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Abstract: Plants face various stresses, particularly water deficit, which negatively impacts
photosynthesis, growth, and development, thereby limiting agricultural production. Uti-
lizing growth regulators, such as amino acids and polyamines, to enhance osmotic stress
tolerance is a crucial area of research in sustainable agriculture. This study investigates the
impact of arginine and spermine treatments on various growth attributes, enzymatic and
non-enzymatic antioxidants, photosynthetic pigments, protein and lipid peroxidation, and
yield traits of fenugreek plants under both normal and drought conditions. The results
indicate that drought conditions significantly reduce morphological characteristics, leaf pig-
ments, and yield traits. However, the application of arginine and spermine enhances these
parameters, with spermine showing a more pronounced effect. Additionally, treatments
boost antioxidant enzymes activities and improve the levels of non-enzymatic antioxidants
and osmolytes, contributing to better stress tolerance and growth performance. Principal
component analysis confirms that drought significantly alters plant physiology, increasing
proline and malondialdehyde levels, while arginine and spermine alleviate drought stress
by enhancing antioxidant activity and osmolyte accumulation. The current investigation
aims to evaluate the effectiveness of spermine and arginine treatments on various growth
attributes and stress tolerance of fenugreek plants under normal and drought conditions,
focusing on their comparative efficacy.
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1. Introduction

Fenugreek (Trigonella foenum-graecum L.) is a versatile annual herb from the Fabaceae
family, extensively grown in India and across the Mediterranean region, Northern Africa,
China, parts of Europe, Australia, and recently North America [1]. Traditionally used as a
food and medicine, fenugreek seeds are incorporated into wheat and maize flour in Egypt
and serve as a spice, a vegetable, forage for cattle, and for medicinal purposes [2]. The
plant is rich in biochemical constituents such as steroids, saponins, polysaccharides, alka-
loids, volatile oils, fixed oil, proteins, sugars, mucilage, and flavonoids, which contribute
to its medicinal and pharmaceutical significance [3]. Its known for its immunological,
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anticarcinogenic, antioxidant, antidiabetic, and hypocholesterolemic activities, making it
valuable in treating ailments like diabetes and hyperglycemia [4]. Additionally, it is a rich
source of protein, lysine, essential nutrients, dietary fiber, and steroid saponins, which are
commercially useful for steroid hormone synthesis [5]. Fenugreek’s diverse applications
and health benefits underscore its importance as a medicinal and economical plant.

Plant growth and productivity are significantly impacted by various abiotic and biotic
stress factors, including low temperature, salt, drought, flooding, heat, oxidative stress,
heavy metal toxicity, and pathogens [6-12]. Drought stress, in particular, poses a major
challenge, affecting approximately one-third of the potentially viable land globally due
to inadequate water supply. This stress leads to various physiological and biochemical
effects on plants, disrupting growth, metabolism, development, productivity, and molecu-
lar expressions [13-15]. It induces disturbances in the photosynthetic process and carbon
metabolism and causes partial stomatal closure, reducing carbon dioxide availability and
causing imbalances in nitrogen and carbon metabolism [16]. The upcoming water short-
age in certain regions around the world presents a significant challenge to agricultural
development and crop production. Under drought conditions, plants store osmolytes
like sugars and amino acids to regulate water uptake [17]. Sugars are more efficient than
proline in replacing water, forming a hydration shell around biomolecules. Proteins are
essential for all physiological activities in plant cells, and their levels rise under drought
stress [18]. Drought also increases phenols and flavonoids in plants, enhancing their stress
tolerance [19]. Stress-induced reactive oxygen species (ROS) deactivate enzyme function-
ality and cause oxidative disruption to lipids, proteins, and nucleic acids [20], leading to
disruptions in water relationships and membrane stability [21]. Also, it has been shown that
fenugreek plants experienced significant reductions in growth, photosynthetic pigments,
and proteins under water stress [5].

Plants possess various methods to face environmental stressors and enhance their
physiological activity. One effective strategy is the application of chemical compounds,
such as plant growth regulators like amino acids and polyamines. These regulators are not
only cost-effective but also play a crucial role in boosting plant stress tolerance.

L-arginine is a highly versatile amino acid in living cells, serving as a constituent of
proteins and a precursor for the biosynthesis of polyamines, proline, agmatine, and cell sig-
naling molecules like nitric oxide and glutamine [22]. It plays a fundamental role in stress
tolerance due to its involvement in numerous physiological processes, including protein
synthesis, osmotic potential, stomatal activity, and vegetative growth [23,24]. Investigations
have confirmed that L-arginine is a vital modulator in various processes within higher plants
and in their response to stress factors like salinity, water deficiency, and disease [25-27]. Argi-
nine is particularly important in nitrogen metabolism in germinating seeds and developing
seedlings [24]. It is widely used to increase growth, chemical constituents, and yields of
crops. Arginine induces enzymes responsible for antioxidation, such as ascorbate peroxi-
dase, superoxide dismutase, and glutathione reductase, thereby alleviating several stressors
effects [28].

Polyamines, such as spermine, spermidine, and putrescine, are low-molecular-weight
aliphatic amines found in plant cells [29]. They are essential for various fundamental
processes, including cell division, differentiation, root elongation, floral development, leaf
senescence, fruit ripening, protein translation, transcript expression, and chromatin orga-
nization [30]. Several studies have clarified the essential role of polyamines in enhancing
plant tolerance to abiotic stresses. They protect against oxidative damage by preventing
lipid peroxidation and neutralizing free radicals [31,32]. Spermine, in particular, mod-
ulates several physio-biochemical processes to reduce oxidative damage and enhance
plant protection against multiple abiotic and biotic stresses [33]. It acts as a secondary
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messenger in signaling pathways, regulating plant development and boosting tolerance
mechanisms [34]. Spermine applications on various plants have been found to positively
impact drought responses by boosting osmolyte accumulation, elevating free polyamine
levels, and regulating polyamine biosynthetic genes [35].

The aim of this study is to evaluate the effects of arginine and spermine treatments on
the growth attributes, enzymatic and non-enzymatic antioxidants, pigments, osmolytes,
and yield traits of fenugreek plants under both normal and drought conditions. This study
seeks to determine how these treatments can mitigate the adverse effects of drought stress
and enhance plant performance, with a particular focus on the comparative efficacy of
arginine and spermine.

2. Materials and Methods
2.1. Layout of the Experiment

The experiment was carried out at the Botanical Research Station, Botany and Microbiol-
ogy Department, Faculty of Science, Al-Azhar University, Cairo, Egypt. Seeds of the fenugreek,
Giza 3 variety, obtained from the Institute of Crops Research, Agricultural Research Centre,
Giza, Egypt, were utilized. Thirty fenugreek seeds were sown in 40 cm diameter earthenware
pots containing 7 kg of soil. These pots were divided into two groups: control (unstressed)
and drought-stressed (induced by PEG-stimulated drought stress). Each group was further
divided into three sub-groups: control (untreated), foliar-treated with 1 mM arginine, and
foliar-treated with 1 mM spermine. Seven plants remained in each pot after thinning and
were irrigated as needed. Arginine and spermine were applied as a foliar spray twice, on the
25th and 35th days after sowing. Randomized plant samples were harvested on the 45th day
after sowing for morphological, biochemical, and physiological analysis.

2.2. Plant Lengths and Biomass

Five fenugreek plants from each group were randomly collected to measure growth
characteristics, including shoot length (cm), root length (cm), number of leaves, fresh and
dry weights of shoots (g), and fresh and dry weights of roots (g).

2.3. Enzymatic Antioxidants

Fenugreek buds were used to extract superoxide dismutase (SOD), peroxidase (POD),
polyphenol oxidase (PPO), and catalase (CAT), as described by [36]. SOD activity was
determined using the method of Marklund and Marklund [37], which involves measuring
pyrogallol reduction at 325 nm. POD activity was measured using the method outlined
by Bergmeyer [38], focusing on the increase in pyrogallol absorbance at 470 nm. PPO
activity was assessed using the method of Matta [39], which measures changes in catechol
absorbance at 495 nm. CAT activity was estimated by measuring the cleavage of hydrogen
peroxide following the technique of Aebi [40], with spectrophotometric readings at 240 nm.

2.4. Non-Enzymatic Antioxidants and Osmolytes

Free proline was determined using the method of Bates et al. [41], with proline levels
measured at 520 nm. Total soluble sugars were determined following the described method
in [42], with absorbance measured at 620 nm. Phenolic compounds were determined
using the procedure in [43], with absorbance measured at 725 nm. Free amino acids were
extracted and estimated using a series of standard solutions and a ninhydrin reagent, with
absorbance measured at 570 nm [44].
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2.5. Leaf Pigments

Chlorophylls and carotenoids in fenugreek leaves were quantified according to the
described method by Vernon and Seely [45], with absorbance readings taken at 470 nm,
649 nm, and 665 nm.

2.6. Proteins and Malondialdehyde

Total soluble proteins were assayed using the technique in [46], with absorbance
measured at 750 nm. Malondialdehyde (MDA) was estimated using the method in [47],
with absorbance read at 532 nm, 600 nm, and 450 nm.

2.7. Yield

At the yield stage, five fenugreek plants were randomly selected to assess yield
attributes, including weight of pods/plant, number of pods/plant, weight of seeds/plant,
number of seeds/plant, and 100-seed weight.

2.8. Statistical Analysis

A two-way ANOVA followed by Tukey’s test was conducted to assess the significance
among treatments at a significance level of o = 0.05, ensuring data normality and homo-
geneity of variances using Shapiro-Wilk’s and Levene’s Median tests, respectively [48].
When assumptions were violated, data transformations were applied. Principal compo-
nent analysis (PCA) was carried out to illustrate the relationship between treatments and
physiological parameters using PC-ORD version 5.

3. Results
3.1. Morphological Attributes

The provided results in Table 1 illustrate the response of various morphological traits
of fenugreek plants, including root length, root fresh weight, root dry weight, shoot length,
shoot fresh weight, shoot dry weight, and number of leaves, to arginine and spermine
treatments under both normal and drought conditions.

Subjecting fenugreek plants to drought conditions caused notable reductions in various
morphological characteristics. Specifically, there were decreases of approximately 12.5% in
root length, 33.05% in root fresh weight, 50% in root dry weight, 13.71% in shoot length,
31.32% in shoot fresh weight, 36.15% in shoot dry weight, and 29.33% in the number of
leaves, compared to plants under normal conditions.

The treatment with arginine and spermine resulted in noticeable improvements in the
measured morphological parameters of fenugreek plants under normal conditions. These
improvements included increases of approximately 0.8% and 2.7% in root length, 8.15%
and 9.01% in root fresh weight, 25% and 41.67% in root dry weight, 13.31% and 17.74%
in shoot length, 16.39% and 60.27% in shoot fresh weight, 12.21% and 41.78% in shoot
dry weight, and 14.67% and 34.66% in the number of leaves in response to arginine and
spermine, respectively.
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Table 1. Effect of arginine and spermine treatments on the morphological growth characteristics of
fenugreek plants under normal and drought conditions. Values are expressed as mean =+ standard
error. Distinct letters denote significant variations among the means.

Treatments .. .
i Control Arginine Spermine
Conditions

Root length (cm)

Normal 12.8 £ 0.44 ab 129 £ 043 ab 1314 £ 048 a
Drought 112+ 0.60 b 11.76 £ 0.57 ab 12.3 + 0.48 ab
Root fresh weight (g)
Normal 047 +0.014 a 0.504 £ 0.016 a 0.508 £ 0.021 a
Drought 0.31+£0.021 ¢ 0.356 4 0.013 be 04+0.02b
Root dry weight (g)
Normal 0.07 4 0.008 bc 0.09 £ 0.007 ab 0.10 £ 0.006 a
Drought 0.04 £0.007 d 0.05 £ 0.007 cd 0.07 £ 0.006 bc
Shoot length (cm)
Normal 248+ 048a 281+1.01a 2924+1.03a
Drought 214+105a 234+1.13a 2394+ 0.88a
Shoot fresh weight (g)
Normal 5.64 + 0.42 bc 6.56 +0.39b 9.04+045a
Drought 3.87+023d 5254029 ¢ 5.55 £ 0.36 bc
Shoot dry weight (g)
Normal 0.85 4+ 0.065 b 0.96 +0.062b 121 £0.055a
Drought 0.54 4+ 0.067 ¢ 0.76 - 0.058 b 0.84 +0.049b
Number of leaves
Normal 30 £1.68¢ 344+120b 404+133a
Drought 21.24+095d 28 +1.08 ¢ 284+120c

Both under normal and adverse (drought) conditions, treating fenugreek plants with
arginine and spermine showed significant responses in the morphological growth parame-
ters. These included improvements of approximately 5% and 9.8% in root length, 14.1%
and 28.21% in root fresh weight, 50% and 94.44% in root dry weight, 9.35% and 11.68% in
shoot length, 35.64% and 43.32% in shoot fresh weight, 38.97% and 54.78% in shoot dry
weight, and 32.08% and 33.96% in the number of leaves, respectively, when compared with
untreated plants under stress.

3.2. Enzymatic Antioxidants

The data presented in Figure 1 demonstrate how different antioxidant enzymes of
fenugreek plants, such as superoxide dismutase, peroxidase, polyphenol oxidase, and catalase,
respond to treatments with arginine and spermine under both normal and drought conditions.

Administering arginine and spermine to fenugreek plants led to substantial inductions
in the activities of various enzymatic antioxidants under normal conditions. Specifically,
superoxide dismutase increased by approximately 14.89% and 42.55%, peroxidase increased
by 10.68% and 12.62%, polyphenol oxidase increased by 57.69% and 92.31%, and catalase
increased by 26.42% and 32.08%, respectively, in response to arginine and spermine.

The activities of enzymes of fenugreek plants, such as superoxide dismutase, perox-
idase, polyphenol oxidase, and catalase, boosted significantly by approximately 89.36%,
33.98%, 115.38%, 39.62%, respectively, when subjected to drought conditions, as opposed
to normal conditions.
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Figure 1. Effect of arginine and spermine treatments on the activities of superoxide dismutase (A),
peroxidase (B), polyphenol oxidase (C), and catalase (D) in fenugreek plants under normal and
drought conditions. Bars are expressed as the mean =+ the standard error. Distinct letters denote
significant variations among the means.

Moreover, under drought conditions, fenugreek plants treated with arginine and
spermine exhibited notable improvements in the activities of various antioxidant enzymes.
These included enhancements of approximately 66.29% and 100% in superoxide dismutase,
17.39% and 30.43% in peroxidase, 23.21% and 37.5% in polyphenol oxidase, and 21.62%
and 45.95% in catalase, respectively, in comparison with untreated plants under stress.

3.3. Non-Enzymatic Antioxidants and Osmolytes

The findings in Figure 2 illustrate the impact of arginine and spermine treatments on
various non-enzymatic antioxidants and osmolytes of fenugreek plants, such as sugars,
proline, amino acids, and phenolics, under both normal and drought conditions.
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Figure 2. Effect of arginine and spermine treatments on the levels of free proline (A), total sugars
(B), phenolic compounds (C), and total free amino acids (D) in fenugreek plants under normal and
drought conditions. Bars are expressed as the mean =+ the standard error. Distinct letters denote

significant variations among the means.

Under drought conditions, fenugreek plants exhibited significant promotions in the
levels of free proline, total sugars, phenolic compounds, and total free amino acids by
approximately 26.84%, 29.16%, 33.57%, and 18.38%, respectively, in comparison to plants
grown under normal conditions.

Application of arginine and spermine resulted in noticeable improvements in the levels
of free proline, total sugars, phenolic compounds, and total free amino acids in fenugreek
plants under normal conditions. These enhancements included increases of approximately
0.92% and 2.43% in proline, 13.33% and 19.63% in sugars, 29.18% and 33.38% in phenolics,
and 5% and 8.23% in amino acids, respectively, in response to arginine and spermine.

Treating fenugreek plants with arginine and spermine showed significant variations
in the abovementioned attributes not only under normal conditions but also under un-
favorable (drought) conditions. These included decreases of approximately 5.55% and
16.79% in proline levels and increases of approximately 11.06% and 28.81% in sugars, 6.77%
and 37.06% in phenolics, and 7.96% and 11.21% in amino acids, respectively, compared to
untreated plants under stress.
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3.4. Photosynthetic Pigments

Figure 3 presents the effects of arginine and spermine treatments on certain leaf
pigments of fenugreek plants, including chlorophyll 4, chlorophyll b, total chlorophylls,
and carotenoids, in normal and drought conditions.
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Figure 3. Effect of arginine and spermine treatments on the contents of chlorophyll a (A), chlorophyll
b (B), total chlorophylls (C), and carotenoids (D) in fenugreek plants under normal and drought
conditions. Bars are expressed as the mean = the standard error. Distinct letters denote significant
variations among the means.

Drought exposure resulted in substantial decreases in the levels of photosynthetic pigments
of fenugreek leaves, including chlorophyll a (23.60%), chlorophyll b (9.69%), total chlorophylls
(17.52%), and carotenoids (36.06%), in comparison to plants under normal conditions.

The treatment of fenugreek plants with arginine and spermine under normal condi-
tions led to slight enhancements in leaf pigments especially in carotenoids which were
promoted by approximately 23.69% and 53.7% in carotenoids. Furthermore, treating the
tested plants with arginine and spermine resulted in significant increases of approximately
17.37% and 21.45% in chlorophyll 4, 3.18% and 4.92% in chlorophyll b, 10.59% and 13.55%
in total chlorophylls, and 22.67% and 41.14% in carotenoids, respectively, compared to
untreated plants under stress.
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3.5. Proteins and Malondialdehyde

The results displayed in Figure 4 highlight the impact of arginine and spermine
treatments on the amounts of total proteins and malondialdehyde in fenugreek plants in
both normal and drought conditions.

(A)
120

100

80

40

20

Total proteins (mg/g)

0

B Normal © Drought

be
Id

a
ab a
be 0.6 a .

od 05 ab T ab

- b b mh
0.3
S 02
0.1

: : i~ 00 4 : : |

(B) ® Normal © Drought

0.7

Malondialdehyde (nmol/g)

Control

Arginine Spermine Control Arginine Spermine

Treatments Treatments

Figure 4. Effect of arginine and spermine treatments on the amounts of total proteins (A) and
malondialdehyde (B) in fenugreek plants under normal and drought conditions. Bars are expressed
as the mean = the standard error. Distinct letters denote significant variations among the means.

The drought stress led to notable variations, with reductions of about 21.68% in total
proteins contents, while increments of about 27.06% were observed for the malondialdehyde
contents of fenugreek plants, relative to unstressed plants.

Remarkable enhancements of 6.98% and 17.19% for protein contents and noticeable
inhibitions of 10.87% and 16.02% for malondialdehyde levels in fenugreek plants were
observed under normal conditions following treatment with arginine and spermine. Fur-
thermore, under drought conditions, fenugreek plants treated with arginine and spermine
showed obvious accumulations in protein amounts by about 10.55% and 23.91%, while
observed suppressions in malondialdehyde contents (as an indicator for the suppression of
lipid peroxidation) reached about 12.84% and 19.55%, respectively, compared to untreated
plants under stress.

3.6. Yield Attributes

The data in Table 2 show how fenugreek plants’ yield indices, such as pod weight,
pod number, seed weight, seed number, and 100-seed weight, are affected by arginine and
spermine treatments under both normal and drought conditions.

When exposed to drought conditions, fenugreek plants showed significant declines in
yield traits, such as weight of pods/plant, number of pods/plant, weight of seeds/plant,
number of seeds/plant, and 100-seed weight, by approximately 34.72%, 27.08%, 30.51%,
24.55%, and 18.18%, respectively, compared to those under normal conditions.
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The application of arginine and spermine led to noticeable improvements in the yield
characteristics of fenugreek plants under normal conditions. These enhancements included
increases of approximately 29.27% and 36.63% in the weight of pods, 22.91% and 75% in
the number of pods, 41.2% and 64.75% in the weight of seeds, 30.9% and 41.14% in the
number of seeds, and 11.9% and 24.69% in the 100-seed weight, respectively, in response to
arginine and spermine.

Table 2. Effect of arginine and spermine treatments on the yield characteristics of fenugreek plants
under normal and drought conditions. Values are expressed as the mean + the standard error.
Distinct letters denote significant variations among the means.

Treatments .. .
. Control Arginine Spermine
Conditions

Weight of pods/plant (g)

Normal 6.09 £0.27 ab 7.87 £031a 832+0.28a

Drought 397+£020c 447 £041c 515+ 0.38 ab
Number of pods/plant

Normal 192+111c 23.6+1.20b 33.6 £ 0.66 a

Drought 14 £1.08¢ 15.6 £ 0.88 de 178 +£1.25cd

Weight of seeds/plant (g)

Normal 397 £022b 56+027a 582 +£0.30a

Drought 276 £033 ¢ 3.17 £0.29 bc 3.53 £ 0.23 be
Number of seeds/plant

Normal 211 £8.76 b 2762 £1154a 2978 £13.11a

Drought 159.2 +£8.83 ¢ 182.4 +13.30 be 197.4 +5.94b

100-seeds weight (g)
Normal 1.78 4+ 0.08 be 1.99 + 0.06 ab 222+007a
Drought 146 +0.05d 1.65+0.11cd 1.78 £ 0.09 bc

Both under normal and adverse (drought) conditions, treating fenugreek plants with
arginine and spermine showed significant responses in yield parameters. These included
increases of approximately 12.48% and 29.64% in the weight of pods, 11.43% and 27.14%
in the number of pods, 14.95% and 28.16% in the weight of seeds, 14.57% and 23.99% in
the number of seeds, 13.17% and 21.81% in the 100-seed weight, respectively, compared to
untreated plants under stress.

3.7. Principal Component Analysis

The provided image (Figure 5) from the PCA plot shows distinct clustering of treat-
ments, with drought-stressed treatments (T4, T5, and T6) clearly separated from non-
drought treatments (T1, T2, and T3), indicating different physiological responses. Drought
alone (T4) induces unique physiological responses, while arginine (T5) and spermine (T6)
treatments mitigate drought effects, leading to similar but distinct profiles compared to
untreated plants. Non-drought treatments cluster closely, suggesting minimal changes in
plant physiology under normal conditions. Physiological parameters such as proline and
malondialdehyde (MDA) are strongly associated with drought-induced stress (T4), while
antioxidant enzymes (POD, SOD, and CAT), sugars, phenols, and amino acids are linked to
T5 and T6, highlighting their role in mitigating drought stress. Growth-related parameters
are associated with non-drought treatments, reflecting better growth performance under
normal irrigation.
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Figure 5. Principal component analysis visualizes the relationships of fenugreek growth attributes
with treatments. Different abbreviations used in the chart are as follows: no treatment under normal
irrigation conditions (control) (T1), arginine without drought (T2), spermine without drought (T3),
drought (T4), arginine with drought (T5), spermine with drought (T6), rlen (root length), r.f.wt (root
fresh weight), r.d.wt (root dry weight), sh.len (shoot length), sh.f.wt (shoot fresh weight), sh.d.wt
(shoot dry weight), No.leav (number of leaves), wt.pods (weight of pods), No.pods (number of pods),
wt.seed (weight of seeds), No.seed (number of seeds), 100 seed (100-seeds weight), chl a (chlorophyll
a), chl b (chlorophyll b), chl a + b (total chlorophyll), caroten (carotenoids), protein, amino.a (amino
acids), proline, phenol (phenolic compounds), sugars, MDA (malondialdehyde), SOD (speroxide
dismutase), POD (peroxidase), PPO (polyphenol oxidase), and CAT (catalase).

4. Discussion

Enhancing plant growth, development, productivity, and resistance to climatic stress
are crucial areas in agriculture and plant-based biotechnologies [49]. Throughout their life
cycle, plants face numerous biotic and abiotic stresses, with drought being one of the most
severe, leading to significant reductions in agricultural productivity and posing a threat
to global food security [50,51]. Drought stress affects plants on both the morphological
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and molecular levels, decreasing growth and productivity [13]. Addressing plant drought
tolerance is a major challenge in modern agriculture, where biostimulants, like amino acids
and polyamines, play a vital role [52]. These substances help mitigate the harmful effects of
stress and offer essential protection against oxidative damage, ultimately enhancing plant
development and productivity [53].

In the current study, drought stress significantly reduced the number of fenugreek
morphological parameters, including plant height, root depth, fresh and dry weights
of shoots and roots, and the number of leaves. This aligns with previous studies on
various crops, showing decreased germination and growth under drought stress [54-57].
The growth inhibition is attributed to reduced cell turgor, suppressing cell elongation and
development, and tissue water loss, hindering cell division and elongation [58,59]. Arginine
is a crucial amino acid that significantly contributes to plant growth. Research indicates
that its application results in notable enhancements in the morphological growth attributes
of various crops [28,60,61]. Our results indicate that foliar application of arginine mitigates
drought effects on fenugreek plant growth. Arginine may enhance plant responses to
drought stress through its conversion into proline and nitric oxide, which are essential
for drought adaptation. Furthermore, arginine’s ability to counteract abiotic stresses
could be linked to the production of polyamines, which play significant roles in various
biological processes such as growth, metabolism, and stress responses [26,27]. Similarly,
the application of spermine in this study resulted in marked improvements in the growth
indices of fenugreek under normal or drought conditions, consistent with previous findings
on other crops [62-64]. Spermine plays a significant role in cell division, elongation,
and protein synthesis [65]. It is particularly involved in shoot and root development,
floral induction, fruit set, leaf senescence, DNA synthesis, osmolyte balance, chlorophyll
protection, gene transcription, and protein translation [62,66]. Spermine plays a vital role in
enabling plants to effectively respond to environmental stresses, including drought [35,67].

The activation of enzymatic antioxidants is essential for mitigating stress [68,69].
Enzymatic antioxidant activities increase when mung bean plants face water deficit con-
ditions [70]. Additionally, previous investigations reported that drought stress induces
antioxidant enzyme activities in various plants [71-73], aligning with our findings. En-
hanced antioxidant enzyme activities under water stress are attributed to elevated hydrogen
peroxide and singlet oxygen levels. In response, plants typically elevate their antioxidant ac-
tivities to scavenge reactive oxygen species and mitigate stress [74]. Arginine pretreatment
increased enzyme activity in different plants under normal and stress conditions [61,75].
Arginine, an amino acid, plays a significant role in alleviating drought stress [76]. Its appli-
cation promotes enzyme activity, aiding in converting free radicals into water and oxygen,
protecting the cell [26]. Similarly, spermine treatment ameliorated drought-induced osmotic
stress by increasing catalase, superoxide dismutase, peroxidase, and polyphenol oxidase
activities in several crops [14,77]. Enhanced antioxidant activities resulting from polyamine
treatments are associated with improved molecular signaling, which supports adaptive
plant responses to water stress [70]. Earlier studies indicate that polyamines help stabilize
membranes and neutralize free radicals by boosting antioxidant activities [31].

The current study demonstrated that water scarcity in fenugreek plants led to the
accumulation of certain osmolytes and non-enzymatic antioxidants, including proline,
sugars, phenolics, and amino acids. These findings align with several studies reporting high
levels of osmo-protectants in different crops under drought stress [78-81]. Additionally,
the results showed that arginine and spermine applications increased the content of amino
acids, sugars, and phenolics while reducing proline levels, as previously documented in
various investigations [32,61,76,82]. The accumulation of these biomolecules serves as a
tolerance strategy to reduce the oxidative damage caused by stress. Increases in soluble
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sugars, proline, and free amino acids in stressed plants help the cells adapt to drought
conditions [83,84]. These osmolytes can scavenge free radicals, inhibit cellular redox
potential, adjust osmotic pressure, stabilize membranes and proteins, and maintain the
relative water content necessary for plant growth and metabolism [6,85,86]. It is noteworthy
that proline levels decreased when drought-stressed plants were treated with arginine and
spermine, indicating reduced plant sensitivity to drought. This indicates that polyamines
and their precursor arginine play crucial roles as modulators in higher plants, influencing
growth, physiological processes, development, and responses to stress factors [24,87].

Consistent with our findings, drought stress led to a reduction in chlorophyll and
carotenoid levels in cotton [88], wheat [89], peanut [79], barley [28], and rice [90] and other
important crops. Drought conditions have been reported to damage the photosynthetic
system, reduce gas exchange, and decrease growth parameters and productivity [91]. The
decline in the net photosynthetic rate under drought stress is due to biochemical disruptions
caused by lipid oxidation and protein denaturation, which are crucial for pigment and
chloroplast structures [92]. Conversely, the application of arginine to both normal and
stressed fenugreek plants was found to significantly enhance leaf pigment content. Our
findings align with previous studies on different plants [60,61,78]. The role of arginine in
boosting pigment content can be attributed to its function as an amino acid that serves as a
nitrogen source for chlorophyll formation [23]. The ability of arginine to alleviate stress
and enhance growth characteristics is likely due to the production of polyamines, which
participate in various biological processes such as growth, development, and responses to
abiotic stresses [26]. Moreover, spermine greatly enhances the biosynthesis of chlorophyll
pigments and PSII function through stomatal regulation, modulation of electron transfer
chains to PSI receptors, and improvement in CO, assimilation rates, plant growth, and
biomass yield under stress conditions [93]. This enhancement is linked to the increased
stability of thylakoid membranes, plastid biogenesis, and the prevention of chlorophyll
degradation [94,95]. Additionally, spermine promotes chlorophyll synthesis by increasing
the uptake of magnesium ions, which are essential components of chlorophyll [96].

In the current investigation, drought conditions led to a reduction in protein content
and an increase in malondialdehyde (a product of membrane lipid peroxidation). These
findings are consistent with studies on maize [97], barley [55], wheat [62], lettuce [67], and
soybean [98], regarding lipids, as well as fenugreek [5], soybean [33,98], and cowpea [99],
regarding proteins, under various stress conditions. Under stress, plants may enhance pro-
teolytic enzymes, leading to protein degradation, and accumulate excessive reactive oxygen
species (ROS), which destabilize cell membranes and cause damage to DNA, pigments,
proteins, and lipids [64,100]. The inhibitory effects of drought may be linked to reduced
photosynthesis, as carbohydrates, the primary photosynthetic product, are essential for
forming vital biomolecules [101]. Supplementing fenugreek plants, whether under natu-
ral or stress conditions, with arginine or spermine enhances protein content and reduces
malondialdehyde accumulation from lipid oxidation, as documented in previous stud-
ies [27,75,77,97]. L-arginine plays a crucial role in physiological processes by modulating
polypeptides involved in oxidative stress. It contributes to polyamine synthesis, membrane
stability, osmotic balance, signal transduction, and electron transport [25,102]. Arginine’s
role in counteracting abiotic stresses may involve polyamine production, which supports
growth, metabolism, and stress responses [26]. Spermine also acts a substantial role in post-
transcriptional protein modifications, stabilizing protein conformation and function [103].
Exogenous spermine application alleviates stress effects by reducing lipid peroxidation
and increasing total polyphenols, catalase, and superoxide dismutase activities [64,104].
Polyamines are essential for protein homeostasis, ROS detoxification, and antioxidative
machinery activation under stress conditions [66]. They maintain membrane stability and
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permeability, enhance catalase activity, and reduce H,O; content, ROS markers, and lipid
peroxidation, thereby providing broad-spectrum tolerance against various stresses [62,105].

A water deficit significantly reduces yield attributes in crops such as tomatoes [106],
wheat [107,108], and cotton [80] by negatively impacting growth and productivity. The
reduction in growth and yield is associated with the excessive production of reactive oxy-
gen species, which cause damage to cell membranes and components [97,109]. However,
the application of arginine significantly increases plant yield under drought stress by pro-
moting protein, proline, and polyamine biosynthesis, enhancing stomatal activity, osmotic
potential, and overall growth [23,110]. Amino acids also provide essential substances for
protein formation and function as osmo-regulators, increasing cellular osmotic compo-
nents [31,111]. In this respect, polyamines play a crucial role in physiological processes
such as reproductive organ development, tuberization, floral initiation, fruit development,
and ripening [66], in addition to their role in maintaining turgor pressure [70,80].

PCA analysis confirms that drought significantly alters plant physiology, increasing
proline and MDA levels. Arginine and spermine effectively alleviate drought stress by
enhancing antioxidant activity and osmolyte accumulation, supporting their role as protec-
tive agents. These substances have a vital impact, highlighting their potential as targeted
treatments for enhancing crop resilience to water deficit stress.

5. Conclusions

Applying arginine and spermine has been shown to effectively alleviate the adverse
effects of drought stress on fenugreek plants. These treatments enhance both morphological
growth characteristics and yield traits, while also improving the activities of antioxidant
enzymes, as well as the levels of non-enzymatic antioxidants and osmolytes. Notably,
spermine exhibits greater efficacy in promoting growth and stress tolerance. This study un-
derscores the potential of utilizing arginine and spermine as eco-friendly and cost-effective
solutions for enhancing plant performance under both normal and drought conditions.
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