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Abstract: Neisseria meningitidis, an obligate pathogenic bacterium in humans, has acquired different
defense mechanisms to detect and fight the oxidative stress generated by the host’s defense during
infection. A notable example of such a mechanism is the PilB reducing system, which repairs
oxidatively-damaged methionine residues. This review will focus on the catalytic mechanism of
the two methionine sulfoxide reductase (MSR) domains of PilB, which represent model enzymes
for catalysis of the reduction of a sulfoxide function by thiols through sulfenic acid chemistry.
The mechanism of recycling of these MSR domains by various “Trx-like” disulfide oxidoreductases
will also be discussed.
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1. Introduction

Neisseria meningitidis is the infectious agent responsible for meningitis and septicemia.
Its pathogenicity depends on its ability to resist activated oxygen and nitrate species produced by host
macrophages in response to infection. For this, N. meningitidis has developed multiple antioxidant
defense systems, including the PilB reducing system, which is capable of repairing the sulfoxide form
of oxidatively-damaged methionine residues.

The pilB gene was initially identified in Neisseria gonorrhoeae in 1988, and its name derives from
early studies that suggested that PilB was a transcriptional regulator inhibiting pilin synthesis [1–3].
However, this hypothesis was discredited in 2002 when PilB was shown not to play any role in
pilin expression. Indeed, the transformation of this strain with a plasmid allowing the production of
PilB under the control of an isopropylthiogalactoside (IPTG)-dependent promoter, had no effect on
piliation [4].

Analysis by protein sequence identity of publicly-available translated genome data, shows that
the PilB protein is encoded by only a few bacterial genomes. These include human commensal and
pathogenic bacteria such as Neisseriae (N. meningitidis, N. gonorrhoeae, N. lactamica and N. cinerea),
as well as the bacteria present in dental plaque, such as Fusobacterium nucleatum and Kingella oralis,
and the non-pathogenic extremophile bacterium Psychrobacter cryohalolentis (Figure 1). The moderate to
high sequence conservation (sequence identities between 47 and 98%) and the environmental proximity
of some of these bacteria, suggest that the gene was acquired by horizontal transfer between species,
conferring the capacity to fight oxidative stress.

PilB is composed of three domains: a thioredoxine (Trx)-like N-terminal domain (N-ter) with
disulfide oxidoreductase activity, and two domains (named A and B) with methionine sulfoxide
reductase (MSR) activity. In Neisseriae, two protein forms derived from the pilB gene have been
characterized: a truncated cytoplasmic form called PilBAB containing only the two MSR domains and
a periplasmic form called PilB, incorporating the three domains [4] (Figure 2). From heterologous
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expression studies in Escherichia coli, the truncated form of N. meningitidis PilB has been shown to be
produced by an internal reinitiation mechanism during translation, at an AUG codon corresponding
to the Met195 residue of the whole protein [5].
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Figure 1. Multiple-sequence alignment of PilB homologues in N. meningitidis (PilBNm), N. gonorrhoeae
(PilBNg), N. lactamica (PilBNl), N. cinerae (PilBNc), Fusobacterium nucleatum (PilBFn), Kingella oralis
(PilBKo) and Psychrobacter cryohalolentis (PilBPc) and secondary structures of N. meningitidis N-ter
(2fy6), MSRA (3bqe) and MSRB (3hcg) domains. MSRAB fusion of Treponema denticola (5fa9) is also
presented. The amino acid numbering is based on N. meningitidis PilB. Conserved residues at 80% are
indicated in black on yellow boxes. Stars indicate residues with alternate conformations. The linker
regions between N-ter and MSRA, and MSRA and MsrB are located between residues 176 and 195,
and 357 and 382, respectively. The alignment was carried out using ClustalW [6], and the figure was
prepared using ESPript (http://espript.ibcp.fr [7]). MSR: methionine sulfoxide reductase.

http://espript.ibcp.fr
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Studies by the Seifert group have shown that the PilB protein of N. gonorrhoeae, which is probably
located on the outer membrane within the periplasm, is involved in the resistance to oxidative stress,
as it is necessary for the survival of bacteria in the presence of H2O2 [4]. This activity is in all likelihood
conferred by its MSR domains, as has been demonstrated for MSR enzymes from other bacteria [8].
However, the PilB system exhibits several peculiarities relative to these discrete homologues: the
location of MSRs in both the cytoplasm and the periplasm, the fusion of the MSRA and MSRB
activities into a single protein, and the presence of an essential N-ter domain. The MSR-dependent
repair mechanisms of N. meningitidis PilB have been extensively studied in vitro and in this review,
we summarize the molecular mechanism of sulfoxide reduction by MSR domains, the role of the N-ter
in the periplasm, and information concerning the periplasmic recycling partners.
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Figure 2. The N. meningitidis pilB ORF contains a signal peptide (black) and the coding sequences
for the three functional domains (green for N-ter, cyan for MSRA and orange for MSRB). The three
domain protein (PilB) is located in the periplasm, whereas the cytoplasmic form contains only the two
MSR domains (PILBAB). The structures of the isolated N-ter (pdb 2fy6), MSRA (pdb 3bqe) and MSRB
(pdb 3hcg) domains were generated using the PyMol program (DeLano Scientific LLC, San Carlos,
CA, USA).

2. Methionine Sulfoxide Reductase Activities of PilB

2.1. MSRs of N. meningitidis

MSRs catalyze the reduction of methionine sulfoxide (Met-O) to methionine (Met) in the presence
of reducing agent. To date, three structurally distinct classes of MSRs have been characterized:
MSRA, MSRB and fRMSR. MSRA, MSRB and fRMSR are cysteine-containing enzymes which display
different substrate specificities: MSRA and MSRB specifically reduce the S- and R-isomers of free or
peptide-bound L-Met-O, respectively, whereas fRMSR (for “free-R-MSR”) only reduces the R-isomer of
free Met-O, with high selectivity for L-Met-R-O [9–11]. The oxidation of methionine residues produces
both diatereoisomers of L-Met-O, referred to as R and S, due to the presence of a second asymmetric
center on the sulfur atom of the sulfoxide function. Thus, the presence of both MSRA and B activities
is necessary to allow for full reduction of L-Met-R, S-O back to L-Met.

In Neisseriae, PilBAB and PilB carry both MSRA and B functions, while an isolated cytoplasmic
protein exhibits an fRMSR activity, the role of which is not known [12]. The chemical and catalytic
mechanism of the MSR domains of PilB as well as their three-dimensional structures have been
extensively studied, as they represent model enzymes for classical two cysteine MSRs, as discussed in
previous reviews [13–16]. The results are thus only summarized briefly here.
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2.2. Catalytic Mechanism of MSR Domains

The PilB MSRA and MSRB domains are typical two-cysteine MSRs, which act by a common
three-step mechanism involving sulfenic acid chemistry (Figure 3) [17,18]. In the absence of a reducing
agent, the reduction of Met-O leads to the successive formation of a sulfenic acid intermediate on the
catalytic cysteine residue and a disulfide between the catalytic and regenerating cysteine residues,
concomitant to the release of a water molecule. The rate of the first step has been shown to be
very fast for both enzymes (790 s−1 for MSRA, 85 s−1 for MSRB, with Ac-L-Met-R-O-NHMe as a
model substrate), such that the rate-limiting step of the reaction in the absence of reducing agent is
disulfide bond formation. This observation shows that although MSRs A and B have clearly distinct
3D structures [19–21], their actives sites are adapted to efficiently catalyze the reduction of a sulfoxide
by a thiol, suggesting a convergent evolution.
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Figure 3. The three-step mechanism of MSRs. In step I, the formation of the MSR/Met-O Michaelis
complex allows the nucleophilic attack of catalytic Cys on the sulfur atom of the sulfoxide function of
Met-O, leading to the formation of a sulfenic acid intermediate with concomitant release of Met. In step
II, the nucleophilic attack of the regenerating Cys on the sulfur atom of the sulfenic acid leads to the
formation of a disulfide bond and the release of a water molecule. In step III, the regeneration of the
active site in its fully reduced state proceeds via the reduction of the MSR disulfide bond by reduced
Trx. For N. meningitidis MSRA and MSRB, the catalytic and regenerating Cys are C51 and C198, and
C117 and C63, respectively.

In terms of catalysis, the mechanism involves the deprotonation of the catalytic Cys and
protonation of the oxygen atom of the sulfoxide function of the substrate, in order to facilitate the
nucleophilic attack of the thiolate and the formation of a sulfurane-type transition state (Figure 4).
These proton transfers are achieved via the participation of a general acid base catalyst bearing
a carboxylate or imidazole functional group for MSRA and MSRB, respectively. It is generally
accepted that the formation of the sulfurane is rate-determining, and that this species evolves into
a sulfonium cation which is ultimately attacked by an activated water molecule to produce the
sulfenic acid intermediate, although definitive experimental data to support this hypothesis are
still lacking [15,22–24]. Overall, this catalytic strategy depends on the strong polarization of the
sulfoxide function, which facilitates both the transfer of the oxygen atom and the reduction of the
sulfoxide function.

In the presence of the reducing agent, the regeneration of the reduced form of MSRs is achieved
through the reduction of the disulfide bond by a disulfide oxidoreductase exhibiting a Trx fold.
Indeed, the cytoplasmic PilBAB use Trx, whereas this role is played by the N-ter in the periplasm
(see Section 3). For isolated MSRA or MSRB enzymes, reduction by Trx is the rate-limiting step
of the overall mechanism. For both disulfide oxidized MSRA and MSRB, this recycling process
involves the initial formation of a productive oxidized MSR/reduced Trx complex, followed by the two
electron-transfer chemical step leading to the accumulation of the reduced MSR/oxidized Trx complex,
whose dissociation is overall rate-limiting [13,25,26]. This mechanism implies that specific structural
recognition should occur between oxidized MSRs and reduced Trx, which is likely a prerequisite for
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the efficiency of the oxidoreduction process. Although the structure of a covalent PilBAB-Trx complex
has not been solved to date, the inter-partner interface is likely to involve the limited but highly
complementary hydrophobic surfaces typical of redox partners that exhibit short-lived interactions [27].

Antioxidants 2018, 7, x 5 of 10 

transfer chemical step leading to the accumulation of the reduced MSR/oxidized Trx complex, whose 
dissociation is overall rate-limiting [13,25,26]. This mechanism implies that specific structural 
recognition should occur between oxidized MSRs and reduced Trx, which is likely a prerequisite for 
the efficiency of the oxidoreduction process. Although the structure of a covalent PilBAB-Trx complex has 
not been solved to date, the inter-partner interface is likely to involve the limited but highly 
complementary hydrophobic surfaces typical of redox partners that exhibit short-lived interactions [27]. 

 
Figure 4. Proposed scenario for formation of the sulfenic acid intermediate in MSRA (A) and MSRB (B). 
In the Michaelis complex, the oxygen of the sulfoxide function of Met-O (in blue) is stabilized by 
hydrogen-bonding interactions. The transfer of a proton from the acid catalyst (in red) leads to the 
formation of a sulfurane, followed by that of a sulfonium cation and a water molecule via protonation. 
The activated water molecule then attacks the Cys sulfur of the sulfonium cation to generate the 

Figure 4. Proposed scenario for formation of the sulfenic acid intermediate in MSRA (A) and MSRB
(B). In the Michaelis complex, the oxygen of the sulfoxide function of Met-O (in blue) is stabilized
by hydrogen-bonding interactions. The transfer of a proton from the acid catalyst (in red) leads
to the formation of a sulfurane, followed by that of a sulfonium cation and a water molecule via
protonation. The activated water molecule then attacks the Cys sulfur of the sulfonium cation to
generate the sulfenic acid and Met. For N. meningitidis MSRA and MSRB, the catalytic cysteine, general
acid catalyst and proton donor are Cys51, the carboxylate of Glu94 and Tyr82 or Tyr134, and Cys 117,
the imidazolium ring of His103 and a water molecule, respectively. The representations of the active
sites of C51S MSRA (pdb 3bqf) and C117S MSRB (pdb 3hch) in complex with Ac-L-Met-S-ONHMe and
Ac-L-Met-R-ONHMe, respectively, were generated using the PyMol program (DeLano Scientific LLC).
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2.3. Substrate Specificities of MSR Domains

The numerous kinetic and structural studies carried out on MSRs domains have not yet permitted
the identification of all the molecular factors underlying their substrate specificities. Nonetheless, it is
clear that the presence of the sulfoxide function is a prerequisite for binding to both MSRs. The active
sites of MSRA and MSRB are both located on the surface of the enzymes and contain two mirror-image
sub-sites which confer stereospecificity for the R or S stereoisomer of L-Met-O: (1) a hydrophilic pocket
involving the stabilization of the protonated sulfoxide function of the substrate via hydrogen bonding;
and (2) a hydrophobic pocket consisting essentially of the side chain of a Trp residue, which stabilizes
the ε-methyl group of the substrate via its indole ring (Figure 4) [9,13,28,29]. The selectivity of the
enzymes for protein-bound Met-O versus free Met-O probably derives from a destabilizing effect,
due to repulsive interactions with the charged amino and/or carboxyl groups of the free amino acid.

2.4. Catalytic Efficiency of MSRA/MSRB Fusion

The fusion of MSRA and MSRB domains is not specific to PilB. Indeed, fusion proteins are
found in more than 46 bacteria including Treponema denticola, Streptococcus pneumoniae and Shewanella
oneidensis, for example, but the functional interest of such fusions remains poorly understood [30,31].
As mentioned earlier, due to their complementary stereospecificity, the presence of both MSR activities
allows the reduction and thus repair of both forms of oxidized Mets in proteins. The question rather
thus concerns the kinetic efficiency of the fusion protein compared to isolated enzymes.

The catalytic efficiency (kcat/KM) of PilBAB under steady-state conditions was in fact found to be
similar to that of the discrete enzymes in the presence of their preferred substrates. Thus, the fusion
does not significantly alter the catalytic efficiency of the MSRs, suggesting that the two function as
independent domains even within the context of PilB [18]. This contrasts with kinetic studies of other
MSRA/MSRB fusion proteins, which revealed an increase in catalytic efficiency relative to the discrete
enzymes (for example in S. oneidensis and T. denticola [30,31]). In the latter case, the higher catalytic
efficiency of the fusion protein derives from hydrogen bond interactions between MSRA and MSRB
and the linker lying between the two domains. Interestingly, this linker loop is about 13 residues
longer in PilB, suggesting that the precise way in which the MSRs are fused may differ between species
(Figure 1).

3. Recycling of MSR Activities within PilB

3.1. The N-ter Domain

In order for the catalytic activity to be regenerated, MSRs need to be reduced at the end of the
catalytic cycle, a function performed by Trx in the cytoplasm and the N-ter domain in the periplasm.
The N-ter domain of PilB is a disulfide oxidoreductase of the “Trx-like” family, with a TlpA fold
and a WCPLC disulfide center redox potential of −0.230 V. Isolated N-ter domain was shown to
reduce both isolated MSRA and MSRB domains [5], although it exhibits higher catalytic efficiency
towards the MSRB domain (second-order constant k2 approximately 104 M−1.s−1). In this later case,
the dissociation of the reduced MSRB/oxidized N-ter complex remains rate-limiting, as in the case of
Trx. For MSRA (k2 approximately 102 M−1.s−1), the formation of the oxidized MSRA/reduced N-ter
complex occurs more slowly and is in fact rate-limiting, probably reflecting the existence of a structural
fit between the oxidized MSRA domain and the reduced N-ter domain (data not shown). Although
the structure of the Nter/MSR complexes are not known, the interactions seem to be limited to the
active site area as described for other complexes involving “Trx-like” oxidoreductases.

X-ray diffraction and NMR studies of the N-ter domain revealed the presence of a rigid 99FLHE102

loop covering one edge of the active site, in both its oxidized and reduced states [32,33]. This additional
loop, which is not found in Trxs or in other TlpAs, plays a critical role in recognizing the PilB MSRs.
Indeed, the catalytic efficiency (k2 values) for the reduction of the MSR domains by a truncated form of
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the N-ter, in which the loop has been genetically removed, is 10-fold less efficient relative to the intact
N-ter [34].

3.2. Recycling of MSRs Activities within PilB

In PilB, the N-ter domain efficiently reduces only the MSRB domain via an intramolecular
mechanism, whereas the reduction of the MSRA domain depends on the classical Trx-like
intermolecular mechanism (data not shown) (Figure 5). The formation of an intramolecular disulfide
bond between the N-ter and MSRB domains, which is kinetically favored compared to the
intermolecular reaction, implies either a spatial proximity of the MSRB and N-ter domains in PilB or
that the presence of long "linker" regions between the two domains allows sufficient flexibility for the
formation of this transient disulfide bond. Examination of the PilB sequences reveals the existence
of linkers between the three functional domains. Specifically, a linker of 20 amino acids is found
between the N-ter and MSRA domains, and one of 26 amino acids between the MSRA and MSRB
domains, in N. meningitidis PilB (Figure 1). The presence of these long linkers, the second of which is
approximately 13 residues longer than that in the MSRA-MSRB fusion of T. denticola [31], suggests that
PilB should show overall greater flexibility, which allows the N-ter and MSRB domains to approximate
each other, and which additionally explains the observed independence of the MSR domains in kinetic
studies. Obtaining a three-dimensional structure of PilB would, however, provide additional valuable
information on the spatial organization of the three domains with respect to each other.
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Figure 5. N. meningitidis Met-O reducing pathways. The electrons used by the MSR domains of PilB
originate from the cytoplasmic Trx and are furnished either directly to the domains (in the case of the
cytoplasmic PilBAB) or via the intermediary of the three domains of disulfide-bond formation (Dsb) D
(transmembrane TM, cDsbD and finally nDsbD) and the N-ter domain (in the case of periplasmic PilB).
The N-ter/nDsdD model is also represented.

In conclusion, the in vitro results suggest that the mechanisms for reducing the MSRA and
MSRB domains in PilB are different: the reduction of MSRB occurs intramolecularly, while MSRA is
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regenerated intermolecularly. As to the situation in vivo, PilB is a periplasmic protein that deploys
its MSR activities to reduce the Met residues of oxidized periplasmic targets. In vivo, the reductive
regeneration of the two MSR domains must therefore be efficient in the periplasm to allow the
bacterium to cope with oxidative stress. Based on in vitro data, however, the reduction of MSRA is
expected to be slower relative to MSRB. As the MSRB domain is specific for the reduction of Met-R-O,
but the oxidation of Met leads to an equimolar mixture of R and S isomers, PilB should only be able
to efficiently regenerate the half of the Met that is oxidized. Thus, either this activity is sufficient for
the bacterium to transiently resist oxidative stress, or the reduction of the S isomer, although quite
slow, is sufficient to restore the function of oxidized targets. A final possibility is that reduction of the
MSRA domain involves another periplasmic “Trx-like” protein, opening up the possibility to efficiently
regenerate both the Met-O stereoisomers.

4. Periplasmic Recycling Partners

To efficiently reduce oxidized Met, PilB has to itself be reduced in the periplasm. This role is
fulfilled by the disulfide-bond formation (Dsb) D protein, the general transmembrane redox hub protein
that uses the reducing power of Trx transferred to periplasmic “Trx-like” disulfide oxidoreductases
via specific interactions with its N-terminal domain, called nDsbD [35] (Figure 5). The N. meningitidis
nDsbD is able to reduce periplasmic “Trx-like” such as the N-ter domain [34]. The catalytic efficiency
of this reduction step is high, with k2 values of 6 × 105 M−1 s−1, suggesting the existence of specific
recognition between nDsbD and N-ter. The formation of the nDsbD-N-ter complex requires the opening
of the nDsbD “cap-loop” region which is positioned above the N-ter redox center. This conformational
adaptation would be a prerequisite for the formation of a catalytically-competent complex leading to
the formation of an intermolecular disulfide bond between nDsbD and the “Trx-like” partner. It should
be noted that N-ter FLHE loop does not seem to be essential for the formation and stabilization of
the complex.

nDsbD efficiently reduces the N-ter domain of PilB in vitro, but since the DsbD protein is a three
domain transmembrane protein localized in the inner membrane, the PilB protein must be located
nearby to be able to interact with the nDsbD in vivo. However, studies by Skaar and colleagues in 2002
showed using a subcellular fractionation approach that N. gonorrhoeae PilB is anchored to the outer
membrane, which is incompatible with the use of DsbD as a reducing partner [4]. However, as the
outer membrane anchoring of PilB appears to be weak (it involves hydrophobic interactions between
the membrane and a small amphipathic N-terminal helix (amino acids 4–22) [5]), the alternative
localization of PilB, such as in the interspace where it may be associated with peptidoglycan or near
the internal membrane, cannot be excluded.

5. Conclusions

During the past decades, the MSR system of N. meningitidis was a model study of choice in
many respects. The MSR domains of PilB, which have been the subject of extensive investigation
at both the kinetic and structural levels, represent model enzymes for catalysis of the reduction of a
sulfoxide function by thiols through sulfenic acid chemistry. The PilB protein is able to reduce Met-O
in the cytoplasm but also in the periplasm, a compartment particularly subject to oxidation due to
the permeability of the outer membrane, by a unique molecular mechanism combining the catalytic
advantages of modular proteins, conformational flexibility and a Trx-like recognition mode.

The contribution of PilB to the virulence of N. meningitidis suggested that it might be a good
therapeutic target, in particular for the treatment of serogroup B infection for which no vaccine is
available. However, the similarities between bacterial and host MSR enzymes could limit the success of
this strategy. In this context, bacterial specific periplasmic Trx-like proteins, such as the N-ter of PilB or
TlpA2 (involved in the essential cytochrome c maturation process [36]), may be more promising targets.
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