugs have been discovered to prevent or halt the progression of 
neurodegenerative disorders. New therapeutic interventions can come from phytochemicals that 
have a broad spectrum of biological activities. On this basis, we evaluated the neuroprotective effect 
of three phytochemicals (sulforaphane, epigallocatechin gallate, and plumbagin) alone or in 
combination, focusing on their ability to counteract oxidative stress. The combined treatment was 
found to be more effective than the single treatments. In particular, the combined treatment 
increased cell viability and reduced glutathione (GSH) levels, upregulated antioxidant enzymes and 
insulin-degrading enzymes, and downregulated nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase 1 and 2 in respect to peroxide-treated cells. Our data suggest that a combination 
of different phytochemicals could be more effective than a single compound in counteracting 
neurodegeneration, probably thanks to a pleiotropic mechanism of action. 

Keywords: Neurodegeneration; SH-SY5Y cell line; 3D cultures; Oxidative stress; Phytochemicals; 
Antioxidants 

 

1. Introduction 

Oxidative stress is strongly involved in the pathogenesis of different neurodegenerative diseases 
like Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis [1]. Particularly, an 
excess of reactive oxygen species (ROS) released by cells promotes oxidative stress, which is a cause 
of tissue injury and results in dysfunction in the nervous system. So far, no drugs have been 
discovered to prevent or halt the progression of these widely spread neurological disorders, and the 
treatments available only manage the symptoms. Therefore, there is an urgent need for new 
treatments for these diseases, since the World Health Organization (WHO) predicts that by 2040, 
neurodegenerative diseases will become the second-most prevalent cause of death [2]. New 
therapeutic approaches can derive from phytochemicals, a huge source of compounds that have been 
widely investigated in the last years [3]. Sulforaphane (SF) (Figure 1a) is an isothiocyanate derived 
from Brassicae vegetables and has consistent support in the literature for its preventive role against 
oxidative stress [4], in addition to its well-known role in chemoprevention [5]. Epigallocatechin 
gallate (EGCG) (Figure 1b), the major catechin found in green tea [6] with diverse medical potential 
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[7] has been demonstrated to promote neuroprotection in numerous studies [8]. Plumbagin (PB) 
(Figure 1c), a naphthoquinone isolated from the Plumbaginacae family, has mainly been studied in 
respect to its anti-inflammatory [9–11] and antimicrobial activities [12], even though it was also 
shown to modulate oxidative stress response [13] and precisely target NADPH oxidase 4 (NOX4) 
[14]. Importantly, the treatment of undifferentiated SH-SY5Y cells with a specific concentration of SF 
[15], EGCG [16], and PB [17] has been reported to decrease oxidative stress at different levels. On this 
basis, we hypothesized that a proper combination of such bioactive compounds could possess a 
higher effect in counteracting oxidative stress-induced neurodegeneration. Within organs, there are 
various concentration gradients for oxygen as well as for effector molecules, i.e., internal metabolites 
or exogenous compounds/drugs. Since the human brain cannot be modelled adequately in animals 
[18], reductionist humanized cellular systems are used and increasingly requested according to the 
3Rs (Replacement, Reduction and Refinement) rule.  

Currently, the majority of cell-based studies on neurodegeneration have been carried out on 
cultured cells propagated in two dimensions on plastic surfaces. However, cells cultured in these 
non-physiological conditions do not represent the cells residing in the complex microenvironment of 
the brain. With respect to this, recent evidence has suggested that three-dimensional (3D) in vitro 
microenvironments may better model key features of brain tissues in order to study the molecular 
mechanisms at the base of neurodegeneration and neurorepair [19,20]. Numerous in vitro approaches 
have been carried out to mimic human neuronal features, based on neuronal-like cells such as the 
neuroblastoma line SH-SY5Y. SH-SY5Y is a human cell line that divides quickly and has the ability 
to differentiate in post-mitotic neurons, thus it is considered a convenient model to study Parkinson’s 
[21] and Alzheimer’s diseases [22]. Unlike traditional two-dimensional (2D) cultures, the different 
availability of oxygen and growth factors in a 3D cell culture should expectantly favor a more in vivo-
like morphology and growth of these cells. Indeed, several 3D culture models have been developed 
with SH-SY5Y cells, in terms of cell aggregates [23], spheroids [24,25], or including different scaffolds 
[26–28]. To support 3D cultures of SH-SY5Y or neuronal cell lines, collagen has also been used, like 
collagen hydrogel [29] or porous collagen-based scaffolds [26,30]. To the best of our knowledge, none 
of the previous models has been used to investigate the ability of natural bioactive molecules to confer 
resistance to oxidative stress. The aim of this study was to evaluate the neuroprotective effect of a 
combination of SF, EGCG, and PB in preventing cell damage derived from oxidative stress in a 3D 
cell culture based on a collagen porous scaffold.  

 
Figure 1. Chemical structures of the natural compounds used in this study. (a) Sulforaphane (SF), (b) 
epigallocatechin gallate (EGCG), (c) plumbagin (PB). 

2. Materials and Methods 

2.1. Cell Culture and Treatment 

The SH-SY5Y human neuroblastoma cell line was obtained from Sigma-Aldrich (cat. n° 
94030304) (St. Louis, MO, USA). Cells were expanded in a growth culture medium composed of high 
glucose Dulbecco's Modified Eagle's medium (DMEM), supplemented with 10% fetal bovine serum 
(FBS), 2 mM glutamine, 50 U/mL of penicillin, and 50 μg/mL of streptomycin, and cultured at 37 °C 
with 5% CO2 as previously reported [31]. Cell differentiation was induced by reducing serum levels 
of the medium to 1% with 10 μM retinoic acid (RA) for seven days prior to treatments [32]. SF (LKT 
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Laboratories, Minneapolis, MN, USA), EGCG and PB (Sigma-Aldrich, St. Louis, MO, USA) were 
dissolved in DMSO, and 10 mM stocks were kept at −20 °C until use. Differentiated SH-SY5Y cells 
were treated with 1 μM SF, 2.5 μM EGCG, and 0.5 μM PB and SEP (1 μM SF + 2.5 μM EGCG + 0.5 
μM PB,) for 24 h or 6 h according to the different experiments. Oxidative stress was induced, as 
previously reported [33], by exposing cells to 700 μM H2O2 in 1% FBS DMEM.  

2.2. 3D Model Preparation 

To obtain the scaffolds for 3D cultures of SH-SY5Y cells, sterile heterologous native lyophilized 
collagen type I sponge (BIOPAD™, Angelini Pharma Inc., Gaithersburg, USA) was cut using a sterile 
scalpel into pieces with squared dimensions able to fit 96-multiwell culture plates. Each piece was 
divided by subjecting it to a second longitudinal cut, performed in order to present a similar top 
surface as the cells. The pieces with approximately 1 cm2 of surface area were inserted into a 24-
multiwell plate and constituted the scaffolds for the cell culture. To establish the 3D SH-SY5Y culture, 
50 μL of cell suspension in DMEM with 10% FBS was seeded atop of each scaffold. Different cell 
numbers per scaffold (50 × 103–100 × 103–200 × 103) were seeded to compare cell viability along the 
culture (1–6 days) and optimize cell seeding for differentiation. To differentiate 3D SH-SY5Y culture, 
a concentration of 4x106 cells/mL equivalent to 200 × 103 cells in 50 uL was used. After 45 min of 
incubation at 37 °C, 5% CO2, DMEM with 1% FBS, and 10 μM RA were added to the 3D culture in 
order to induce cell differentiation. The medium was changed every two days.  

2.3. MTT Assay 

Before adding 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), 3D 
cultures were transferred to clean cell culture wells. MTT 0.5 mg/mL was prepared in a cell medium 
and added to the 3D cultures. To measure the percentage of cells that did not attach to the scaffold, 
MTT was also added to the wells where cells were initially seeded (Figure S1). The MTT solution was 
incubated for 2 h at 37 °C, 5% CO2. After removing the MTT solution, DMSO was added and the 
absorbance of formazan was measured at 595 nm using a microplate spectrophotometer VICTOR3 V 
Multilabel plate-reader (PerkinElmer, Wellesley USA). The sum of the two respective absorbance 
values, the first deriving from the primary wells used during the seeding and the second deriving 
from the scaffolds, were considered as 100%.  

2.4. Prestoblue Assay 

A Prestoblue® working solution was prepared in a growth culture medium without phenol red 
according to the manufacturer’s instructions. Briefly, the culture medium was removed from cell 
culture wells and a Prestoblue working solution was added and incubated at 37 °C, 5% CO2. After 3 
h, the well volumes were collected in a new 96-well plate and the absorbance was read at λ = 570 nm 
(experimental) and λ = 600 nm (reference wavelength for normalization) using a Victor Multilabel 
plate-reader (Perkin-Elmer, Wellesley USA).  

2.5. Reduced Glutathione (GSH) Level Measurement 

A monochlorobimane (MCB) fluorescent probe (Sigma-Aldrich, St. Louis, MO, USA) was used 
to determine relative intracellular GSH levels as previously reported [34] with some modifications. 
After 24 h of treatment, the cell culture medium was removed from 3D samples and the scaffolds 
were transferred to 1.5 mL tubes. The cells were incubated for 15 min in DMEM with 1% FBS 
containing 50 μM MCB, and for a further 15 min in DMEM with 0.5 mg/mL collagenase I and 50 μM 
MCB (Sigma-Aldrich). Cells collected by digestion of the scaffold were centrifuged at 250× g. Cells 
were resuspended in phosphate-buffered saline (PBS) and plated on black 96-well plates. The 
fluorescence was measured at 355 nm (excitation) and 460 nm (emission) using a Victor Multilabel 
plate-reader (Perkin-Elmer, Wellesley USA). GSH levels were normalized on the base of the Crystal 
Violet (CV) assay.  



Antioxidants 2019, 8, 420 4 of 17 

2.6. Crystal Violet Assay 

Crystal Violet (CV) staining was performed as follows: Cells were fixed in 50% MeOH-PBS for 
3 h at 4 °C. For 15 min at room temperature, a 0.1% (m/v) CV, 5% MeOH staining solution was 
incubated. The staining solution was removed and the stained cells were washed with distilled water. 
The plate was left to dry for 5 min under a chemical hood. The bound dye was eluted with MeOH 
100% for 30 min at 4 °C. The optical density of each well was measured at 570 nm using a Victor 
Multilabel plate-reader (Perkin-Elmer, Wellesley USA).  

2.7. RNA Extraction and Real-Time PCR 

Prior to RNA extraction, cell retrieval was performed by digesting the collagen scaffold in 
collagenase solution. Collagenase type I (Sigma-Aldrich) was dissolved in DMEM without FBS at a 
concentration of 0.5 mg/mL. Samples were incubated in collagenase solution for 10 min at 37 °C. Cells 
suspension was pelleted, and RNA was extracted with an RNeasy® mini kit (Qiagen) following the 
manufacturer’s instruction. A total of 500 ng of RNA was used to obtain cDNA using an iScript™ 
cDNA Synthesis Kit (BioRad). Real-time PCR was performed using SsoAdvanced Universal SYBR 
Green Supermix (BioRad), and normalized expression levels were calculated relative to control cells 
according to the 2−ΔΔCT method. Primers were purchased from Sigma-Aldrich. The sequences are 
listed in Table 1.  

Table 1. Primer sequences. 

Gene Sequence RefSeq Accession n.  

RPS18* Fw CAGAAGGATGTAAAGGATGG NM_022551 
Rv TATTTCTTCTTGGACACACC 

MAP2 
Fw GAAGATTTACTTACAGCCTCG 

NM_002374 
Rv GGTAAGTTTTAGTTGTCTCTGG 

BDNF 
Fw CAAAAGTGGAGAACATTTGC 

NM_001143811 Rv AACTCCAGTCAATAGGTCAG 

HMOX1(HO1) Fw CAACAAAGTGCAAGATTCTG NM_002133.2 
Rv TGCATTCACATGGCATAAAG 

IDE 
Fw CAACCTGAAGTGATTCAGAAC 

NM_001165946 Rv AATATGTGGTTTCACAAGGG 

NOX1 
Fw CCGGTCATTCTTTATATCTGTG 

NM_007052 Rv CAACCTTGGTAATCACAACC 

NOX2 Fw AAGATCTACTTCTACTGGCTG NM_000397 
Rv AGATGTTGTAGCTGAGGAAG 

NQO1 
Fw AGTATCCACAATAGCTGACG 

NM_000903 
Rv TTTGTGGGTCTGTAGAAATG 

GSR (GR) 
Fw GACCTATTCAACGAGCTTTAC 

NM_000637 
Rv CAACCACCTTTTCTTCCTTG 

TXNRD1 (TR) 
Fw AGACAGTTAAGCATGATTGG 

NM_001093771 Rv AATTGCCCATAAGCATTCTC 
*reference gene. 

3. Results 

3.1. Development and Characterization of the 3D SH-SY5Y Culture System  

To fully assess biocompatibility between the collagen scaffold and SH-SY5Y cells, we evaluated 
cellular retention to the scaffold and cellular metabolism during 3D culture. The ability of SH-SY5Y 
cells to attach to the scaffold was evaluated by an MTT viability assay (Figure 2a). This assay was 
chosen because cells convert MTT to blue formazan that is retained by the cells and, for this reason, 
it makes it possible to distinguish cells attached to the scaffold from those released from the scaffold 
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(see Figure S1). As reported in Figure 2a, about 95% of the total viable cells were able to attach after 
the switch from 2D to 3D culture conditions, while only 5% of the cells grew outside of the scaffold. 
To check the proliferation of SH-SY5Y cells, we used a Prestoblue assay as it makes it possible to 
monitor the metabolic activity of the same cell culture over time (Figure 2b). Cells were seeded at 
different concentrations, and cell viability was evaluated after 1 and 6 days. As expected, cell viability 
increased with an increasing numbers of cells per scaffold at both time points. Interestingly, the 
metabolic activity of the 3D culture after 6 days was comparable to that measured after 1 day at all 
tested seeding densities. Because the scaffold did not allow us to observe the cells under a microscope 
during growth, to verify that RA-treated SH-SY5Y cells were able to differentiate, we evaluated the 
mRNA level of the mature neural protein marker MAP2 as well as the secretable neurotrophin BDNF 
in 3D RA-treated cells (Figure 2c). Interestingly, both markers were upregulated in 3D RA-treated 
cells in respect to the 3D RA-untreated control, showing their ability to differentiate under 3D culture 
conditions. Figure S4 reports the macroscopic and microscopic appearance of the 3D SH-SY5Y 
culture. 

 
Figure 2. Characterization of the 3D SH-SY5Y model. (a) Cellular adhesion to the scaffold was 
evaluated 24 h after cell seeding by MTT assay as reported in Materials and Methods. Data are 
expressed as a percentage of total viable cells and represent the mean of three independent 
experiments. (b) Metabolic activity of the 3D model was evaluated after 1 and 6 days from cell seeding 
by a Prestoblue assay as reported in Materials and Methods. Each bar represents the mean ± SEM of 
three independent experiments. Data were analyzed with a two-way ANOVA followed by the 
Fisher’s test. *p < 0.05. (c) Real time-PCR was performed in the 3D culture for neuronal markers. Each 
bar represents the mean ± SEM of three independent experiments, which were analyzed with an 
unpaired T-test. *p < 0.05. 
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3.2. SF, EGCG and PB Protect 3D SH-SY5Y Cells from Oxidative-Induced Injury 

Before studying the neuroprotective effect of SF, EGCG, and PB, we exposed 3D differentiated 
SH-SY5Y cells to 1 μM SF, 2.5 μM EGCG, 0.5 μM PB, or to a combination of the three compounds at 
the same concentrations (SEP) (Figure 3). These concentrations were chosen according to previous 
reports where these concentrations were not very effective against oxidative stress [15–17]. Our 
results showed that all the tested concentrations—1 μM SF, 2.5 μM EGCG, and 0.5 μM PB—were not 
toxic.  

 
Figure 3. Potential cytotoxicity of sulforaphane (SF), epigallocatechin gallate (EGCG), and plumbagin 
(PB) on SH-SY5Y cells. Cells were treated with 1 μM SF, 2.5, μM EGCG, and 0.5 μM PB, and after 24 
h, viability was evaluated by a Prestoblue assay as reported in Materials and Methods. Results are 
expressed as a percentage of untreated cells. Each bar represents the mean ± SEM of three independent 
experiments, which were analyzed with a one-way ANOVA followed by the Fisher’s test. 

We then investigated the potential protective effect of the single treatments or a combination of 
them against H2O2-induced oxidative stress (Figure 4). As expected, incubation with 700 μM H2O2 for 
2 hours induced a significant reduction of cell viability compared to the control cells (Figure S2). Only 
0.5 μM PB, 1 μM SF, and the co-treatment (1 μM SF, 2.5 μM EGCG, and 0.5 μM PB) were able to 
protect the cells against H2O2-induced damage. Of note, SEP co-treatment was the most effective 
treatment as it significantly increased cell viability compared to the other treatments. 
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Figure 4. Neuroprotective activity of SF, EGCG, and PB compounds against H2O2-induced damage. 
Cells were treated with 1 μM SF, 2.5 μM EGCG, and 0.5 μM PB, and after 24 h, were exposed to 700 
μM H2O2 to induce oxidative stress. Cell viability in 3D cultures was measured by a Prestoblue assay 
as reported in Materials and Methods. Data are expressed as a percentage of untreated cells. Each bar 
represents mean ± SEM of three independent experiments. Data were analyzed with a one-way 
ANOVA followed by the Fisher’s test. *p < 0.05 vs. H2O2 treated cells; §p < 0.05 vs. sulforaphane, 
epigallocatechin gallate, and plumbagin (SEP) co-treatment. 

3.3. SEP Co-Treatment Enhances Antioxidant Defenses   

As our results showed a higher neuroprotective activity of SEP co-treatment (1 μM SF, 2.5 μM 
EGCG, and 0.5 μM PB) compared to the single treatments of 1 μM SF, 2.5, μM EGCG, or 0.5 μM PB, 
we investigated the ability of SEP co-treatment to modulate the cellular redox state by evaluating 
GSH levels with an MCB assay. The effect of the different treatments after 24 h on GSH levels is 
reported in Figure 5. All the treatments were able to significantly increase GSH levels in respect to 
control cells. In agreement with the viability data, we observed the most effective increase of GSH 
levels after SEP co-treatment (1 μM SF, 2.5 μM EGCG, and 0.5 μM PB) in comparison to the single 
treatment of 1 μM SF, 2.5 μM EGCG, or 0.5 μM PB.  
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Figure 5. Antioxidant activity of SF, EGCG, and PB compounds on SH-SY5Y cells. Cells were treated 
with 1 μM SF, 2.5 μM EGCG, and 0.5 μM PB, and after 24 h GSH levels were evaluated with an 
monochlorobimane (MCB) assay as reported in Materials and Methods. Data are expressed as a 
percentage of untreated cells (CTRL). Each bar represents mean ± SEM of three independent 
experiments. Data were analyzed with a one-way ANOVA followed by the Fisher’s test. *p < 0.05 vs. 
untreated cells; §p < 0.05 vs. SEP co-treatment. 

3.4. SEP Co-Treatment Modulates Genes Involved in Oxidative Stress Control  

As the previous data showed that SEP co-treatment was significantly more effective compared 
to the single treatments, we decided to study its ability to modulate cellular antioxidant status. Real-
time PCR analysis was employed to investigate the ability of SEP co-treatment to modulate the 
mRNA level of different antioxidant enzymes. The cDNA was obtained from 3D SH-SY5Y cultures 
that were co-treated (1 μM SF, 2.5 μM EGCG, and 0.5 μM PB) for 6 h. The 3D cultures were then 
exposed to 700 μM H2O2 for 1 h prior to lysis (Figure 6). Importantly, SEP co-treatment induced a 
significant and marked upregulation of heme oxygenase 1 (HO1), NADPH: quinone oxidoreductase 
1 (NQO1), glutathione reductase (GR), and thioredoxin reductase (TR) in 3D cultures although with 
different levels of upregulation (Figure 6). Moreover, SEP co-treatment in the presence of oxidative 
stress induced a significant upregulation of all tested genes in respect to H2O2-treated cells.  
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. 

Figure 6. Effect of SEP co-treatment on antioxidant enzyme expression. Cells were co-treated with 1 
μM SF, 2.5 μM EGCG, and 0.5 μM PB for 6 h. Oxidative stress was induced with 700 μM H2O2 for 1 h 
prior to lysis. Real time-PCR was performed to detect heme oxygenase 1 (HO1), NADPH: quinone 
oxidoreductase 1 (NQO1), glutathione reductase (GR), and thioredoxin reductase (TR) mRNA levels. 
Data are expressed as relative abundance compared to untreated cells. Each bar represents mean ± 
SEM of three independent experiments. Data were analyzed with a one-way ANOVA followed by 
the Fisher’s test. *p < 0.05 vs. untreated cells, °p < 0.05 vs. H2O2. 

NADPH oxidase (NOX) enzymes have been shown to be a major source of ROS in the brain and 
to be involved in several neurological diseases [35]. On this basis, we studied the modulatory effect 
of SEP co-treatment on NOX1 and NOX2 expression using real-time PCR analysis (Figure 7). In the 
absence of oxidative stress, SEP co-treatment had a strong effect on these enzymes as it significantly 
reduced NOX1 and NOX2 expression compared to untreated cells. In the presence of oxidative stress 
(700 μM H2O2), SEP co-treatment significantly reduced NOX1 and NOX2 expression compared to 
H2O2-treated cells. Of note, SEP co-treatment before peroxide exposure maintained NOX1 levels at a 
value comparable to control cells.  
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Figure 7. Effect of SEP co-treatment on NADPH oxidase 1 (NOX1) and NADPH oxidase 2 (NOX2). 
Cells were co-treated with 1  μM SF, 2.5  μM EGCG, and 0.5  μM PB for 6 h. Oxidative stress was 
induced with 700 μM H2O2 for 1 h prior to lysis. Real time-PCR was performed to detect NOX1 and 
NOX2 mRNA levels. Data are expressed as relative abundance compared to untreated cells. Each bar 
represents mean ± SEM of three independent experiments. Data were analyzed using a one-way 
ANOVA followed by the Fisher’s test. *p < 0.05 vs. untreated cells, °p < 0.05 vs. H2O2. 

3.5. SEP Co-Treatment is able to Modulate Insulin-Degrading Enzyme (IDE) Gene Expression  

To investigate if SEP co-treatment had other neuroprotective activities besides the antioxidant 
one, we studied its effect on insulin-degrading enzyme (IDE) expression. IDE plays a significant role 
in Aβ degradation [36], which is one of the main hallmarks of Alzheimer’s disease. Moreover, recent 
studies have demonstrated that increasing Aβ degradation as opposed to inhibiting synthesis is a 
more effective strategy for preventing Aβ build-up [37]. In our 3D SH-SY5Y cultures, IDE mRNA 
levels were downregulated by oxidative stress, but, interestingly, SEP co-treatment (1  μM SF, 2.5  μM 
EGCG, and 0.5  μM PB) was able to upregulate its expression at levels comparable to untreated cells 
(Figure 8).  

 
Figure 8. Effect of SEP co-treatment on insulin-degrading enzyme (IDE). Cells were co-treated with 1 
 μM SF, 2.5  μM EGCG, and 0.5  μM PB for 6 h. Oxidative stress was induced with 700 μM H2O2 for 1 
h prior to lysis. Real time-PCR was performed to detect IDE mRNA levels. Data are expressed as 
relative abundance compared to untreated cells. Each bar represents mean ± SEM of three 

0.25

0.5

1

2

4

re
la

tiv
e 

no
rm

al
iz

ed
 e

xp
re

ss
io

n 
 v

s 
C

TR
L

NOX1

SEP  -                +                -                +
H2O2

*

 -                -                +                +

°

*
° 0.25

0.5

1

2

4

re
la

tiv
e 

no
rm

al
iz

ed
 e

xp
re

ss
io

n 
 v

s 
C

TR
L

NOX2

SEP  -                +                -                +
H2O2  -                -                +                +

* *°

*°

0.5

1

2

re
la

tiv
e 

no
rm

al
iz

ed
 e

xp
re

ss
io

n 
 v

s 
C

TR
L

IDE

SEP  -                +                -                +

H2O2  -                -                +                +

°

*



Antioxidants 2019, 8, 420 11 of 17 

independent experiments. Data were analyzed with a one-way ANOVA followed by the Fisher’s test. 
*p < 0.05 vs. untreated cells, °p < 0.05 vs. H2O2. 

4. Discussion  

The prevalence of neurodegenerative disorders is growing [2,38] in parallel to the urgency to 
find new compounds for the treatment of such diseases, in which oxidative stress is a common 
hallmark and has been suggested to play a causative role [39,40]. Unfortunately, the screening of drug 
leads and natural compounds to counteract neurodegeneration using 2D cell cultures often results in 
the unsuccessful translation of data to clinics. Neurons are strongly influenced by their immediate 
extracellular environment, and there is a great need to develop new culture systems that more 
faithfully reproduce the complexity of this milieu in vivo. Human 3D cell culture models are a good 
alternative to animal models [41,42]. In contrast to 2D cell cultures, 3D cell cultures do not overlook 
the physical interactions existing between cell–cell and cell–matrix and have a higher resemblance to 
the in vivo phenotype. Ideal scaffolds for neuronal tissue or disease modelling should exhibit suitable 
3D architecture for in vitro manipulation, should facilitate cell adhesion while promoting neurites 
outgrowth, and have high biocompatibility [43]. Collagen type I is highly used as scaffold because of 
its abundance and ubiquity in most of the hard and soft tissues in the human body [44]. Porous 
collagen sponges have been used to grow various cell types in vitro [45] and collagen derived 
scaffolds have been widely used in neural tissue engineering for drug delivery [46]. Furthermore, the 
extracellular matrix (ECM) in nerves is mainly composed of type I collagen [47] and is a commonly 
used material in nerve tissue engineering [47] and for peripheral nerve regeneration [48]. ECM 
geometry and composition are well known to influence cell morphology and gene expression. It has 
been shown that SH-SY5Y cells extended longer neurites in 3D collagen I hydrogel cultures than in 
2D cultures [26]. On this basis, we used equine native collagen, commercially available for clinical 
application, as scaffold to support 3D cultures of differentiated SH-SY5Y cells.  

Our aim was to study the neuroprotective activity of a combination of SF, EGCG, and PB in 
counteracting peroxide-induced damage in 3D cultures of differentiated SH-SY5Y cells. 

Taking into account previous studies showing the protective effects of these compounds against 
oxidative stress [49,50], we decided to treat SH-SY5Y cells with specific concentrations of SF, EGCG, 
and PB to better mimic concentrations that could be measured in plasma after oral intake of the three 
compounds [51]. We selected a porous instead of a hydrogel scaffold because it easily permits the 
removal of apoptotic blebs and dead cells by washing during medium exchange. The used 
collagenous scaffold was found to be highly biocompatible since it supported the adhesion and 
proliferation of SH-SY5Y cells in the 3D environment.  

Our data demonstrated that SEP co-treatment was significantly more effective against oxidative 
stress than the single treatments of PB, EGCG, or SF, suggesting a synergistic protective mechanism 
of the co-treatment. In particular, SEP was more effective in limiting cell injury induced by H2O2 

exposure. These data were also demonstrated in our 2D cell model, and we confirmed the superior 
efficacy in enhancing GSH levels by SEP co-treatment compared the single treatments both in 2D and 
3D models (Figure S3). Although different reports have discussed the neuroprotective effect of PB, 
EGCG, and SF against brain-induced toxicity [52–54], there is no documented work on the effect of 
their combination. Our results are in agreement with other papers demonstrating the synergistic 
protective effect of different combinations of natural compounds against neurodegeneration [55–57]. 
In general, the superior protection of co-treatments compared to the single treatments could be 
probably ascribed to the concurrent modulation of different molecular targets involved in the 
pathogenesis and progression of these multi-factorial diseases.  

To better elucidate the mechanisms behind SEP protection against H2O2 in SH-SY5Y cells, we 
investigated the effect of the co-treatment on the expression of different antioxidant enzymes: heme 
oxygenase 1 (HO1), NADPH: quinone oxidoreductase 1 (NQO1), glutathione reductase (GR) and 
thioredoxin reductase (TR).  

The enzyme HO1 converts heme to three end products, namely biliverdin, CO, and ferrous ion 
[58], then biliverdin reductase activity produces the antioxidant bilirubin. NQO1 is a highly inducible 
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detoxifying flavoenzyme. It catalyzes the reduction of quinones generating stable hydroquinones and 
possesses superoxide scavenging activity [59]. GR is responsible for maintaining a storage amount of 
reduced glutathione [60]. The thioredoxin (Trx) system, composed of Trx, TR, and NADPH as a 
cofactor, is a cellular defense system that is ubiquitously involved in converting ROS to nontoxic 
metabolites [61]. In such a system, the Trx in reduced status can be oxidized into oxidized Trx during 
the degradation of H2O2 and then reduced by TR [62].  

SF is known to upregulate antioxidant defense through the induction of HO1, NQO1, and GR in 
SH-SY5Y cells [15,63], while GR, TR, and NQO1 have been observed to be upregulated in cortical 
neurons [64]. EGCG induced HO1 expression in rat-cultured neurons [65] and increased protein 
levels in treated rats following focal cerebral ischemia [66]. PB treatment led to increased levels of 
HO1, NQO1, and TR in SH-SY5Y cells [17]. Interestingly, our data showed that SEP co-treatment, in 
the absence of oxidative stress, strongly upregulated these enzymes compared to control cells (the 
same results were also obtained in the 2D model (Figure. S3)), and, in the presence of oxidative stress, 
it was able to significantly increase the expression of these enzymes compared to H2O2 exposed cells. 
In agreement with our data that showed the enhanced effect of a combination of different compounds 
compared to treatment with the single compounds, in a previous work, we observed that a 
combination of EGCG and SF counteracts in vitro oxidative stress and delays stemness loss of 
amniotic fluid stem cells [67]. Moreover, a combination of berberine with resveratrol had enhanced 
hypolipidemic effects in high fat diet-induced mice and was able to decrease the lipid accumulation 
in adipocytes to a level significantly lower than that of the treatment with the single compounds [68].  

Recently, it has been suggested that inhibition of the generation, rather than the scavenging, of 
ROS may be a more successful strategy to counteract oxidative stress-induced neurodegeneration 
[69]. ROS can be produced by many enzymes in the cells such as mitochondria respiratory complexes, 
NADPH oxidase, nitric oxide synthase, cytochrome 450, cyclooxygenase, lipoxygenase, and xanthine 
oxidase [14,70]. Interestingly, all these enzymes except NADPH oxidase produce ROS as a byproduct, 
while NOX enzymes generate ROS as a principal aim [71–73]. Moreover, different studies have 
shown the involvement of NADPH oxidase family members in brain injury and neurodegenerative 
disorders (reviewed in [69]). Our data demonstrated that SEP co-treatment was effective in reducing 
NOX1 and NOX2 expression compared to control cells and was also able to counteract the increase 
of NOX1 and NOX2 expression induced by H2O2. This means that SEP not only potentiates the 
antioxidant defense system upregulating fundamental enzymes, but also reduces the intracellular 
production of ROS.  

The last aim of this paper was to investigate if SEP could modulate other hallmarks of 
neurodegeneration in addition to its ability to counteract oxidative stress. We decided to focus our 
attention on IDE, the main protease responsible for amyloid β clearance [74–76]. A reduction of IDE 
activity in the brain with age and during the early stages of Alzheimer’s disease (AD) has been 
observed [74], suggesting that IDE downregulation may be among the triggers of AD. Of note, SEP 
counteracted the strong downregulation of IDE induced by oxidative stress, maintaining IDE 
expression at a level comparable to control cells, suggesting a potential role of SEP in counteracting 
AD. 

In conclusion, we highlighted that an appropriate synergistic combination of natural 
antioxidants such as SF, EGCG, and PB can help to rescue neuronal cells from oxidative stress cell 
death. The protective effect of the co-treatment was observed in a novel 3D model of SH-SY5Y cells 
that we developed. In agreement with other authors [77–79], we suggest that a 3D culture system 
better mimics cell–cell interactions and cell–ECM interactions compared to the traditional 2D 
monolayer. In particular, our 3D model would be useful for future investigations of the 
neuroprotective activity of natural compounds [80]. In the present study, we observed the protective 
effect of an “acute” co-treatment with SF, EGCG, and PB but, taking into account the nature of 
neurodegeneration, a subchronic/chronic administration should be even more effective. For this 
reason, future studies will have to be carried out to investigate the effect of chronic SEP treatment 
against oxidative stress in neurodegeneration. The present findings underscore the importance of a 
combinatorial approach for effective treatments against oxidative damage in neurodegeneration. 
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Moreover, 3D SH-SY5Y cell culture systems appear to be the ideal environment for in vitro assays 
regarding the effects of phytochemicals on cell viability. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1 and 
www.mdpi.com/xxx/s3. Figure S1: Visual explanation of MTT assay as used in this study, Figure S2: Cell 
viability of SH-SY5Y incubated with H2O2, Figure S3: Results obtained with SEP co-treatement in SH-SY5Y 2D 
model. Figure S4: Images of SH-SY5Y 3D model. 

Author Contributions: conceptualization, P.M. and C.A.; methodology, P.M and C.A.; data curation, P.M. and 
C.A.; writing—original draft preparation, P.M.; writing—review and editing, C.A. and S.H.; funding acquisition, 
S.H. 

Funding: This work was supported by MIUR-PRIN 2015 (N. 20152HKF3Z) to SH 

Conflicts of Interest: The authors declare that there is no conflict of interest regarding the publication of this 
paper. 

Abbreviations 
2D Two-dimensional 
3D Three-dimensional 

BDNF Brain-derived neurotrophic factor 
DCFH-DA 2,7-dichlorodihydrofluorescein diacetate 

DMEM Dulbecco's Modified Eagle's medium 
DMSO Dimethyl sulfoxide 
ECM Extra cellular matrix 

EGCG Epigallocatechin gallate 
GR Glutathione reductase 

GSH Reduced glutathione 
H2O2 Hydrogen peroxide 
HO1 Heme oxygenase 1 
IDE Insulin-degrading enzyme 

MAP2 Microtubule-associated protein 2 
MCB Monochlorobimane 
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) 
NOX1 NADPH oxidase 1 
NOX2 NADPH oxidase 2 
NQO1 NAD(P)H: quinone oxidoreductase 1 

PB Plumbagin 
PBS Phosphate buffered saline 
PCR Polymerase chain reaction 
RA All-trans retinoic acid 

ROS Reactive oxygen species 
RPS18 Ribosomal protein S18 

SEP Sulforaphane, Epigallocatechin gallate, Plumbagin 
SF Sulforaphane 
TR Thioredoxin reductase 1 
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