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Abstract: Dairy cows undergo various transition periods throughout their productive life, which are
associated with periods of increased metabolic and infectious disease susceptibility. Redox balance
plays a key role in ensuring a satisfactory transition. Nevertheless, oxidative stress (OS), a consequence
of redox imbalance, has been associated with an increased risk of disease in these animals. In the
productive cycle of dairy cows, the periparturient and neonatal periods are times of increased OS
and disease susceptibility. This article reviews the relationship of redox status and OS with diseases
of cows and calves, and how supplementation with antioxidants can be used to prevent OS in
these animals.
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1. Introduction

Dairy cattle can succumb to illnesses at any given time. However, the majority of diseases take
place around two clusters: (1) The time around calving, commonly referred to as the periparturient
period, for metabolic and infectious diseases (e.g., ketosis, displaced abomasum, mastitis, metritis, etc.);
and (2) the first few weeks of life, referred to as the neonatal period, for diseases of calves (e.g., diarrhea
or pneumonia). These periods of increased disease susceptibility are attributed to dysfunctional
immune responses in these animals. Studies performed in the last decade clearly indicate that adult
dairy cows experience oxidative stress (OS) around the time of calving [1–6]. Also, some recent
research has also documented that neonatal calves experience OS during the first few weeks of
age [7–9]. OS diminishes functional capabilities of immune cell populations and increases the animals’
susceptibility to diseases [1]. Hence, the objective of this article is to review the current knowledge
regarding the impact of redox biology in these periods of increased disease incidence in dairy
cattle populations.

2. Periparturient Period

Approximately 75% of disease in adult dairy cows typically happens in the first month after
calving [10], with the highest incidence of total disease (mastitis, ketosis, digestive disorders,
and lameness) taking place within the first 10 days post-calving [11,12]. Notwithstanding the
majority of disorders presenting after calving, the period before calving is equally relevant for their
development. Most of these diseases present due to a maladaptation of the animal to the changes
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and demand that arise when the cows move from the pregnant and non-lactating stage to the onset
of lactation [13]. For this reason, these early lactation disorders are considered “transition cow”
diseases. In 1995, the transition period was defined as the period from 3 weeks pre-calving until
3 weeks post-calving [14]. The period is characterized by marked changes in the endocrine status of
the animal, and a reduction in feed intake when nutrient demand for the developing fetus and the
impending lactogenesis are increasing [14]. Also, dairy cows experience immune dysregulation around
the time of calving, which has been linked mainly to the onset of lactation and not to parturition
itself [15]. OS occurs when there is an imbalance in the redox balance that leads to cellular damage
and/or dysfunction and has been proposed as the nexus between the metabolic and immune systems
of the cows during this stage [3,16].

2.1. Factors Predisposing Cows to Oxidative Stress before Calving

As is described by several authors, animal production has increased their productiveness in the
last decades. In dairy cows, Baumgard, et al. [17] pointed out that in the US, annual milk yield per cow
increased over 4-fold in the last 75 years. What is the reason for this?

Historic gains in milk yield originate partly from selection and genetic improvement (50–66%) and
the remainder from advances in nutrition and management. Examples explaining the historic gains
include a better understanding of nutrient requirements, improvements in diet formulation and mixing,
utilizing artificial insemination (AI) and applying more accurate genetic selection methods, improved
milking management practices, and the effective use of herd health programs to prevent disease.
Furthermore, new technologies and management tools, such as estrus synchronization, and early
pregnancy detection have enhanced the production potential of dairy cows and allowed them to more
closely achieve their genetic capacity [17]. As a result of these measures, dairy cows have changed their
metabolism and nutrient partitioning, so that while they have been able to increase milk production,
this has also led to the emergence of new metabolic diseases or even periods in which their physiology
has been overwhelmed, endangering their health, as happens in the transition period.

Metabolic stress describes the hypermetabolic catabolic response to this disruption in
physiological homeostasis [3] and is characterized by excessive lipomobilization, immune and
inflammatory dysfunction, and OS (Figure 1). These three processes are intrinsically linked [16,18–25]
and result in immune and metabolic derangements that are associated with an increased risk of
metabolic and infectious disease during this period [16].
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Figure 1. Schematic representation of the intrinsic relationships among the components of the metabolic
stress triad. NEFA = non-esterified fatty acid; OS = Oxidative Stress; ROS = Reactive oxygen species;
NF-κB = nuclear factor kappa-B; BHB = beta-hydroxybutyrate; TNFα = Tumor necrosis factor alpha;
DMI = Dry matter intake.
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Currently, the transition period is one of the most stressful times in the life of dairy cows.
Dairy cows go through dramatic physiological changes to prepare themselves for the onset of
lactation and the climb to peak milk production. In peripartal cows, dry matter intake (DMI) decreases
around parturition, whereas energy and calcium demands for lactation increase [26]. In this situation,
tissues consume more oxygen through normal cellular respiration during times of increased metabolic
demand in order to provide the energy needed for the onset of lactation [26,27], resulting in a negative
energy balance (NEB). After calving, most cows undergo a period of NEB, in which the energy demand
for milk synthesis is not covered by voluntary feed intake. To meet the increased energy demands,
cows mobilize body reserves predominantly from adipose tissue. Increased lipid mobilization as
a consequence of NEB may increase the generation reactive oxygen species (ROS) and reactive nitrogen
species (RNS) [18,28]. An imbalance between both products coupled with the decreased intake of
dietary antioxidants due to a decreased overall feed intake can lead to a pro-oxidant shift in the redox
balance [1,4,29].

Physiologically, the cow’s body has sufficient antioxidant to counteract the production of
ROS/RNS that are continuously produced during metabolism. ROS/RNS play key physiological
functions, such as gene activation, cellular growth and death, or biosynthesis of prostaglandins, among
others. However, the production of ROS/RNS can increase as a result of pathological conditions or the
increase of physiological processes beyond the cow’s homeorhetic mechanisms. Indeed, the balance
between the physiological functions of ROS/RNS and the damage they can cause is determined by
the rate at which ROS/RNS are formed and removed [29]. When an imbalance occurs between the
generation of ROS/RNS and the body’s antioxidative capacity, this leads to a shift in the oxidant status
that can lead to oxidative/nitrosative stress when there is subsequent cellular or tissue damage or
function impairment. In periparturient cows, enzymatic antioxidants, such as superoxide dismutase
(SOD) and glutathione peroxidase (GSH-Px), represent the major antioxidative defense mechanisms
in protecting the cells against increased ROS. Superoxide dismutase catalyzes the partitioning of the
superoxide radical (O2

−) into hydrogen peroxide, which is subsequently reduced to water by the
GSH-Px enzyme. In cows, a high SOD activity on the day of calving has been associated with a higher
degree of OS due to a lower antioxidant capacity [30]. The activity of the GSH-Px enzyme relies on the
body selenium concentration. In addition to serving as a body antioxidant, selenium is required for
the maintenance of other relevant biological functions, such as immune function, thyroid hormone
metabolism, and reproduction [31,32].

Conversely, the proteins that afford protection against RNS under metabolic stress conditions
remain unknown [28]. Several enzymes responsible for resistance to nitrosative stress have been
identified through genetic studies of bacteria, including E. coli, Salmonella enterica serovar Typhimurium,
and Mycobacterium tuberculosis or of the yeast, Saccharomyces cerevisiae [33], although a single domain
haemoglobin (SdHb) and the peroxiredoxinlike protein, Prx3, seem to display a high reactivity against
RNS species in infections by Helicobacter pullorum [34].

During pregnancy, feed is consumed, and digested products are assimilated and partitioned in
a process governed by a physiological rank; meeting maintenance requirements is the top priority
and secondary uses of absorbed nutrients are for productive functions, such as milk synthesis or fetal
development. Further, on a short-term basis, body reserves can be replenished or mobilized to support
the hierarchical goals of nutrient trafficking [17].

The metabolic demands imposed on the cow by colostrum production and the onset of lactation
far exceed the demands of the fetus. Metabolic adaptations to lactation are initiated in late pregnancy,
especially during the close-up dry period. In general, the dry period is the critical time between
lactation in which a cow’s mammary gland remodels and regenerates in preparation for the ensuing
lactation. During this time, high-producing dairy cows are subject to stressors, such as an abrupt
cessation in milking, mammary gland discomfort, and physiological imbalances, such as hormonal
dysregulation and changes in the concentration of biomarkers of nutrient utilization, OS, and
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inflammation [35,36]. These changes have important effects on the immune function, productivity, and
health status of periparturient animals [37].

Nevertheless, these adaptations vary widely among individual cows [17]. Thus, high-yielding
cows direct a greater portion of absorbed nutrients to the mammary gland for milk synthesis. In fact,
previous reports point out that the estimated feed intake of the highest producing dairy cows on
commercial farms is commonly incorrect in relation to concentrate feeding, and errors of more than
50% in feed intake are sometimes found [5]. Thus, the high crude protein (CP) content in the ration
of pregnant cows near parturition increases urea levels, closely connected with the development of
a nitrosative stress status [29], with detrimental consequences in animal health.

On the other hand, the body condition score (BCS) determines the greater or lower predisposition
to OS at calving. The study of Bernabucci et al. [30] indicates that cows with a high BCS were prone to
OS status. Indeed, dairy cows with a body condition score > 3.5/5 are sensitive to OS and metabolic
disorders during the transition period [38]. However, the results and recommendations made by
different authors vary widely and are often contradictory. This may be due to many factors, like diet,
specific requirements for certain nutrients, breed, or environmental conditions [5]. In addition to BCS
at calving, the degree of BCS change around calving is also a determining factor. Various studies have
documented that periparturient cows with greater BCS loss have higher non-esterified fatty acid (NEFA)
concentrations and OS than those with lower BCS loss throughout the periparturient period [39–41].

BCS loss is associated with fat and protein breakdown. Thus, increasing the catabolic pathways
in order to generate energy from lipids and amino acids. Lipid peroxidation is one of the important
consequences of oxidative stress [1,4,27]. Lipid peroxidation is known to be a free radical chain reaction,
which forms lipid hydroperoxides and secondary products. The latter are highly reactive and have
been shown to interact with many biological components, such as proteins, aminoacids, amines,
or DNA [5]. Mitochondrial DNA (mtDNA) is not protected by proteins, such as histones, so it is more
susceptible to damage from OS than nuclear DNA. Damaged mtDNA can result in a decline of mtRNA
transcription and lead to dysfunction of mitochondrial biogenesis [38] and uncontrolled inflammation
due to dysregulated NLRP3 inflammasome activity [42]. Cellular/membrane fatty acids are highly
susceptible to oxidation, which generates lipid radicals that can act on adjacent cellular lipids, creating
a positive feedback loop that can result in cell damage and death [16,18,26]. Therefore, elevated serum
NEFA concentrations due to excessive lipomobilization may enhance OS [18]. However, the level
at which ROS result in tissue damage and increased disease susceptibility is still unknown [43].
Excessive adipose tissue mobilization is a hallmark of the transition period in dairy cows developing
a metabolic stress situation that disrupts physiological homeostasis [3,16], and is related to the degree
of OS experienced by the animals [39–41]. Indeed, decreasing OS through prepartum antioxidant
supplementation resulted in improved glucose tolerance in early lactation [44], thus suggesting that
when OS is reduced, nutrient utilization might also improve.

During the transition period, dairy cows also experience immune dysregulation, which increases
their susceptibility to infectious and metabolic diseases. Although both endocrine and metabolic
factors contribute to immune dysregulation during this period, the onset of lactation is likely the
main contributing factor [15,45]. Additionally, the elevated NEFA and beta-hydroxybutyrate (BHB)
concentrations from excessive lipomobilization, and hypoglycemia, as glucose is required for immune
cell function, are important contributors to the periparturient immune dysregulation. Glucose is vital
for proper metabolic function and immunity because it is the main metabolic fuel for many of the
immune cells [46]. Low concentrations of glucose have been linked to a less effective pathogen-killing
oxidative burst from polymorphonuclear neutrophils and are often seen at the same time as decreases
in GSH concentrations [12], both of which impair host defenses. The stability of serum glucose
concentrations in the dry period, with closely controlled nutrition, is then of particular interest [4,37]
preventing reductions in maternal serum glucose due to the glucose needs of the fetus.

Nevertheless, this pro-inflammatory condition during the transition period could not be
considered from a negative point of view, even if the periparturient cow has no clinical signs of
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disease [47,48]. In fact, inflammation aids in facilitation of parturition [49], and may also play a role
in homeorhetic adaptations to the onset of lactation [50]. However, excessive and dysregulated
inflammation predisposes dairy cows to metabolic and infectious diseases [18]. It is likely that excessive
lipomobilization and OS contribute to excessive and dysregulated inflammatory responses during
the transition period. In humans, this is associated with non-sterile inflammation due to NLRP3
inflammasome activation [51]. However, further research is needed to understand the role of the
NLRP3 inflammasome in the pathophysiology of cattle diseases.

The peripartal inflammatory response is characterized by an increase in the production of positive
acute phase proteins, such as haptoglobin and serum amyloid A, and a concomitant decrease in
the production of negative acute phase proteins, such as albumin [47]. At the level of the liver,
the well-established triggers of these responses are the proinflammatory cytokines, interleukin
(IL) 6, IL-1, and tumor necrosis factor alpha (TNFα) [52]. Increased inflammatory and acute phase
protein concentrations were also demonstrated in the adipose tissue of cows with higher rates of
lipolysis [39,53]. Metabolic factors that contribute to immune dysregulation during this period include
products of excessive lipomobilization and hypoglycemia, increasing disease susceptibility. Different
dietary strategies have attempted to control lipomobilization in dairy cows. However, it is important to
consider that large individual variation exists among cows on the degree of lipid mobilization [40,54],
and therefore this is not only dependent on the diet fed. Cows overfed energy during the dry period
have higher concentrations of NEFA and BHB compared with cows fed a controlled-energy diet
prepartum. The reason for an increase in blood NEFA concentrations at the level of adipose tissue
in cows overfed energy has not been fully elucidated. Initially, it was hypothesized that cows with
high BHB concentrations suffered from tissue-specific decreased insulin sensitivity [55], leading to
higher rates of adipose tissue mobilization in the postpartum period. Also, cows losing more body
weight postpartum showed decreased adipose tissue insulin sensitivity compared to those losing less
weight [39]. However, Mann et al. [35,56] considered that differences in serum concentrations of NEFA
between cows overfed energy prepartum and high blood concentrations of BHB are likely due to
greater NEB postpartum reflected in lower circulating concentrations of glucose and insulin and an
increase in the total amount of mobilized adipose tissue mass rather than due to changes in adipose
tissue insulin signaling.

Additionally, elevated RNS are also found at this time as a consequence of high protein content
in the ration. Agents that lead to protein oxidation include reagents, such as reduced transition
metals, such as Fe2+ or Cu+, activated neutrophils, and by-products of lipid and free amino acid
oxidation. It has been demonstrated that an increase in dietary concentrate content and a reduction in
dietary neutral detergent fiber (NDF) content are associated with an increase in ruminal endotoxins,
which may stimulate the production of proinflammatory cytokines, ROS, and bioactive lipids [28].
On the other hand, multiparous and primiparous animals differed significantly in serum α-tocopherol
concentrations, with primiparous animals exhibiting constantly higher values than multiparous cows,
associated to the different feeding strategies, such as keeping heifers on pasture for longer periods of
time [57]. Indeed, pasture feeding gives higher vitamin E consumption than feeding conserved silage
to housed animals [58].

To summarize, cows may develop metabolic stress if they fail to physiologically adapt to the
profound increase in nutrient requirements associated with fetal growth, parturition, and lactogenesis
during this period [16]. This status is intrinsically linked and results in immune and metabolic
derangements that are associated with an increased risk of metabolic and infectious disease during
the transition period [16]. In fact, 75% of disease in dairy cows occurs within the first month of
lactation [10]. The influence of OS in ruminants’ health in the dry period is a relatively recent field
of research [59] and the possible relationship between the ruminal activity and OS is being studied.
Undesirable fluctuations in metabolites and impaired immune defense mechanisms near parturition
can severely affect cow health and have residual effects on performance and longevity [60].
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2.2. Calving: Changes Taking Place at the Onset of Lactation that Contribute to Oxidative Stress

Over the last decade, numerous studies were conducted to determine the optimal duration of
the dry period length and management strategies to minimize metabolic disorders in high-producing
dairy cows. Many studies reported that shortening or omitting the dry period improve postpartum
energy balance because of a decrease in milk production or an increase in DMI after calving, reducing
the risk of ketosis in early lactation [61,62]. However, there is still some controversy regarding the effect
of omitting the dry period in the cows’ oxidant status. Mantovani et al. [62] reported no difference
in concentrations of malondialdehyde, a product of lipid peroxidation, between dried-off and not
dried-off cows. However, malondialdehyde has been criticized as a biomarker of OS because only
a fraction of the quantified malondialdehyde is actually generated in vivo [43,63]. Conversely, cows in
which the dry period was omitted showed a more pro-oxidant redox balance than cows experiencing
a common 60-day long dry period when the oxidant status was assessed by measuring reactive oxygen
metabolites and paraoxonase, an antioxidative enzyme [61]. Nevertheless, both studies reported that
omitting the dry period resulted in an improved energy balance and no differences in the incidence of
postpartum disease when compared to the traditional 55-to-60-day dry period [61,62].

Regarding the dietary changes associated with the dry period, the study of Jolicoeur et al. [64]
indicates that reducing the number of diet changes before calving could facilitate ruminal adaptation
to the lactation diet and improve energy balance postpartum. Indeed, when dietary changes occurring
while the cow transitions from the dry to the lactating states are not done correctly, cows are at
an increased risk of rumen health disorders, among which subacute rumen acidosis (SARA) is the most
common. SARA usually develops in early lactating cows when there is a sudden inclusion of large
amounts of concentrates in the diet to provide more energy to the animals as their energy demands
to support lactation increase. However, when the dietary change is abrupt and cows develop SARA,
the negative energy balance is exacerbated as it decreases intake and promotes a pro-inflammatory state.
Abuelo et al. [65] showed that the concentration of lactic acid isoforms (a ruminal activity biomarker)
is associated with the oxidant status of periparturient dairy cattle. Nevertheless, different roles
were identified for each enantiomer, i.e., antioxidant for L-lactate and pro-oxidant for D-lactate.
These findings are the first step in studying the effect of different nutrition strategies that could
modulate the fermentation processes that occurs within the rumen and how these affect redox signaling
and systemic OS.

Independently of a proper metabolic adaptation to the onset of lactation, there are registered high
concentrations of ROS although these can be maintained by a short period of time if there are enough
antioxidants that can cope efficiently with them [6]. Hence, the ratio of total oxidants to antioxidants
provides a more accurate representation of the redox status of the animals. Indeed, previous
contradictory findings regarding the redox status during the transition period may be a result of
expressing oxidants and antioxidants separately. Hence, Celi [43] proposed using the ratio of pro- to
antioxidants to monitor shifts in the redox balance of dairy cows. This was assessed by Abuelo et al. [2],
who studied the redox status of dairy cows throughout the transition period using the oxidant status
index (OSi), which describes the ROS to serum antioxidant capacity ratio. The authors concluded
that the OSi quantifies changes in the redox balance more accurately than evaluating oxidants and
antioxidants separately, as it integrates both components of redox balance.

However, ROS can also be produced because of inflammation, as they play an essential role in
many inflammatory processes, such as the production of immunoregulatory factors, intra-cellular
killing mechanisms, and production of lipid mediators [16]. Furthermore, ROS may also increase
inflammation by activation of nuclear factor kappa-B (NF-κB) [19]. On the other hand, there are
also several factors that may contribute to the reduced antioxidant capacity observed during the
transition period. Firstly, increased production of ROS likely contributes to depletion of antioxidant
mechanisms [66] and possibly oxidation-induced inactivation of antioxidant enzymes’ systems [67].
Secondly, there is a decrease in vitamins and minerals involved in the antioxidant defense system
during this period, which is in part attributable to a loss in colostrum. Reduced hepatic function
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during this period may also contribute to a decreased antioxidant capacity, as the liver is responsible
for the production of substances involved in the antioxidant system. Different studies suggest that
a significant worsening occurs of both inflammatory and metabolic indices in transition cows after
the administration of interferon-α (IFN-α) [68]). Additionally, Bradford et al. [69] showed that
daily administration of tumor necrosis factor alpha (TNFα) to late-lactating cows promotes the
accumulation of triglycerides in the liver. Thus, increasing the risk of fatty liver in early lactation
when lipomobilization increases. Finally, the mRNA abundance of IL-6 is increased in early-lactation
cows with induced ketosis [70]. This suggests that IL-6 may play a key role in the liver function
dysfunction typically seen in periparturient cows. Hence, a clear correlation does exist among immune
dysregulation, disease occurrence, inflammation, and metabolic stress [37].

In addition to the endogenous generation of ROS in metabolic processes, various environmental
factors can also contribute to increasing ROS in dairy cows. Environmental heat stress has several
detrimental effects on dairy cows’ health and wellbeing [71], including increased OS [72]. Hence, heat
abatement strategies, especially during the late gestation and early lactation, are needed.

Dairy cattle are more susceptible to a variety of metabolic and infectious diseases during the
transition period, probably associated directly to numerous genetic, physiological, and environmental
factors that can compromise the cow’s immunological defenses [73]. The role of antioxidants in health
and disease was studied extensively in animal medicine [74]. Multiple diseases most commonly occur
during the periparturient period when dairy cows are known to experience OS, assuming more than
half of the health expenditure of the productive life, adding other expenses for the farmer that are
difficult to quantify, such as the loss of milk production, and the decrease in market value, among
other consequences.

2.3. Preventing Oxidative Stress: The Role of Antioxidants

In the literature, there are several strategies that have been proposed and tested as a method
to avoid the development or at least minimize the development of OS status during the transition
period [3,58,75]. However, it should be noted that antioxidant supplementation has shown inconsistent
results on dairy cows’ health and production. Whilst most studies reported an improvement in health
status or productivity, some studies have also shown no effect or even detrimental effects. The review
of all the antioxidant supplementation studies is beyond the scope of this article and the readers should
consult some of the relevant review articles [3,58]. Here, we will only focus on the underlying principle
of most of these strategies: Increasing the animals’ antioxidant capacity so that it is better equipped to
counteract the increase in free-radical production.

To decrease impaired biological function due to damage to macromolecules by ROS, living
organisms have developed a complex antioxidant defense system. Endogenous antioxidants can
be divided into three major groups: Enzymatic antioxidants, nonenzymatic protein antioxidants,
and nonenzymatic low-molecular-weight antioxidants [74]. Of these, the nonenzymatic antioxidants
are primarily responsible for the antioxidant capacity of plasma. For example, the lipid-soluble
α-tocopherol (vitamin E) protects cell membranes from lipid peroxidation; ascorbic acid (vitamin C)
and β-carotene are able to quench singlet oxygen and peroxyl radicals and enhance the antioxidative
effect of α-tocopherol. Other vitamins, such as retinol (vitamin A), only show antioxidant activity
in vitro, but not in vivo [76]. Nevertheless, the study by LeBlanc et al. [77] demonstrated that in the last
week prepartum, a 100 ng/mL increase in serum retinol was associated with a 60% decrease in the risk
of early lactation clinical mastitis. In addition, the authors observed significant positive associations of
peripartum serum concentrations among α-tocopherol, β-carotene, and retinol.

In general terms, vitamins and certain trace minerals, such as selenium (Se), have been proven
to be effective in counteracting OS and the severity of several dairy cattle diseases, such as mastitis
or metritis, both through a direct antioxidant effect and by enhancing the immune response [3].
Most of the established nutritional requirements traditionally focus on deficiency situations and
there is now evidence that supplementation slightly above these reported requirements can improve
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animal health status and performance [3], as well as the quality of the final product [78]. Nevertheless,
some studies reported deleterious effects of excessive antioxidant supplementation, such as the
increase of odds for mastitis due to the increased production of ROS [79,80]. Hitherto, the level to
which antioxidant supplementation stops being beneficial and starts to be associated with harmful
consequences remains unknown. Hence, antioxidant supplementation strategies must be implemented
only to levels slightly above current recommendations unless strong scientific evidence is available to
support its inclusion at a higher rate.

Different antioxidants have been considered as preventive, such as dietary conjugated linoleic
acid (CLA). The proposed antioxidative effect of CLA is through its incorporation into body lipids and,
thus, reducing proportions of other polyunsaturated fatty acids, in particular arachidonic acid [81].
Different CLA isomers have shown antioxidative activity in vitro and in vivo in different species, such
as rats, mice, and hens, and CLA has been proposed also in dairy cows using five commercial CLA
products containing approximately 12% of cis-9,trans-11 CLA and trans-10,cis-12 CLA [57]. The authors
found that lipid peroxidation, in terms of thiobarbituric acid reactive substances concentration, differed
significantly, with CLA-supplemented animals exhibiting lower concentrations than control animals.
These results were in agreement with those found by Basirico et al. [82] in an in vitro model using
bovine mammary epithelial cells, concluding that CLA-induced de novo synthesis of glutathione
through enhanced γ-glutamyl cysteine ligase activity, protecting cells from oxidative damage.

Another way, exposed in the study of Osorio et al. [83], considers supplementation of basal diets
with rumen-protected methionine (Met), based on the hypothesis that increasing the supply of Met
could enhance liver functionality, minimizing the negative effects of fatty acid accumulation in the
liver soon after parturition [84]. Indeed, supplementation with Met indicates a beneficial effect on
postpartal cow performance due to a better immunometabolic status. In addition, the authors observed
that cows fed Met might have relied on other antioxidant sources, such as vitamin E in the form of
tocopherol or SOD, to neutralize and lower ROS concentrations arising from OS around parturition.

Clearly, nutritional management seems to be the natural way to enhance the health of dairy
cows, protecting the animal from an excessive production of ROS or antioxidant loss. In the last few
years, a great variety of studies have been performed in which the use of plant extracts has aimed at
strengthening the use of antioxidants (especially those products derived from plant extracts due its
richness in polyphenols) during the transition period in dairy cows to counteract the effects of OS,
giving an added value to the final product as a source of antioxidants for the human diet, with beneficial
effects in the gastrointestinal tract and other tissues [85,86]. The supplementation with polyphenols is
still a developing field in dairy cattle nutrition. Recent in vitro research has also shown antioxidative
effects of polyphenols in bovine cells [87,88]. Also, dietary supplementation has improved milk yield
and lowered liver concentrations of triacylglycerols and cholesterol [89]. However, more research
is still needed before these can be recommended for routine use on farms. Natural plant extracts as
a potential source of natural antioxidants is another interesting field to explore. They have the added
benefit of being perceived as a safe additive by consumers. However, the inclusion of any supplements
in the diet of ruminants must be done carefully and their effects supported by evidence. For example,
the administration of high dietary fat can result in adverse health events or even death [90].

The agricultural sector faces new challenges as it continues to intensify production and, therefore,
supplementation with natural antioxidants constitutes a challenge for nutritionists. However, given
their beneficial effects, not only in the animals’ health, but also in the quality of the final product and
the absence of residual contaminants, their use is warranted. Clearly, the use of natural antioxidants,
regardless of the production system, is perhaps one of the safest and most accepted nutritional
strategies by consumers in line with the concepts of green economy and food fortification. However,
further research is still needed to better determine the time when antioxidant supplementation is
most effective as well as providing evidence-based cut-off points for antioxidant supplementation in
dairy cattle.
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3. Neonatal Period

The neonatal period of dairy calves is another time of increased disease susceptibility.
High neonatal morbidity and mortality rates are consistent worldwide, making high calf loss rates
an international welfare problem [91,92]. In the US dairy industry, pre-weaning morbidity and
mortality rates are approximately 33% and 7–11%, respectively [93]. As newborn calves adapt to
the extra-uterine life, OS may contribute to increased disease susceptibility. However, redox biology
also plays an important role in several physiological processes at this stage [94]. As mentioned above
for the periparturient period, it is the balance between the generation of ROS and the antioxidative
capabilities of the animal that influence the development of OS and the subsequent development of
systemic and localized dysfunctions. In the next sections, we discuss different stages that lead to
increased oxidant status during the neonatal period, as well as the available knowledge linking OS in
calves with neonatal diseases and different prevention strategies.

3.1. In-Utero Conditions

The negative impact of metabolic stress on the immune function, health, and production of
dairy cattle during this period is well established [1,95]. Metabolic stress starts several weeks before
calving [18,96] and therefore can potentially affect the fetus. There is evidence in other non-ruminant
species that maternal hypothalamic-pituitary-adrenal axis stress during gestation influences fetal
development and exerts carryover effects on the offspring [97,98]. Studies in humans and murine
models demonstrated that suboptimal intrauterine conditions during critical periods of development
leads to changes in tissue structure and function [99], which may have long-term consequences on the
offspring’s physiology and disease susceptibility [97,98]. Studies in ruminants have also demonstrated
that exposure to heat stress and restricted or excessive energy intake during late gestation affects
the immune and metabolic function of the offspring [100–104]. Moreover, Monteiro et al. [105]
demonstrated that the detrimental effects of in-utero exposure to heat stress on milk yield and
reproductive performance extend to at least the first lactation of the offspring. Thus, prenatal conditions
have the potential of significantly impacting the productivity and health status of replacement heifers.

A recent study by Ling et al. [106] compared the metabolic status and lipopolysaccharide
(LPS)-induced whole blood TNFα release between calves born to cows that experienced different
degrees of maternal metabolic stress during the last month of pregnancy. They found that calves born
to cows with higher NEFA or OSi showed lower bodyweights at birth and throughout the study, whilst
no association between any of the maternal groups and average daily gain at 4 weeks of age was
identified. Serum concentrations of ROS were higher in calves exposed to higher maternal NEFA
concentrations or OSi when compared to calves born to cows with lower values of these biomarkers.
Calves exposed to high maternal OS also had higher circulating concentrations of haptoglobin and
TNFα, indicating greater basal inflammatory responses when compared to calves born to cows with
a lower OSi. In contrast, LPS-induced inflammatory responses were less robust in calves exposed to
higher maternal biomarkers of inflammation or OS, suggesting compromised immune responses to
microbial agonists. Collectively, their results suggest that prenatal exposure to maternal parameters
of metabolic stress (altered nutrient utilization, dysregulated inflammation, and OS) may adversely
impact some metabolic and inflammatory responses of the offspring that could influence disease
susceptibility. Hence, the metabolic stress experienced by periparturient cows not only predisposes
the cows to transition cow disorders, but also has carry-over effects on its offspring. However, further
studies are still required to determine the clinical impact of these carry-over effects in the health and
growth of the offspring to allow the development of adequate management practices. Nevertheless,
some studies supplementing late-gestation cows with limiting amino acids or trace minerals have
showed promising results in improving the immunometabolism of newborn calves [107], although the
impact of such interventions in reducing calf morbidity and mortality rates remains unexplored.

The abovementioned study focused on the last month of pregnancy because this is the time
when maternal periparturient immune dysfunction starts and the period with the fastest proliferation
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of immune cells in the bovine fetus. Nevertheless, to the best of our knowledge, it still remains
unexplored whether other critical windows of maternal metabolic stress exposure that can compromise
the development of the fetal immune response exist. Similarly, it still needs to be elucidated in dairy
cattle if OS is a key factor in adverse pregnancy outcomes as it has been reported in humans [108,109].

3.2. The Oxidative Challenge of Birth

After birth, mammals are exposed for the first time to an oxygen rich environment once they start
to breathe and this results in an increase in the production of ROS [110,111]. In humans, a brief oxygen
exposure at birth induced a relatively long-lasting OS status [111]. Hence, birth-associated OS might
have relevant impacts in calves’ cell growth, development, and death. Similar findings were identified
in calves. Gaal et al. [8] found that the concentration of ROS in calves’ blood was 30% higher than
in their dams shortly after birth and before colostrum ingestion. Given that pulmonary respiration
and exposure to oxygen following birth are essential to maintain life, interventions to counteract
birth-associated OS should focus on increasing the calves’ pool of antioxidants.

3.3. Oxidant Status during the Pre-weaning Period

A few studies have investigated the shifts in oxidant status during the first weeks of life in dairy
calves. Gaal et al. [8] noted that the blood concentration of free radicals was lower than day 1 at days
3 and 7 of age, but increased again at 2 and 3 weeks of age. Conversely, other studies did not find
an age effect in the concentration of ROS [7,9]. However, these studies used different biomarkers
to assess pro-oxidant status. Nevertheless, Abuelo et al. [7] indicated a lower antioxidant status of
newborn calves while they were being fed milk replacer, but these changes in antioxidant potential
were not found in the study by Ranade et al. [9], where calves were fed whole milk until weaning.
Milk replacers were found to have a low antioxidant capacity [112]. Thus, calves fed milk replacer
might benefit from additional antioxidant supplementation.

Of particular interest is to note that biomarkers of the oxidant status in calves were higher than
those of periparturient cattle (Figure 2) [7,8]. Hence, OS might play a very significant role in neonatal
calf health. Indeed, OS is known to play a key role in the initiation and maintenance of important calf
diseases, such as diarrhea or pneumonia [75,113]. The readers are encouraged to consult the review by
Celi [59] for a detailed description of the role of OS in disorders of ruminants.
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The index is calculated as the ratio between reactive oxygen species and total antioxidant defenses.
Hence, the higher the value of the index, the higher the imbalance of pro- to antioxidants. The dashed
gray line represents the highest average index value found in periparturient dairy cattle. SEM: standard
error of the mean. a, b Means with different letters are statistically different (P < 0.05) Figure adapted
from [7].
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3.4. Preventive Measures and Future Research

As for periparturient cattle, several strategies exist to decrease the risk of OS in neonatal calves.
Below, we summarize some of the most common ones, identifying some of the gaps in knowledge that
are still present.

3.4.1. Maternal Supplementation of Antioxidants

Supplementation of antioxidants during the dry period slightly above National Research Council
(NRC) [114] requirements has shown beneficial effects for cow health and productivity [3]. However,
given the carry-over effect of maternal OS on neonatal metabolic and immune function, this practice
can also have beneficial effects in the offspring. However, research proving the effects of maternal
antioxidant supplementation on calf morbidity and mortality rates is, to the best of our knowledge,
non-existing to date.

In humans, antenatal supplementation of antioxidant vitamins and minerals has long been
a recommended practice to reduce OS at delivery [115,116]. Some studies in cattle have also
shown that dry-period antioxidant supplementation enhances the antioxidative profile of newborn
calves [117–119]. Nevertheless, various factors limit this route in cattle: (1) The epitheliochorial nature
of the ruminants’ placenta limits the types of antioxidants that can be transmitted transplacentally,
(2) dry dairy cattle are usually already supplemented with considerable amounts of some antioxidants
(e.g., selenium close to the US legal limit of 0.3 ppm) for the prevention of transition diseases,
and (3) excessive antioxidant supplementation can have downstream effects in the health of dairy
cattle [3,79,80] and has been linked with stillbirths in humans [120]. Hence, dry cows should not
receive antioxidants in amounts significantly exceeding the NRC [114] requirements.

3.4.2. Colostrum: A Source of Antioxidants, but also Pro-oxidants

The importance of colostrum ingestion to the health of the neonatal calf has been well-known
for several decades [121]. However, this has been primarily attributed to the acquisition of passive
immunity (immunoglobulins) to fight infectious diseases, with calves experiencing failure of passive
transfer showing decreased survival rates on farms compared to those with adequate blood
immunoglobulin concentrations [122]. In addition to immunoglobulins, colostrum is also rich in other
beneficial substances, such as immune cells, growth factors, cytokines, etc. [123]. Given that colostrum
is the first meal that a calf should receive shortly after birth, its antioxidant content is important to
offset the birth-associated OS. However, compared to normal milk, colostrum has the same amount of
oxidants, but less antioxidants, with the concentration of the latter increasing progressively from the
first milked colostrum onwards [124,125]. Hence, colostrum provides antioxidants to calves, but is
also a source of pro-oxidants. Nevertheless, newborn calves seem to be able to counter effectively the
birth-associated OS [8], with calves showing a gradual decrease in oxidant status biomarkers [126–128].
Indeed, Abuelo et al. [7] found that 2 h after colostrum ingestion, calves showed the lowest OSi values
of the first months of life. To the best of our knowledge, however, no study has hitherto compared the
redox balance between calves that ingest colostrum shortly after birth with those experiencing delayed
colostrum ingestion. Hence, it remains unexplored whether this gradual decline in OS following birth
is due to the transfer of antioxidants via colostrum, the activation of antioxidative pathways in the
calves, or a combination of both.

In addition, colostrum redox balance seems to play a role in immunoglobulin absorption. Selenium
supplementation of colostrum increases immunoglobulin absorption [127], and the colostrum redox
profile was significantly associated with calves’ serum immunoglobulin concentrations [7]. However,
none of these studies demonstrated which mechanisms might be implicated and therefore further
research is needed. Also, a negative association between colostrum immunoglobulin content and
antioxidant capacity has been reported [7]. The authors attributed this finding to a consumption of
antioxidants in protecting from peroxidation the highly-susceptible immunoglobulins during the
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colostrogenesis process. Therefore, supplementation of colostrum with antioxidants seems to have
additional benefits to the calf beyond counteracting the birth-associated OS.

Also, there is now a plethora of research indicating the long-term impact of early-life events and
management in the calves’ productive life once they reach maturity [128]. Hence, studies investigating
the long-term implications of supplementation of colostrum with antioxidants in the animals’ health
and productivity are also required.

3.4.3. Supplementation of Calves with Antioxidants

Other ways of increasing the antioxidant potential of calves are the parenteral or dietary
administration of vitamins and trace elements. This is a routine management practice in many
farms within the first days of life. It has been well-stablished that vitamin supplementation of dairy
calves can increase their performance, metabolism, and immune system [129–132]. Parenteral trace
mineral supplementation (zinc, selenium, manganese, and copper) at 3 and 30 days of life resulted
in increased neutrophil function and GSH-Px activity and decreased incidence of health disorders
when compared to the control group [133]. Also, trace mineral supplementation concurrent with
a polyvalent viral vaccine administration at 30 days of age resulted in improved cell-mediated immune
responses [134]. However, whether this observed increase improves the vaccine’s protection against
infection remains unknown.

It is important to note, however, that the NRC [114] requirements were initially developed to
prevent deficiencies and there are no clear guidelines of the levels of antioxidant supplementation
for optimized performance. Considering that it is likely that, as happens in adult cows, excessive
antioxidant supplementation can have detrimental effects on calf health and performance, caution
must be exerted when supplementing antioxidants above levels deemed safe by the scientific literature.
Indeed, there are reports of toxicosis due to excessive supplementation [135]. This might be even more
relevant for those antioxidants, such as selenium, that can be transferred via the placenta when the
dams are also supplemented.

4. Conclusions

To sum up, redox balance is essential for several biological processes of dairy cows and calves.
However, when an imbalance exists between the production of pro-oxidants and the animals’
antioxidant abilities, OS can develop, and this has been associated with immune and metabolic
dysfunction. Also, in pregnant animals, the degree of OS experienced not only puts the dams at
risk of subsequent diseases during the onset of lactation, but also has an impact on the offspring.
However, antioxidant therapy can protect against OS-conditions, and several methods for the delivery
of antioxidants are routinely used in dairy farms. Nevertheless, the findings have been inconsistent
at times, with some studies not showing an effect. Hence, more research is still needed to provide
evidence-based guidance on the levels and timing of supplementation that provide an effective
improvement of the animals’ health status.
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