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Abstract: Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism
with damaging effects on cellular structures. The discovery and description of NADPH oxidases
(Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising.
After intensive research, seven Nox isoforms were discovered, described and extensively studied.
Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly
discovered in the inner ear. This stigma of Nox3 as “being only expressed in the inner ear” was also
used by me several times. Therefore, the question arose whether this sentence is still valid or even
usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural
components, the activating and regulating factors, the expression in cells, tissues and organs, as
well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions.
Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a
potential target for disease treatment, will be discussed.

Keywords: NADPH oxidase; Nox3; reactive oxygen species; oxidative stress; inner ear; vestibular
system; cochlea; ototoxicity; lung diseases; cardiovascular diseases

1. NADPH Oxidase 3
1.1. The Family of NADPH Oxidases

Reactive oxygen species (ROS) were once described as mere byproducts of metabolism
and as an unavoidable harming effect that cells have to cope with [1–5]. ROS is the
summative term for a group of molecules that all contain oxygen but show more reactiv-
ity toward biological molecules than molecular oxygen [6–8]. A few early studies have
observed beneficial effects of ROS during egg fertilization processes, but only sugges-
tions for ROS sources were made [9–11]. Intriguingly, the discovery of an enzyme family
present in nearly every form of life [12–16], including bacteria [17–20], mammals [13,21–32],
fish [33,34], insects [35], plants [36–38], fungi [39–42] and worms [43], namely, the family of
NADPH-dependent oxidases (Nox) was a surprise. This is because the sole function of this
enzyme family members is the production of ROS [6,22,44], or to be precise, superoxide
(O2

−) [21,45–49], which was associated only with detrimental effects on cellular structures
at the time. The first described family member was Nox2 [50–54], also named gp91phox

(after its main subunit) or phagocyte NADPH oxidase [55–57] (after the most representative
cell type, where it is expressed). Nox2 is responsible for the respiratory burst in phago-
cytes [55,58–62], and the ROS produced inside the phagosome of macrophages, neutrophils
and monocytes fell back into the same functional role as before, i.e., a destructive or at
least inactivating factor, but inside the phagosome at least directed to a specific target,
which is the engulfed pathogen [45,63–71]. It is noteworthy that pathogen engulfment as
process is not the sole pre-requisite for the respiratory burst. Phagocytosis itself triggers
ROS production into the phagosome, nevertheless with varying intensities in dependency
of the cargo [72–74]. Furthermore, Nox2 is not restricted to phagocytes, but also found in
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other cells and tissues [75–78]. In a short time, other Nox family members were discovered,
and the enzyme family consists of seven members to date [6,13,79,80], namely Nox1 [81,82],
Nox2 [83], Nox3 [84], Nox4 [52,85,86], Nox5 [52,87] and the two Dual oxidases (Duox),
Duox1 and Duox2 [88–92]. It became quickly evident that the other Nox family members
were either not only present or even absent in phagocytes, but likewise expressed in cells of
the adaptive immune system [93,94] as well as in non-immune cells [22,48,66,86,89,95–104].
ROS production in non-phagocytes has more subtle functions [89,105–108] in contrast
to the vast amounts of ROS (~2 nmol/min per 106 human cells) [55,62,109,110] that are
produced in the phagosome during the respiratory burst [22,25,70,111]. These effects of
ROS, which strongly diverge from their destructive power in the phagosome, regulate
many important processes, such as cell growth and transformation [36,81,92,112–122],
angiogenesis [123,124], vasodilatation [125–128], hormone synthesis [129], tissue remodel-
ing [130], signaling transduction [31,131–138] neuronal development [139–142], and the list
is continuously expanding [80,89,143–146]. Notably, in addition to their various functions,
all isoforms are involved in immune responses during pathogenic invasion [35,147,148].
While oxidative stress describes an imbalance of the cellular redox status in general, the
beneficial effects of an oxidative milieu, as listed before, are summarized under the term
“oxidative eustress” [7,8]. Of course, when ROS production occurs in an uncontrolled
manner or in the wrong subcellular location [149–151], a phenomenon termed oxidative
distress [7,8], it leads, independently of the ROS source, to cell-, tissue- and organ damage
or death [152–159]. Oxidative distress can finally contribute to the development of dis-
eases, such as atherosclerosis [160,161]; cardiovascular diseases [100,108,162–170], such as
stroke [130,171–176] or diabetes [177,178]; cancer [113,122,179–184] and neurodegenerative
diseases [98,185–189].

Structural Components of Nox Enzymes

Since Nox3 is a remarkable exception concerning the usage of Nox-related subunits,
a general overview, which covers the similarities and differences of the Nox isoforms,
is necessary and will support a better understanding of the latter parts of this review
(Figure 1). All Nox family members share a membrane-bound catalytic core structure,
a glycoprotein consisting of six trans-membrane α-helical domains (the actual gp91phox

in Nox2), which contains two conserved heme groups near the N-terminus [109,190–192].
This core component is synthetized as a 65-kilo Dalton (kDa) precursor protein in the
endoplasmatic reticulum (ER) [193] and gains its name-giving molecular weight of 91 kDa
after heavy glycosylation during the transport through the Golgi network [194–197]. All
Nox core structures end in a long cytosolic C-terminal tail, where the FAD- and NADPH-
binding regions are located [198,199]. The gp91phox core unit forms a heterodimer with
the membrane-bound protein p22phox [50,51,194,195,197,200,201] called b558 when fully
assembled [51,53,54,202–204]. The heterodimer was named after the characteristic spectrum
peak at 558 nanometers (nm) [53,202,205,206]. p22phox is an integral part of the Nox
family members Nox1-4 [16,96,207,208] but is absent in Nox5, Duox1 and Duox2 [16].
Structurally, p22phox consists of four trans-membrane α-helices [209,210] and a proline-rich
cytosolic region, which functions as docking site for other cytosolic adaptor subunits for
the Nox enzymes [16,211]. The core subunit p22phox does not only serve as docking site
for the cytosolic adaptor subunits of the Nox enzymes [207,212,213] but also has crucial
functions for the flavocytochrome b558 core complex of Nox1-4 itself [27,207,214]. It has
an important effect on gp91phox stabilization and loss of p22phox leads to retention of
gp91phox in the ER [193–195,215–217]. p22phox further mediates the localization of gp91phox

to cellular membranes in general [217–219] and the localization to the plasma membrane
in particular [16,217,220]. While p22phox is not essential for all Nox isoforms, the subunit
gp91phox represents the obligatory core component for all Nox enzymes [221], which
contains the electron-shuttling apparatus. Electrons are transported from NADPH to FAD
through the heme-containing domains and react with molecular oxygen to O2

− [13,222]
(Figure 1).
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located, which mediate electron delivery and translocation. The isoforms strongly vary in terms of 
activation and utilization of adaptor subunits necessary for ROS production. Nox1 recruits the or-
ganizer subunit NADPH oxidase organizer 1 (NOXO1) and the activator subunit NADPH oxidase 
activator 1 (NOXA1). Nox2 needs p47phox as organizer and p67phox as activator subunit, which both 
are tethered together via the scaffold-like protein p40phox. Nox1 and Nox2 strictly also need the 
guanosine triphosphate phosphohydrolase (GTPase) Ras-related C3 botulinum toxin substrate 
(Rac) for full activity. Without these adaptor subunits, both Nox isoforms are quiescent. Nox4, on 
the contrary, is constitutively active, but the ROS production can be regulated either via changes in 
Nox4 protein expression or via regulatory factor polymerase (DNA-directed) delta interacting 
protein 2 (Poldip2). The structural membrane-bound subunit p22phox is crucial for enzymatic activ-
ity and maturation of Nox1, Nox2 and Nox4. Nox5, Duox1 and Duox2 do not need p22phox or any 
activating subunit but are both activated by Ca2+-binding to their cytosolic EF-hand domains. The 
stabilizing factors Dual Oxidase Maturation Factor 1/2 (DUOXA1/2) are crucial for the maturation 
and transportation of Duox1/2 but not for activation of the enzymes. Duox1 and Duox2 also contain 
a peroxidase-like domain on the extracellular side, which utilizes H2O2 for oxidation. 

Figure 1. The enzyme family of NADPH oxidases (Nox) consists of seven members, namely Nox1,
Nox2, Nox3, Nox4, Nox5 and the Dual oxidases Duox1 and Duox2. The core structure consists of six
α-helical domains. At the C-terminal end of the core, the structure binding regions for nicotinamide
adenine dinucleotide phosphate (NADPH) and flavin adenine dinucleotide (FAD) are located, which
mediate electron delivery and translocation. The isoforms strongly vary in terms of activation
and utilization of adaptor subunits necessary for ROS production. Nox1 recruits the organizer
subunit NADPH oxidase organizer 1 (NOXO1) and the activator subunit NADPH oxidase activator 1
(NOXA1). Nox2 needs p47phox as organizer and p67phox as activator subunit, which both are tethered
together via the scaffold-like protein p40phox. Nox1 and Nox2 strictly also need the guanosine
triphosphate phosphohydrolase (GTPase) Ras-related C3 botulinum toxin substrate (Rac) for full
activity. Without these adaptor subunits, both Nox isoforms are quiescent. Nox4, on the contrary, is
constitutively active, but the ROS production can be regulated either via changes in Nox4 protein
expression or via regulatory factor polymerase (DNA-directed) delta interacting protein 2 (Poldip2).
The structural membrane-bound subunit p22phox is crucial for enzymatic activity and maturation
of Nox1, Nox2 and Nox4. Nox5, Duox1 and Duox2 do not need p22phox or any activating subunit
but are both activated by Ca2+-binding to their cytosolic EF-hand domains. The stabilizing factors
Dual Oxidase Maturation Factor 1/2 (DUOXA1/2) are crucial for the maturation and transportation
of Duox1/2 but not for activation of the enzymes. Duox1 and Duox2 also contain a peroxidase-like
domain on the extracellular side, which utilizes H2O2 for oxidation.

If and what adaptor proteins are necessary for enhanced activation or basal enzymatic
activity greatly vary between the Nox isoforms [55,83,172,223–225]. Nox2 is activated by the
cytosolic regulatory proteins p47phox [215,226–228], p67phox [227–231] and p40phox [232–235].
Nox1 utilizes NADPH oxidase organizer 1 (NOXO1) [25,236] and NADPH oxidase activator
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1 (NOXA1) [25,236]. Furthermore, Nox1 and Nox2 both need the Ras-related C3 botulinum
toxin substrate (Rac) enzymes, small guanosine triphosphate phosphohydrolases (GTPases),
for enzymatic activity [96,237–240] (Figure 1).

p47phox is not active in unstimulated cells due to its auto-inhibitory region [212,241,242].
However, after stimulation (e.g., by pathogenic or chemical molecules), p47phox is phospho-
rylated on several serine residues [212,243–247] and binds to p22phox [211,213,246,248–252].
The kinase enzyme responsible for p47phox phosphorylation can be one of the various iso-
forms of the Protein kinase C (PKC) family. Which PKC isoform is activated depends on the
stimulus, but p47phox-dependent Nox activation was discovered for PKCβ [253,254] and
PKCζ [255,256]. p47phox phosphorylation leads to a conformational change, which allows
its binding to p22phox [213,248–250,257]. In the cytosol, p47phox and p67phox are already
tethered together via tail-to-tail interactions [252,258–261] and recruited to the plasma mem-
brane/phagosomal membrane-residing flavocytochrome b558 complex [257,260,262–264].
p67phox is critical for the oxidase activity itself, since it regulates the electron flow from FAD
to the two heme groups [232]. p67phox also binds directly to Rac, therefore facilitating its
transport to the plasma membrane [255,265,266]. Similar to p47phox, p67phox is phosphory-
lated on many sites by various agonists, e.g., by members of the mitogen-activated protein
kinases (MAPK) like p38 and extracellular signal-regulated kinase 1/2 (ERK1/2) [267–270].
While the direct activation of Nox2 strictly depends on p67phox, the recruitment of p67phox

to the p22phox-gp91phox heterodimer is completely dependent on p47phox. In the absence of
p47phox, p67phox will not translocate to the heterodimer and Nox2 is not activated [271,272].
Therefore, p47phox serves as important recruitment unit for the other subunits (Figure 1).

p40phox [258,273] and Rac [274,275], which beforehand transits into its active GTP-
bound state [96,237,239,240,276–280], are both likewise recruited to the forming active
Nox complex together with p47phox. While p67phox and NOXA1 are termed activator sub-
units [222,281,282] and p47phox and NOXO1 are regarded as organizer subunits (for Nox2
and Nox1/Nox3, respectively) [79,222,245,248,252,283–285], p40phox serves as scaffold-
like platform, facilitating the translocation of the other subunits at least in the case of
Nox2 [236,284]. While p40phox-mediated scaffolding is not essential for Nox2 enzyme
activation per se [286,287], the involvement of p40phox leads to a two-fold increased ROS
production [236] by facilitating the recruitment of p67phox to the plasma membrane [236]
and phagosomal membrane [274,288,289].

The Rac proteins, specifically Rac1 (in human monocytes and macrophages) [290–292]
and Rac2 (in human neutrophils) [293–299], are crucial for the activation of Nox1 and
Nox2 [238,265,293,296,300–302], while they are completely dispensable for Nox4, Nox5 and
the Duox enzymes [218,303,304]. The Rac enzymes serve two purposes in the context of
Nox activation [83,290,305,306]. Firstly, they physically tether p67phox [265,302,307–309] to
the plasma membrane [280] and the cytochrome b558; [310,311], and secondly, they induce
a conformational shift of p67phox, thereby inducing its activation [231,232,265,302,312–316].
Initial experiments in cell-free systems have suggested a complete subunit-independent
translocation of Rac enzymes to gp91phox [96,273,274,290,311]; however, it was later shown
that Rac enzymes at least interact with and support the translocation of the subunits
p67phox [266,307,312] 2004) and NOXA1 [274,300]. For further reading about the complex
topic of the different Rac isoforms and their specific roles during Nox activation, I redirect
the interested readers to other excellent reviews [275,317].

The accepted most current model for the activation of Nox2 as most representative
isoform depicts as follows: The adaptor proteins for Nox2, namely p67phox and p47phox, exist
in the cytosol as preformed complexes together with p40phox [234,318], which functions as
linchpin between these two subunits [234,319–321]. After phosphorylation, the SH3 region of
p47phox is exposed to the cytosol and binds to p22phox [246,249,252,271,283]. Since p67phox is
tethered to p47phox, the heterodimer translocates together to p22phox [236,259–261,322,323],
where p67phox also associates with gp91phox [232,255,312,314,315,324]. Hence, it is reasonable
that no localization of this complex near the plasma membrane is observed when either
gp91phox or p22phox is missing [234,273,319–321,325]. After dissociation of its inhibitory factor
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Rho GDP-dissociation inhibitor (RhoGDI) [238,311,326], Rac translocates to the membrane,
where it binds to p67phox [265,266,307] and to the flavocytochrome b556 core complex [327].
p47phox as well as Rac are not absolutely essential for Nox2 activation [310,328], but play
the role of important support units. They bind and orientate p67phox for optimal electron
flow and activation of the Nox2 complex [24,109,232,312,314]. Nox1 is activated in a similar
manner, however by utilizing its unique organizer and adaptor subunit NOXO1 and NOXA1,
respectively (Figure 1). It is noteworthy that Nox1, while also being dependent on Rac
for activation, cannot utilize the Nox2-related subunits p47phox and p67phox for functioning
(Figure 1).

After full assembly, the Nox complex transfers electrons as hydride ions (H−) from NADPH
to FAD. This step is mediated by the recruitment the p67phox subunit [231,232,255,329,330].
From FAD, the electrons are shuttled by the two heme molecules through the membrane-
spanning part of the complex [109,331]. On the other site of the membrane, the electrons
are transferred to molecular oxygen and form O2

− [24,200,207,218]. So far, only the release
of H2O2 instead of O2

− has been clearly proven for Nox4 [332,333], while O2
− is still the

first-generated ROS subspecies at the Nox4 enzyme [334–336]. Nox4 contains a special E-
loop on the extracellular site, which slows down the diffusion of O2

− until it is dismutated
to H2O2 [220,333]. Nox4 is a unique isoform in terms of regulation since no stimuli or
regulatory subunits are necessary to directly induce Nox4 activity [218,337]. Nox4 is
defined as being permanently active, as long as p22phox for the complete core structure
is present [84,218,220,334,338] (Figure 1). The major adaptation for Nox4-derived ROS
production is achieved by degradation- or new expression-induced various stimuli or
stress conditions [339–345]. Nevertheless, some stimuli, like insulin [346] or LPS [347], can
quickly trigger Nox4-mediated ROS production, which cannot be explained by expression
of the protein itself. Accordingly, a few years after its discovery, polymerase (DNA-
directed) delta-interacting protein 2 (Poldip2) [348,349] was identified as positive regulator,
which directly binds to p22phox and increases Nox4-mediated ROS production [350,351]
(Figure 1). Some other regulating proteins, e.g. Toll-like receptor (TLR) 4 [347,352] or
protein disulfate isomerase [353], were identified, slowly revising the view of Nox4 as
not being regulated by other factors except its expression [85]. Nox5, Duox1 and Duox2
have EF-hand domain-containing extensions on the cytosolic N-terminus, which bind
Ca2+ [87,88,354] (Figure 1). Indeed, Ca2+ is the main activating factor for ROS production
of these three Nox family members [87,88,355]. Additional adaptor proteins, Dual Oxidase
Maturation Factor 1/2 (DuoxA1/2), were identified as factors necessary for maturation
of Duox1/2 [356,357]. Duox1/2 also contains an additional peroxidase-like domain that
extrudes to the extracellular site [88,109,358]. However, so far, only the Duox isoform of
Drosophila melanogaster has shown an active peroxidase function of this domain, similar to
the myeloperoxidase reaction The Duox isoform processes the produced H2O2 to generate
hypochlorous acid (HOCl) [35]. Since this review summarizes new and old findings of
Nox3, the reader is directed to other excellent reviews about Nox enzymes in general and
in detail [13,21–28,80,359–361].

1.2. Nox3: Structure and Subunits

Nox3 combines many features of Nox1, Nox2 and Nox4 in terms of basal activation
and regulatory subunit involvement, which is unique among the Nox enzymes. However,
it took some years of intensive research to shed light on this most flexible Nox isoform.
Nox3 was discovered together with Nox4 and Nox5 during a genetic screen in search
for homologs of the firstly discovered Nox2, or more precisely, for proteins similar to the
membrane-bound subunit gp91phox [362,363]. This research field was intensively investi-
gated after the discovery that non-phagocytic cells also produce ROS and that phagocytes
are not the only cells capable of this process. After Nox3, Nox4 and Nox5 were identi-
fied, Nox1 was cloned and described by Suh and colleagues [81], followed by Duox1 and
Duox2 [88,109,364], therefore completing the enzyme family. The NOX3 gene is located on
chromosome 6 in humans (gene locus 6q25.3), and suggestions were made that this Nox
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isoform appeared after the emergence of fish and amphibians [16]. The protein structure of
Nox3 is very similar to Nox1, Nox2 and Nox4. Indeed, Nox3, which consists of 568 amino
acids (aa), shows the strongest sequence similarity with gp91phox (58%) [109,365]. Initially,
Nox3 was only weakly detected in human fetal kidney and the placenta [52,363], and
further research related to Nox3 was dampened afterwards. New insights, like the predom-
inant tissue locations or exact protein structures of Nox4 [84,334], Nox5 [87,354,366] and
Duox1/2 [43,367,368], were unraveled shortly after their identification [81,82]. In contrast,
it took 3 years until Nox3-focused research achieved a new momentum, mainly by three
studies from the labs of Prof. Lambeth and Prof. Krause [355,369,370]. Nox3 shares many
similarities with Nox2 concerning their protein structure (like the dependency on p22phox)
and regulatory subunits (i.e., p47phox/NOXA1 and p67phox/NOXO1). Initial experiments
of several research groups, which exclusively focused on Nox research, delivered the first
observations where, if and how Nox3 is located and activated. All of these studies did
not investigate ex vivo cells but instead used human cancer cell lines and co-expression
approaches to combine the Nox3 core protein and various Nox subunits. Most of the find-
ings are consistent between these initial studies, but some differences emerged back then,
probably due to differences in the used culture cells. These differences were quite at the
awareness of the researchers and discussed in the community back then [371]. Nevertheless,
these first studies gained impactful insights into the Nox3 protein and its regulation, which
will be discussed now.

1.2.1. Adaptor Subunits of Nox3

In 2004, two research groups investigated and published findings regarding the reg-
ulation of Nox3 nearly simultaneously [355,372]. Cheng and colleagues from the Lam-
beth lab used in vitro experiments, in which different combinations of human Nox3 (and
Nox2/gp91phox and Nox1) and different Nox adaptor proteins were expressed in HEK293-
H cells and COS-7 cells as “experimental vessels” [369]. They investigated the subunits
associated with Nox2 and Nox1 at basal conditions and after stimulation with Phorbol
12-myristate 13-acetate (PMA). This chemical stimulates association of the Nox subunits by
activation of the PKC, which results in robust ROS production [73,74,373,374]. Cheng et al.
found that p67phox alone was not sufficient for basal or PMA-stimulated ROS production,
while the expression of p47phox was sufficient for moderate ROS production by Nox3. No-
tably, this ROS production could not be further increased by PMA treatment. The combined
presence of p47phox and p67phox led to the highest ROS production, which could be further
increased by PMA stimulation. The presence or absence of Rac did not change the activation
rate of Nox3. Interestingly, the expression of the Nox1 subunit NOXO1 also led to a strong
activation of Nox3, which could not be further increased with PMA. In contrast, NOXA1
only slightly induced ROS production. Combinatory expression of adaptor proteins either
for Nox2 (p47phox, p67phox) or Nox1 (NOXO1, NOXA1) led to maximal ROS output of Nox3.
NOXO1 in combination with p67phox showed only minimally increased ROS production in
comparison to sole NOXO1 presence. The combined expression of NOXA1 and p47phox in
this system only led to PMA-dependent activation of Nox3. These data nicely showed that
Nox3 is much more flexible than Nox1 or Nox2. While Nox2 strictly needs both p47phox

and p67phox for activation, p47phox alone leads to moderate Nox3-derivedderived ROS
production. Nox1, on the other hand, needs NOXO1 and NOXA1 for activation, while
NOXO1 alone induced strong ROS production together with Nox3. Combinations of dif-
ferent adaptor proteins (e.g., NOXO1/p67phox or NOXA1/p47phox) only resulted in the
low activation of Nox1 and Nox2, but induced a strong ROS production of Nox3. Taken
together, these first experiments revealed the high flexibility of Nox3 in terms of adaptor
protein usage (Figure 2).
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Figure 2. Nox3 is unique among the Nox isoforms since it shows a robust and constitutive ROS
production without any organizer or activator subunit, similar to Nox4. Nevertheless, like Nox1,
Nox2 and Nox4, Nox3 critically needs the membrane-bound subunit p22phox for enzymatic activity
as well as proper protein synthesis and cellular localization. Remarkably, Nox3 shows the most
flexible possibilities of adaptor subunit usage among all Nox isoforms. Nox3 can utilize the adaptor
subunits of both Nox1 and Nox2 in any thinkable combination. In human cells, the combination
of adaptor subunits strongly affects the ROS production of Nox3. The subunits of Nox2, namely
p67phox or p47phox, either not or only weakly enhance Nox3-derived ROS production, respectively.
The same applies for the activator subunit of Nox1 NOXA1. While Rac is crucial for Nox1 and
Nox2 activation, it is not needed for Nox3 activation per se, but, in combination with p67phox, it can
enhance Nox3-derived ROS production. The Nox1 organizer subunit NOXO1 induces the strongest
ROS production, which can be initiated by a single adaptor subunit together with Nox3, while the
combination of either the Nox2 or the Nox1 adaptor subunits together lead to maximal ROS output
by Nox3.

Banfi and colleagues confirmed the flexibility of Nox3 in terms of adaptor protein
utilization. The group analyzed mouse tissue samples via qRT-PCR and used histological
staining to investigate the localization of Nox3 and the different subunits for the first time
in vivo [355]. They detected mRNA expression of Nox3, NOXA1/p47phox and, to a lesser
extent, also NOXO1/p67phox in the inner ear of mice. They followed a similar approach
as Cheng and colleagues and analyzed the molecular function and regulation of Nox3
by a co-expression system in HEK293-H cells as “empty vessels”, which are devoid of
Nox3. They confirmed ROS production by Nox3 in the complete absence of any adaptor
subunit. In contrast to the findings of Cheng and colleagues, the group saw that p47phox

or NOXA1 alone are not sufficient to increase Nox3-derived ROS production. Similar to
Cheng and colleagues, they measured the strongest increase in ROS production, when
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either NOXO1 and NOXA1 or when NOXO1 and p67phox were expressed together. This
Nox3-mediated ROS production could not be further enhanced by PMA stimulation. The
combination of p47phox and p67phox or the combination of p47phox and NOXA1 resulted
in a robust PMA-induced ROS increase, while basal ROS production was only minimally
increased [355]. The most obvious discrepancy between the two studies from Cheng et al.
and Banfi et al. was the Nox3-derived ROS production with NOXO1 as sole subunit. In the
study from Banfi et al., only a small increase in ROS production was measured after PMA
stimulation [355], while Cheng and colleagues described a strong increase in basal ROS
production, which could not further be enhanced by PMA [369]. One has to consider that
both studies did not use ex vivo cells of any kind, in which the actual Nox3 is present and
active. It was and is common practice to use artificial co-expression systems in cancer cell
lines to obtain initial insights into protein function. Of course, with varying cell lines, the
experimental outcomes can also differ, which explains the contrasting results of the two
groups. Nevertheless, it is impressive that both studies gathered the mostly similar results
for Nox3, which delivered important first hints of the regulation (and location) of this Nox
family member. The flexibility of adaptor unit utilization by Nox3 is especially distinct from
other Nox family members (Figure 2). The Lambeth lab later discussed that the potential
or non-potential adaptability of different Nox enzymes reflect their functions and tissue
locations [370]. In contrast to phagocytes, for non-immune tissue cells, it may be more
biologically relevant to have a redundant subunit protein backup in case of gene mutations
or deletions to keep the Nox enzyme functional and suppress disease development in case
one or more regulatory Nox subunits are altered. Nox3, with its flexibility, is a shining
example for this statement.

Takeya and colleagues analyzed and compared different splicing variants of the
NOXO1 gene (termed α, β, ∆, γ) and its subsequent protein products [96,229,367] in the
context of Nox3 activation. While the most abundant variant NOXO1β was investigated
before [369], Takeya et al. reported that also the splicing variant NOXO1γ was sufficient to
induce Nox3-mediated ROS production [371]. They also described a strict dependency on
the p22phox subunit for NOXO1γ-mediated activation of Nox3. Furthermore, they showed
that binding of either NOXO1β or NOXO1γ to phosphatidylserins in the plasma membrane
is mediated by a specific amino acid sequence, called the PX motif. This PX motif is required
for membrane binding of Nox subunits in general [237,369,375–377]. However, a basal
ROS production by Nox3 was detected even after destruction of the PX domains in the
NOXO1 subunits [371]. Following studies intensified the details of the interplay between
Nox3 and its various subunits. Miyana and colleagues observed slightly enhanced Nox3
activation by p67phox alone in HeLa, CHO and COS-7 cells and detected enhancement with
NOXA1 in CHO, COS-7, but not in HeLa cells [378]. Maehara et al. showed that the SH3
domain of p67phox, which is necessary for the full activation of Nox2 [379], is interestingly
not needed for Nox3 activation [380]. In a follow-up study, the group further identified
a highly conserved activation domain of p67phox (in the aa 190–210), which is crucial for
activation of Nox1, Nox2 and Nox3. The identified crucial residues were Tyrosine 198,
Leucin 199, Valin 204, Leucin 193 and Asparagin 197 [222]. However, this domain did not
have any influence when Nox3 was activated by p67phox together with p47phox, explaining
the previous observation that p67phox and its SH3 domain alone are of no significance for
Nox3 activation [380]. Taura et al. investigated the SH3 domain of p47phox and NOXO1 and
observed that the domain is important for full Nox3 activation after PMA-stimulation [381].
This occurred even in the absence of p67phox, therefore arranging NOXO1 and p47phox

above p67phox in the hierarchy of Nox3 activation. The group further identified the amino
residue Interleukin 152 in a short N-terminal tandem region in the SH3 region of p47phox.
This residue was found to be crucial for the activation of p47phox-mediated activation of
Nox3, even in the absence of p67phox. Notably, the residue was also found in NOXO1 [381].
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1.2.2. The Nox3-p22phox Complex

While the interactions of Nox3 and the diverse Nox subunits obtained some new and
fascinating insights during that time, Ueno and colleagues investigated the interplay of the
other membrane-bound subunit of the Nox1/2/3/4 complex namely p22phox [382]. Ueno
et al. also used co-expressing systems in COS-7, CHO and HEK293-H cells to investigate
this topic. Most importantly, they demonstrated, for the first time, that Nox3 physically
interacts with p22phox and that both the presence and the interaction of ph22phox are
essential for Nox3 activity. They detected minimal, but constitutive ROS production in the
absence of any adaptor subunit, confirming previous findings [355,372] (Figure 2). They
also measured enhanced ROS production after co-expression of Nox3 with p47phox, which
could be further enhanced by combined expression with p67phox. Like Cheng et al., but
in contrast to Banfi et al., the group found that the sole expression of NOXO1 leads to
a strongly enhanced ROS production independently of PMA stimulation. Interestingly,
they could show that NOXO1 is constitutively bound to p22phox, which explains the PMA-
independent increase in ROS production. NOXA1 alone only slightly increased ROS
production like seen before [355,372]. In contrast, the p47phox-mediated Nox3 activation
could be further increased by PMA stimulation. The group also described no necessity for
Rac proteins in Nox3 activation as reported previously [370].

Kawahara et al. not only characterized the role of p22phox during activation of Nox1-5
in co-transfected HEK293 cells, but also investigated the interaction of p22phox with various
adaptor subunits [337]. They saw that Nox3 activation was strongly diminished in p22phox-
silenced HEK293 cells despite the co-transfection of any subunit confirming the crucial
role for p22phox in Nox3 basal activation. Notably, they also saw a strong activation of
Nox3 with NOXO1 or p67phox alone, a minor but detectable activation with NOXA1 alone
and the strongest activation after combined transfection with either NOXO1/NOXA1 or
p67phox/p47phox. In addition, Kawahara and colleagues generated a C-terminally-truncated
p22phox protein, which still formed a complex with gp91phox, but could not bind to the
organizer subunits NOXO1/p47phox. HEK293 cells, which co-expressed this truncated
p22phox protein together with NOXO1, showed a strongly diminished activity, suggesting
that p22phox has not only a direct stabilizing effect for Nox3, but is also important for
binding of organizer subunits and subsequent Nox3 activation. As shown by two groups
before [370,372], Nox3, in contrast to Nox1 and Nox2, has the remarkable ability to be
activated only by the presence of an activator subunit (p67phox, NOXA1) without any
organizer subunit (p47phox, NOXO1). This phenomenon is also unique among the Nox
enzyme family members (Figure 2) Interestingly, during additional co-expression of NOXA1
together with Nox3, NOXO1 and the truncated p22phox protein, the group observed a nearly
restored activity of Nox3. These findings indicated the possibility that Nox3, as exclusive
exception in the Nox enzyme family, might be able to bypass the p22phox-mediated binding
of the organizer subunits NOXO1/p47phox by the direct binding of an activator or organizer
protein to the Nox3 core structure itself. This again demonstrates the fascinating flexibility
of Nox3 [337]. Nakano et al. characterized the role of p22phox for the actual biosynthesis of
Nox3 in co-expression systems with HEK238 and CHO cells [217]. They firstly described
the characteristic spectrum peak at 558 nm for Nox3, which suggested that the structure
of Nox3 probably resembles Nox2. Chemical inhibition of heme synthesis in HEK293
cells transfected with Nox3 and p22phox resulted in a completely blunted ROS production
demonstrating that heme is crucial for Nox3 functioning. In vitro translation with cDNA in
a rabbit reticulocyte lysate system resulted in a 53 kDa-sized protein product, which was the
first size description of Nox3. This product further underwent N-linked glycosylation as
previously discovered for gp91phox [197] and knock-down of p22phox via small interfering
(si)RNA resulted in reduced ROS production, as described previously [337]. The group
also observed that p22phox was crucial for plasma membrane targeting of Nox3, which
remained diffusely distributed in the cytosol in the absence of p22phox, which was also
in line with previous observations [274,337,382]. In addition, the study confirmed other
previous results concerning NOXO1 and p22phox, i.e., that NOXO1 interacts with p22phox
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at the plasma membrane [274,337,382] but does not necessarily directly bind to it [372,383].
Miyano and colleagues confirmed the N-glycosylation and p22phox-dependent maturation
of Nox3 in CHO cells [384], hence completing the picture of the interplay between Nox3
and p22phox.

1.2.3. Nox3 and Rac

Previous observations of Rac-independent activation of Nox3 [370,382] were revised and
challenged by a study from Ueyama et al., which investigated this topic by a co-expression
system in HEK293-H and CHO-K1 cells [274]. The group could confirm many of the previous
findings, like constitutive Nox3 activity without any subunit and maximal activity enhance-
ment with NOXO1 alone or with p47phox/p67phox combined [96,355,372,382]. Interestingly,
the authors described a strong increase of ROS production after co-expression of Nox3
and Rac1 alone, which is in contrast to previous results. Additional expression of p67phox

further enhanced the activity of Nox3. This study confirmed again the flexible use of Nox
activator or organizer proteins and underlines the observation that Nox3 does not strictly
need organizer and adaptor units for moderate ROS production. Accordingly, Miyano and
colleagues revised their findings concerning Rac dependency for Nox3 activation of their
previous study in 2005 [382]. In co-expression experiments with various cancer cell lines
(HeLa, CHO, COS-7), they observed a small p67phox/NOXA1-dependent enhancement
of Nox3 activation by Rac. They further showed that p47phox, either in combination with
p67phox or NOXA1 was necessary for maximal Nox3 activation. In contrast, the combined
expression of NOXO1 and either p67phox or NOXA1 showed no dependency on Rac. More-
over, Nox3 was activated even more strongly when Rac binding was inhibited by site
mutation of p67phox or NOXA1 [378]. The group next focused on the role of all Rac iso-
forms (Rac1-3) in respect to Nox1 and Nox3 activation [275]. For that again a co-expression
systems with HeLa and HEK293 cells was used. In addition, human neutrophil fractions
and the macrophage-like cancer cell line RAW246.7 were analyzed to investigate this topic.
The group could confirm previous results of the Rac1-dependent enhancement of ROS
production mediated by p67phox or NOXA1 [274,378] and showed that Rac2 and Rac3 can
function redundantly in this process. For this reason, Rac is not a crucial component for
Nox3-derived ROS production but can enhance Nox3 enzyme activity in combination with
a defined set of subunits (Figure 2).

A complete new set of organizer subunits, not only for Nox3, but also for Nox1, was
identified by Gianni and coworkers [385]. They investigated a possible role of the two
Tyrosine kinases (tyrosine kinase substrate with five SH3 domains), Tsk4 and Tsk5 [386–388],
for Nox enzyme activation. Co-expression of Nox3 and Tsk4/5 alone increased the ROS
production by Nox3 in HEK293 cells, similar to NOXO1 or p47phox. Unfortunately, while
also a role in Nox4 activation was discovered [353,389], to date, no further investigation of
these new interesting subunits and Nox3 was conducted.

Taken together, the heterodimer consisting of Nox3 and p22phox is the basic minimal
structure independent of the investigated species and alone is sufficient to produce sub-
stantial amounts of ROS without any adaptor subunit. Both p22phox and Nox3 depend
on each other for proper maturation in the ER and for plasma membrane translocation,
and either one is degraded when the other part is missing. Similar to the flavocytochrome
b558 of Nox2, the Nox3-p22phox heterodimer shows the characteristic spectrum band at 558
nm, contains the two essential heme groups and undergoes heavy glycosylation during
maturation. However, in contrast to Nox2 or Nox1, if and to what extent the basal ROS
production of Nox3 can be enhanced highly depends on the regulatory subunit set and
the investigated species [172,390]. In human cells, the basic ROS-producing activity of
Nox3 can be enhanced by p47phox, NOXA1 or NOXO1 alone, with NOXO1 showing the
strongest effect [391]. The ROS production can be maximized by presence of both NOXO1
and NOXA1 or p47phox and p67phox. p67phox alone is not sufficient for ROS production
enhancement of Nox3 and either needs Rac1 or p47phox in addition. In mice, NOXA1, but
not NOXO1 alone, is sufficient to slightly enhance the basal ROS production, however
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in dependency on Rac. A combination of NOXA1 and NOXO1 leads to maximal ROS
production. p67phox-mediated enhancement of ROS production can be further increased
by Rac, however not when both p67phox and p47phox are present. In summary, Nox3 is
unique among all Nox isoforms since it can utilize all Nox organizer or activator subunits
or a combination of them, while also showing basal activity like Nox4 (Figure 2). As a
critical side note, all described findings and molecular interactions of Nox3 and its adaptor
subunits have not been investigated to date in any ex vivo cell type that naturally expresses
these proteins.

2. Location of Nox3
2.1. Location of Nox3 in Organs and Tissues

While often cited in many articles [12,13,172,285,361,392], including previous articles
from our own lab [393,394], as “only/exclusively expressed in/restricted to the inner
ear”, Nox3 was detected in various organs and cell types over time. This restriction of
Nox3 presence to the inner ear, the continuous transmission through the literature and
the subsequent underestimation of influence on its cellular processes were due to the
first in vivo investigation in animals that lacked Nox3. The animals showed a remarkable
head-tilting phenotype [370], and the inner ear as a localization of Nox3 was swiftly
discovered [355]. However, several years of excellent research on Nox3 revealed other
important locations of Nox3, for example the lung [395] and the liver [396]. Nevertheless,
this review will firstly focus on the inner ear as the first location where Nox3 was discovered
in vivo and then continues with a broad overview of organs and cell types where Nox3
could or could not be detected.

2.1.1. Nox3 in the Inner Ear

The inner ear of mammals provides two crucial functions for the orientation of the
organism, namely the sensation of sound and the sensation of balance and orientation [397,398].
While the cochlea is responsible for sound processing [399,400], the vestibular system
maintains balance and orientation [401–403]. Paffenholz and colleagues discovered the
probably most intriguing phenotype for Nox3, since Nox3-deficient mice showed a strong
head-tilting behavior, targeting the inner ear as only research focus for Nox3 for some
years [370]. Since this review focuses on Nox3, descriptions of the vestibular system and
cochlea are mandatory at this point. It should be mentioned that as sure as Nox3 is not
only expressed in the inner ear, Nox3 is also not the only Nox isoform expressed in the
inner ear [404]. Cheng and Lambeth detected the expression of Nox2 and Nox4 besides
Nox3 in the murine inner ear, while Nox1, Duox1 and Duox2 were absent [369]. Nox2 is
expressed in the microglia, which reside in the spiral ganglion [405,406], while Nox4 is
expressed in the vascular endothelium, which also supports the stria vascularis [407]. More
importantly, studies that investigate the expression profile of Nox enzymes must carefully
distinguish between the vestibular system and the cochlea and not generalize their findings
to the whole inner ear.

Nox3 in the Vestibular System

In the vestibular system, three semicircular canals and the cristae ampullas form a
functional unit to detect and coordinate angular (rotational) acceleration [408]. In the otolith
organs (consisting of the saccule and the utricle) the neuroepithelial maculae, a layer of
sensory epithelial cells, detect gravity and linear acceleration [409,410]. An extracellular
gelatinous matrix is located on top of the maculae and embedded in this matrix layer
are crystalline, polymorphic structures called otoconia [411]. The otoconia are formed
directly above the sensory hair cells, which are mechanoreceptors that transfer the sensory
information to the ganglion cells via chemical synaptic activation. Ganglion cells show dis-
charge patterns in the absence of any stimulation [412–414], which are mediated by a steady
neurotransmitter release from the pre-synaptic hair cells in a calcium ion (Ca2+)-dependent
manner [415–420]. Otoconia function as solid masses, which are affected by change of
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gravity or linear acceleration [401,408,410,421]. Calcium carbonate (CaCO3) is the main
inorganic compound forming the crystalline structure of the otoconia [401,422]. Indeed,
the protein Pendrin, a HCO3

−/Cl− exchanger channel, as well as Otopetrin1, a proton
channel [423,424], are crucial for proper otoconial formation [425–429]. The otoconia are not
completely inorganic, since a number of proteins were identified as organizing or structur-
ing components, and the list of otoconia-relevant genes is expanding [430–433]. The major
proteinaceous component found in the otoconia is otoconin 90/95 (OC-90/95) [434–436].
OC-90/95 is a 90–95 kDa-sized glycoprotein that belongs to the family of secretory phospho-
lipases A2 [435,436]. OC90/95 is produced by the non-sensory epithelial cells of the inner
ear from where it is secreted into the endolymph [433,434,436,437]. It is necessary for proper
formation of the inorganic CaCO3 crystallites into the otoconial organic mass [438,439], and
OC-90-deficient mice lose nearly 50% of their otoconial structures, leading to imbalance.
Importantly, the hearing capabilities remain intact in these animals [438,440]. Moreover,
a disturbed longitudinal flow of OC-90 from the vestibule to the endolymphatic sac also
leads to otoconial malformation, meaning that not only the presence, but also the location of
OC-90/95, is of importance for otoconial formation [441,442]. OC-90 also recruits other pro-
teins, such as Otolin-1 [438,443], a component of the gelatinous matrix. Other examples are
Otogelin, which is found in the surrounding extracellular layer [444,445], and Otoancorin,
which is located between the sensory hair cells and the overlaying extracellular matrix [446].
The concerted action and coordination of the various inorganic and organic components
are necessary for the proper formation of functional otoconia [409,410,431,447,448].

For the investigation of the vestibular system, mice (or other model organisms), which
harbor mutations in gene loci that affect the otoconial formation are obviously the most
useful [421,449–452]. Several altered gene loci that led to loss, disturbed size or dislocation
of otoconia and, subsequently, to a malfunctioning vestibular system were identified
and phenotypically described [408,410,425,447,452,453]. The first-described gene locus
associated with the head-tilting phenotype in mice was logically named “Tilted-head”
(thd) [454]. Unfortunately, besides the phenotypical description of the mice, this locus was
not further investigated. In the second detected locus “tilted” (tlt), the gene that encodes
otopetrin 1 is localized. Otopetrin 1 is also crucial for otoconia development [425–428]. The
analyzed third locus “head tilt” (het) containing two mutated alleles, het [455] and het2J,
was characterized and both mutated alleles were associated with loss of otoconia [456].
After further characterization [370], this locus was logically renamed Nox3het [457]. The
Nox3het−3J allele was generated during a mutagenesis project [458] and later investigated
and associated with Nox3 by Paffenholz and colleagues [370]. The Nox3het−4J allele was
also generated during a mutagenesis program in C57BL/6J mice [459] and the Nox3het−5J

allele spontaneously appeared at a Jackson Laboratory in the CBySmn.CB17-Prkdcscid/J
mouse strain [459].

Paffenholz et al. analyzed some other natural occurring and mutagenesis-induced
mutated alleles in the het locus, which were named hetR96, hetR542 and het3J [370]. Several
affected genes were identified, one of them with a high homology to the previously de-
scribed human NADPH oxidase 3 gene NOX3 [52,363]. The hetR96 mutant allele resulted in
a Nox3 protein, which lacked three of the trans-membrane α-helices, a complete catalytic
domain and the binding sites for NADPH and FAD (see Section 1.2 and Figure 1). Also,
a region responsible for heme binding was disturbed. The homologous deletion of Nox3
manifested itself by an obvious heat-tilting phenotype and lowered motor coordination
(i.e., disturbance during balancing and swimming). Notably, while the vestibular sys-
tem was clearly disturbed in Nox3-deficient mice, the hearing capacity was unaffected,
at least in these investigated animals. Histological analysis of the vestibular system in
Nox3-deficient mice revealed that the observed phenotype was based on the complete
lack of otoconia in homozygous (but not heterozygous) mice throughout the complete
lifespan (embryonic stage to adult) [370]. Paffenholz and colleagues described Nox3 as
a ROS-producing enzyme in the inner ear that is crucial for the morphogenesis of the
otoconia and subsequently for a properly functioning vestibular system. However, at that
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time, the molecular mechanism of the Nox3-derived ROS, which is responsible for otoconia
formation, was pure speculation [370].

A parallel study of Banfi and colleagues also reported Nox3 presence in the inner ear
of mice and rats by cloning experiments with cDNA [355]. The group also detected Nox3
expression at low protein levels in the brain, the skull and the fetal kidney. Nox3 expression
in the fetal rat kidney was later confirmed by Reinehr and colleagues [460]. The predicted
murine amino acid structure showed 81% sequence similarity with the human sequence.
The group could also confirm the vestibular system as Nox3-expressing tissue [355,370] and
further specified, for the first time, the sub-tissue location, i.e., the non-sensory epithelial
cell layer of the saccule, by in situ staining [355].

All of the so far described mutant alleles of Nox3 (namely Nox3het, Nox3het−2J, Nox3het−3J,
Nox3het−4J, Nox3het−5J, Nox3hetR96 and Nox3hetR542) lead to otoconial and/or vestibular-
evoked potential responses, which can be measured by a non-invasive method developed
by Jones et al. as reliable tool to identify loss-of-function mutations for Nox3 [408,461]. The
results of these measurements were comparatively analyzed and summarized in the work
of Flaherty and colleagues [457] and recommended for further interested readers.

A few years later, Mohri and colleagues generated mice that expressed Nox3 coupled
to the red fluorescence tag dtTomato to re-investigate the precise locations of Nox3 in the
inner ear in a ground-breaking study for the field [462]. They reported the “tilted head”
phenotype and otoconial defects in Nox3-deficient animals as described before [355,370].
Additionally, they observed strong Nox3 protein expression in the endolymphatic sac and
duct at early embryonic stages (at day 18.5). However, right after birth and 3 days after
birth, only weak Nox3 expression was detected in the semicircular canals and the vestibule.
Importantly, the group further showed that Nox3-derived ROS are majorly produced by
non-sensor epithelial cells [355], which face the lumen of the endolymphotic sac and duct,
as well as the semicircular canals and vestibule. A mechanism of Nox3-derived ROS for
otoconial development was not made during this investigation. Together, these studies
clearly showed that Nox3 is located in the vestibular system and is crucial for the proper
development of the otoconia and, accordingly, for balancing (see Section 4.3.1).

Nox3 in the Cochlea

The cochlea is the organ responsible for hearing [399,400,463], and several studies have
described Nox3 expression in this area of the inner ear [355,404,462]. Banfi et al. detected
expression of Nox3 mRNA in parts of the adult mouse cochlea, precisely the organ of Corti
and the spiral ganglia, while Nox3 was not expressed in dorsal root ganglia [355]. However,
in contrast to Banfi and colleagues, who analyzed mouse samples, Nox3 was not detected
in the spiral ganglion neurons of the rat cochlea [370]. However, while the loss of Nox3 and
the correlative deficiency of otoconia is detrimental for balance, head positioning and gravity
sensing [370,408,464–466], the loss of Nox3 in the cochlea leads to a rather protective outcome
for the tissue and the hearing capacity (see Section 5.1). Overproduction or production of
ROS in the wrong location can lead to irreversible cell and tissue damage, called oxidative
distress [7,8]. This phenomenon was also described in previous studies, which showed that
excessive ROS production in the cochlea in general has a great impact on age-, noise- and drug-
induced hearing loss (see Sections 5.1.1–5.1.4) [467–474]. Since Nox3 was firstly discovered
in the inner ear, it was only reasonable during the time of early Nox3-related research
to assume that Nox3 is most probably responsible for the destructive ROS production in
the cochlea [355,370]. However, it took several years until this correlation was proven
true [462,475–478]. Similar to Nox isoform expression in the vestibular system, Nox3 is not
the only Nox isoform expressed in the cochlea. Vlajkovic and colleagues detected all seven
isoforms, Nox1-5 and Duox1-2 in the rat cochlea [479]. The group further investigated the
specific cellular expression of the Nox isoforms, which will be discussed later in this review
(Section 2.2.1). Mohri and colleagues used their well-established mouse strain, in which
Nox3 is coupled to the red fluorescence tag dtTomato [462,480,481]. They detected no Nox3
expression in the cochlea after 1 and 2 months after birth. Nox3 expressions started, at
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the earliest, after 6 months accompanied by outer hair cell (OHC) loss. Further analysis
revealed an increasing Nox3 expression in supporting cells between 1 and 6 months, while
OHCs showed no Nox3 expression. This is a ground-breaking study for Nox3-related
research, since Mohri and colleagues not only investigated the exact location of Nox3
in the cochlea, but also described its role for different forms of hearing loss, which will
be discussed in Section 5.1. This was further completed by Rousset and colleagues who
detected expression of Nox2 and Nox3 mRNA in the mouse cochlea, but more importantly,
in the human cochlea [404].

2.1.2. Nox3 in Other Organs

Many studies have investigated the topic of Nox3 expression in various organs and
tissues. Surprisingly, during years of intensive research, it became clear that Nox3 is present
in many organs and cell types with a plethora of different functions, which will be discussed
later in Section 4. Unfortunately, most expression data available for Nox3 are restricted to
mouse or rat tissue, and information of Nox3 expression patterns in human tissues is scarce.

In addition to the inner ear, Nox3 was detected either as protein or, mostly, as mRNA
in mouse lung tissue [482,483], in mouse testes [484], in mouse white adipose tissue [485]
and in the mouse upper circumvallate papillary epithelium of the tongue [486]. Nox3
mRNA could not be detected in the naïve mouse fetal or adult liver [487].

In the rat, Nox3 mRNA expression was detected in rat skeletal muscle, testis, lung,
prostate, colon [488], brain [488–490], spinal cord neurons [491] and the adult rat kid-
ney [492].

In contrast to murine or rat tissue, Nox3 is expressed in the avian liver [493].
The few studies which investigated Nox3 expression in ex vivo human tissue samples

have described Nox3 expression in human placental tissue [494], as well as in non-tumor
and tumor pancreatic tissue (with no significant differences in dependency of these two
settings) [495]; Nox3 expression was detected in the human fetal, but not in the adult
kidney [487]. Juhasz et al. investigated the expression of Nox enzymes in various human
cancer cell lines and, importantly, in ex vivo tumor tissues [113]. Nox3 mRNA was absent
in all isolated tumor tissues derived from the colon, liver, lung, kidney, prostate, stomach,
ovary, breast, testis and brain.

2.2. Expression of Nox3 in Cell Types

While detection in tissues or whole organs was and is a challenging task, the investiga-
tion of Nox3 protein expression in specific cell types, especially in cell lines, was extensively
performed and delivered a broad catalogue of data addressing the topic where Nox3 is
expressed and where it is absent. I should note that I do not share the opinion of cell lines
of cancerous origin as “normal cells” for in vitro investigations as a sole line of evidence.
Primary isolated ex vivo cells should be preferred; however, their isolation and cultivation
remain difficult. Notably, most of the in vitro studies which addressed Nox3 have used
cancer-derived cell lines like HepG2 (as hepatocyte model) or HEI-OI (as an inner ear hair
cell model). Therefore, I listed only cancer cells under Section 2.2.7, which were clearly
addressed as cancer cells in a context of tumor-associated research.

2.2.1. Nox3 in Cells of the Inner Ear

It is not surprising that the most detailed knowledge of cellular Nox3 expression
accumulated around the cells of the inner ear and, as mentioned before, Nox3 is not the
only Nox isoform expressed in the inner ear. Vlajkovis and colleagues first described
a detailed overview of Nox isoform expression in the rat cochlea [479]. In detail, Nox1
mRNA was found in OHCs and Deiters’ cells; and Nox2 mRNA was expressed in OHCs and
Claudius’ cells, Deiters’ cells and inner border cells, but was strongest in inner sulcus cells.
Nox3 mRNA was strongly expressed in the inner sulcus cells but only weakly expressed in
cells of the organ of Corti. Neither Nox2 nor Nox3 were detected in the lateral wall tissues
or spiral ganglion neurons, which was confirmed for Nox3 protein expression by Zuhang
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et al. [496]. Nox4 was expressed in Hensen’s cells and inner sulcus cells but strongest in
the blood vessels of the cochlear lateral wall and the Rosenthal’s canal. Duox1 was only
weakly detected in sensory inner hair cells (IHCs) and supporting cells of the organ of
Corti. Duox2 was strongly expressed in the inner sulcus cells and weakly expressed in
the organ of Corti. The location of Nox3 in inner sulcus cells is especially notable, since
these epithelial cells line the endolymphatic compartment where they clear the endolymph
from cell debris, which occurs, for example, after severe acoustic trauma [497]. Accordingly,
these cells play a pivotal role for cochlear repair and ion homeostasis [498].

Mohri and colleagues analyzed Nox3 expression in vivo using their Nox3-coupled
dtTomato fluorescence system [462]. They described Nox3 expression in non-sensory
epithelial cells of the endolymphatic sac and duct, of the vestibule and of the semicircular
canals, but no Nox3 expression in the hair cells of maculae or ampullae. They also saw
Nox3 expression after 7 days of birth in the root cells of the lateral cochlea wall. After
2 months, Deiters’ cells, Claudius’ cells and OHCs started to express Nox3. After 12 months,
Nox3 expression further increased in Deiters’ cells, Claudius’ cells and outer and inner
phalangeal border cells. IHCs showed Nox3 expression for the first time after 12 months.
While these studies delivered excellent detailed information of Nox3 expression in rats and
mice, so far, no detailed description of the cellular expression patterns of Nox3 has been
conducted in the human inner ear.

2.2.2. Nox3 in Lung Cells

Nox3 was weakly detected in mouse lung endothelial cells [453,483,499–501] and in
primary human lung fibroblasts [502].

2.2.3. Nox3 in Liver Cells

The human liver cell line HepG2 naturally expresses Nox3 mRNA and
protein [363,487,503,504], which is of critical importance, since this cell line serves as
cellular model for most of the Nox3-related research on liver diseases (see Sections 5.4.1
and 5.4.2). This is in notable contrast to the absence of Nox3 in the naïve murine fetal or
adult liver [487].

2.2.4. Nox3 in Fibroblasts, Endothelial and Epithelial Cells in General

Ahmarani and colleagues expanded the list of cells in which Nox3 is naturally ex-
pressed [102]. They detected Nox3 in human endocardial endothelial cells (hEECs), human
vaginal endothelial cells (hVECs) and vascular smooth muscle cells (hVSMCs). Interestingly,
they reported a heterogeneous distribution in dependence of the cell type. In hEECs, Nox3
was found in clusters at the intracellular cell membranes, while in hVEVs and hVSMCs,
it was equally distributed in intracellular membranes, including the nuclear membranes.
Moreover, in all cell types, Nox3 was more abundant at the nuclear membranes compared to
all intracellular membranes. Among the cell types, hVECS showed the strongest density of
Nox3. Nox3 mRNA was further detected in late endothelial progenitor cells (EPC) together
with Nox1, Nox2, Nox4 and Nox5 [505], in human nasal polyp-derived fibroblasts [506]
and expressed as protein in the fibroblast-like cell line 3T3-l1 [485]. Notably, Zhang et al.
found that Nox2 is the main ROS source in primary human dermal fibroblasts. All other
Nox isoforms were at least expressed at the mRNA level, while Nox3 was not detectable at
all [507]. Nox3 was also not detected in human umbilical endothelial cells (HUVECS) [508].

2.2.5. Nox3 in Cells of the Eye

Not many studies have investigated Nox3 as a possible ROS source in the eye. Brown
et al. analyzed Nox enzymes in rabbit conjunctival fibroblast in the context of the fibrotic
response [509]. The group found that Nox2, Nox4 and Nox5 and Nox3 mRNA were
strongly expressed in this cell type, while Nox1 or the Duox enzymes were not detectable.
Transforming growth factor (TGF)-β treatment, which was used as a stimulating factor
in this study, did not stimulate the expression of Nox3; therefore, the role of Nox3 in this
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context was not further investigated. Furthermore, O Brian and colleagues could not detect
Nox3 mRNA or protein expression in human corneal stromal cells [510]. As a result, if and
how Nox3 might play a role during human eye diseases is completely unknown.

2.2.6. Nox3 in Cells of the Nervous System

Olguin-Alberne et al. investigated the involvement of Nox-derived ROS during the
cell death of murine astrocytes induced by Staurosporin [511]. They could not detect Nox3
mRNA in astrocytes cultured for 2 weeks, while Nox1, Nox2 and Nox4 were detected.
Nox3 absence in astrocytes was later confirmed by Reinehr et al. [460]. Oddly enough,
Olguin-Alberne et al. further investigated Nox3-deficient mice and, not surprisingly, there
was no difference between WT astrocytes and Nox3-deficient astrocytes. Notably, Acette
et al. detected Nox3 mRNA expression in the oligodendrocyte cell line MO3-13 [512].
herefore, Nox3 should not be fully excluded from neuronal research.

2.2.7. Nox3 in Cancer Cells

During a previous analysis of ex vivo human cancer tissues, Nox3 was not detected.
Further screening of various cancer cell lines, however, showed strong Nox3 mRNA and
protein expression in the cell lines H28 (mesothelioma), H358 (bronchoalveolar) and A549
(adenocarcinoma). Nox3 was weakly expressed in H157 (squamous), H727 (carcinoid) and
H838 (adenocarcinoma) [513]; in the cervix cancer cell line HeLa; in the lung cancer cell
line GLC-82 [503]; in the human pancreatic cancer cell line Panc-1 [514], as well as in the
human adenocarcinoma cancer cell lines MDA-MB-231, MDA-MB-468 and Hs578T [515].
Nox3 mRNA was also detected in the murine breast cancer line 4T1 [516].

In addition to these cancer cell lines, in which Nox3 was readily detectable, the
majority of studies have described the absence of Nox3 in cancer cells, i.e., in the cancer
cell lines H322 (bronchoalveolar), H520 (squamous), H1299 (large cell carcinoma), H2122
(adenocarcinoma) and HT29 (colon cancer) [513]; in the squamous carcinoma cell lines HSC-
2, HSC-3, HSC-4, SAS and OSC-19 [517]; in the osteosarcoma cell lines HOS, MOS, MG-63,
NOS-1 and HuO 9N2 [518]; in the malignant pleural mesothelioma cell lines ACC-MESO-1,
ACC-MESO4, Y-MESO-8A, MSTO-2211H, NCI-H28, NCI-H290 and NCI-H2052 and the
untransformed mesothelial cell line (Met-5A) [519]. Furthermore, no Nox3 expression
was detected in the myeloid leukemia cell line K-562 [508] and, finally, in several other
cancer cell lines (LS180, Caco2, LS174T, HT-29, PC-3, LNCap, DU145, MCF-7, BT474, ZR-
75, MB-468, K562, HL-60, OVCAR-3, Skov-3, SK-Mel 5, A2058, HepG2, HEK293, TC-71)
investigated in a broad screening study by Juhasz and colleagues [113].

2.2.8. Nox3 in Immune Cells

The first description of Nox3 expression in an immune cell type was made by van Buul
et al., which detected Nox3 in the T-cell cancer line Jurkat [508]. Miyano and colleagues firstly
showed that Nox3 is expressed and active in innate immune cells, namely the macrophage-
like cancer cell line RAW 246.7 [275], which was confirmed in later studies [520,521]. In con-
trast, Nox3 mRNA was not detected in ex vivo Kupffer macrophages [460], and since no
other ex vivo cell analysis was performed until now, it remains unclear if Nox3 belongs to
the basic Nox repertoire of macrophages or if it is more part of the cancerous phenotype of
RAW cells.

Feng and colleagues reported, for the first time, Nox3 expression on the mRNA and
protein level in murine spleen B cells and in the human B cell line BAL17 [522], while Nox3
was not detected in the human B cell line Ramos [508]. Therefore, these findings remain
somewhat contradictory.

Gaurav et al. investigated the role of eosinophils during allergic asthma [523] and
detected high amounts of Nox2, Duox1 and Doux2 mRNA in human peripheral blood
eosinophils, but only minor mRNA levels of Nox3 and Nox5.

Li et al. investigated the role of Nox enzymes in murine mast cells after UVA-induced
Ca2+ fluctuations [524]. They detected strong mRNA expression of Nox2 and of its subunits



Antioxidants 2024, 13, 219 17 of 95

p22phox, p47phox, p67phox, p40phox and Rac 1/2, as well as moderate expression Duox1 in
the rat mast cell line RBL-2H3. All other Nox isoforms, including Nox3, were not detected.

The rarity of studies which have investigated Nox3 in immune cells in general and the
partially contradicting findings of the already conducted studies clearly demonstrate that
this topic represents a vast empty field for future research.

2.2.9. Nox3 in Other Cell Types

Nox enzymes were reported to be expressed in placental tissue before [525–527], but
Polettini and colleagues dug deeper into this topic and analyzed human amniochorions,
i.e., fetal membranes [494]. Expression of Nox2, Nox3 and Nox4 mRNA were detectable in
healthy patients and in patients with either preterm premature rupture of membranes or
preterm birth with intact membranes. Patients with chorioamnionitis were excluded from
this investigation, since infiltrating immune cells would have confounded the obtained
data. Nox1 and Nox5 mRNA was not detectable in the samples. Notably, the localization
of Nox3 protein expression was present in both amnion and chorion cells.

Morimoto et al. described, in stably proliferating germline stem cells, strong expression
of Nox1, while Nox3 and Nox4 were only weakly expressed [484,528]. However, dependent
on the presence or absence of growth factors, the germline stem cells displayed a strongly
fluctuating Nox isoform expression, with Nox3 as majorly expressed protein (see also
Section 4.2). Issa et al. detected Nox3 mRNA and protein in the adipocyte cell line 3T3-
1L [529]. Nox3 could not be detected in human induced pluripotent stem cell (iPSC)-derived
CD34+ hematopoietic precursor cells [530], in immortalized primary human myometrial or
in fibroid uterine cells [531].

2.3. Subcellular Locations of Nox3

While the expression either on the mRNA or the protein level was extensively de-
scribed for Nox3 in tissues and cells in general, only a few studies have investigated the
exact location of Nox3 in cells. For other Nox isoforms cellular locations were extensively
investigated. Nox2 shows a rather restricted placement at the plasma membrane and at
the membrane of phagosomes/endosomes, while Nox4 is broadly distributed over many
intracellular structures [84,207], such as the nucleus [338] or the ER [218].

Uemaya and colleagues first described Nox3 localization at the plasma membrane,
together with p22phox, p67phox and, as described before [369], NOXO1 in co-transfected
HEK-293 cells [274]. The authors also suggested a mainly extracellular ROS production
based on this observation. Nakano and colleagues also reported p22phox-dependent local-
ization of Nox3 at the plasma membrane in co-expression systems with HEK-293 and CHO
cell lines [217]. During their analysis of the general Nox3 expression in cells, Ahmarani
and colleagues reported a heterogeneous distribution of Nox3 in dependence of the cell
type [102]. In hEECs, Nox3 was found in clusters at intracellular cell membranes, while in
hVEVs and hVSMCs, Nox3 was equally distributed in intracellular membranes including
the nuclear membranes. Moreover, in all cell types, Nox3 was more abundant at the nuclear
membranes compared to all intracellular membranes. The exact location of Nox3 for most
of the cell types is still unclear and represents a highly interesting research field.

Taken together, a plethora of studies have investigated and reported Nox3 expression
(some on the protein level, but most of them only on the mRNA expression level), in many
organs, tissues (in vivo or ex vivo as explants) and cell types (as primary cells or cell lines).
These findings revise the often-cited statement of Nox3 as “only expressed in the inner
ear”. Sadly, studies which have investigated the exact subcellular location that obviously
is dependent on the cell type, are scarce. Nevertheless, it seems that Nox3 might also
exploit an interesting variability in terms of the subcellular location. Considering the vast
amount of research, which was conducted so far to determine the structure (Section 1.2),
induction/regulation (Section 3) and functions (Section 4) of Nox3, as well as possible
therapeutically treatment options (Section 5) that target Nox3, it is highly surprising
that nearly nothing is known about Nox3 in humans except for the expression in some
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organs [363,372,404,487,494]. No human material from organs, where Nox3 was clearly
involved in pivotal functions in other species, such as rats and mice (e.g., from the inner
ear, lung or liver, Sections 4 and 5) was investigated, let alone that any treatment option,
which targets Nox3 in a mouse or rat model went into a clinical trial so far. Thus, in the
nearly complete lack of information for Nox3 in ex vivo human tissue lies a huge potential
for new and fruitful research.

3. Activation and Regulation of Nox3

Considering the expression of Nox3 in various cell types and tissues, logically, each
cell type of a specific organ or body compartment reacts differently to external and internal
stimuli. These factors can be of endogenous origin, e.g., growth factors, cytokines and
hypoxia or enter from the exterior, like pathogenic infection and physical or chemical
hazards. When, how and if Nox3 is activated by these stimuli will be discussed in this
section. A strict separation was made between the actual activation of the Nox3 enzyme, i.e.,
induced ROS production, and the regulatory processes, which also include modifications
of Nox3 mRNA expression in any way [13,390]. Nox3 resembles Nox4 in terms of basal
ROS production. Accordingly, an increase of Nox3 protein expression can correlate with
higher ROS production and might influence the subsequent cellular events. However, this
is not actually an induction of the enzymatic activity.

3.1. Activation of Nox3

Undoubtedly, the reader will swiftly notice that only a few studies have investigated
and experimentally showed Nox3 activation, which is ROS production after cdefined stim-
uli. Most of the studies only analyzed mRNA or protein expression in this context, which
both do not necessarily correlate with actual enzyme presence [530,532–534], activation and
directed production of ROS. Therefore, when studies only performed expression analysis
without providing clear evidence of Nox3 being the actual ROS source (e.g., via knock-
out or knock-down) and/or without any ROS measurements at all, these studies will be
discussed in Section 3.2, which summarizes the regulation of Nox3.

Nox3 was found to be activated by various stimuli involved in diseases progression,
such as insulin in HepG2 cells [487], cisplatin treatment in the organ of Corti and the
associated cells [355] and, for the first and only time so far, in B cells, via BCR-ligand
triggering [522]. Li and colleagues described a direct activation of Nox3 after TNF treatment,
which was mediated by PKC activation and subsequent p47phox translocation to Nox3 at
the plasma membrane [396] (Figure 3A,B).

Similar to the knowledge about subcellular Nox3 location, also a clear scientific picture
of Nox3 activation and ROS production, which does not always correlate with increased
expression, is sadly very low. Considering the many discovered organs, tissues and cells in
which Nox3 is expressed aside from the inner ear, a lot of interesting research potential lies
in the question by which stimuli Nox3-derived ROS production is activated, especially in
ex vivo cells.

3.2. Regulation of Nox3
3.2.1. Nox3 Regulation on the Expression Level

As mentioned before, most of the studies that investigated Nox3, especially in the context
of in vitro or in vivo functions, only analyzed mRNA expression of Nox3. First of all, mRNA
content does not necessarily reflect the presence of the build protein [530,532–534], making
the few studies that took the extra work of depicting the Nox3 protein expression much
more conclusive. Secondly, many studies did not confirm Nox3 as precisely responsible
for the observed effects, since no genetic evidence, i.e., by knock-out or knock-down, was
performed. Nevertheless, regulation of mRNA and protein expression is an important factor
of Nox3-mediated ROS production, which will be summarized in the following sections.
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Figure 3. So far, only a few studies described detailed pathways, which lead to Nox3 activation and
subsequent ROS production. (A) Li et al. demonstrated that Nox3 shows basal ROS production in
unstimulated HepG2 cells. (B) Nox3-derived ROS production can be enhanced via tumor necrosis
factor (TNF) by two different mechanisms. (1) TNF- and protein kinase C (PKC)-mediated signaling
results in the translocation of p47phox to the Nox3 core complex and subsequently activates Nox3-
derived ROS production directly and (2) as many other exogenous or endogenous factors; also, TNF
signaling leads to the up-regulation of Nox3 mRNA expression, protein synthesis and finally the
increase of ROS production [396]. (C) Similar to TNF, other endogenous factors, such as growth
factors or hormones, as well as exogenous factors like carbon monoxide, cisplatin or noise, lead to
the up-regulation of Nox3 mRNA expression and subsequent increase of the Nox3 protein, which is
often correlated to an increased ROS production.

Up-Regulation Nox3 on the Expression Level

A number of endogenous factors such as cytokines, growth factors, hormones or al-
tered body homeostasis lead to the up-regulation Nox3 expression (Figure 3C). In germline
stem (GS) cells, Nox3 protein expression was up-regulated after stimulation with the cy-
tokines glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2
(FGF2) [484]. Issa et al. described an increase of Nox3 protein after three hours of TGF-β
treatment in the adipocyte line 3T3-1L [529]. Similarly, Yasuoka and colleagues detected
an increase in Nox3 mRNA after TGF-β or integrin beta-5 (IGBT-5) treatment in primary
human lung fibroblasts [502]. Nox3 mRNA expression was increased in the murine breast
cancer line 4T1 after isolation from an established tumor setting in mice [516]. These ani-
mals were additionally treated with TWS119, a substance that leads to glycogen synthase
kinase-3 β (GSK-3β) phosphorylation. GSK-3β is a protein kinase with a high correlation to
cancer transformation [535,536]. TWS119 treatment led to a further up-regulation of Nox3
mRNA in the isolated 4T1 tumor cells.
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Insulin treatment increased Nox3 protein levels in HepG2 cells, a commonly used cell
line for investigation of liver diseases. This phenomenon was also observed 3T3-L1 cells
and white adipose tissue in mice [485]. Palmitate treatment also increases Nox3 protein
levels in an adipose animal model [537]. Michihara et al. also found that Nox3 mRNA and
protein levels were increased in the brain of hypertensive rats [489]. Adipositas, as well as
hypertension, can contribute to cardiovascular diseases and the role of Nox3 in this context
will be discussed in Section 5.4.

Li and colleagues reported Nox3 mRNA up-regulation after treatment of HepG2 cells
with the pro-inflammatory cytokine TNF [396] (Figure 3A,B). Kathanal et al. observed Nox3
mRNA up-regulation after treatment with the Gram-negative bacterial cell wall component
lipopolysaccharide (LPS) [521]. Both findings suggest a possible role for Nox3 during
infection and inflammation.

Many exogenous factors, most of them physical or chemical inducers of inflamma-
tion, were described to increase Nox3 mRNA and protein levels. The most prominent
substance is probably the anti-cancer drug cisplatin, which induces toxic damage by many
correlative events that all increase the inflammatory profile of the inner ear, especially in
the cochlea [538,539]. Accordingly, several studies have described an increase of Nox3
mRNA [477,540] or protein [462,476,541,542] after cisplatin treatment (Figure 3C).

Exposure to physical hazards also influences Nox3 expression. Carbone monoxide
(CO) exposure (3000 parts per million [ppm]) induced Nox3 mRNA expression in the rat
striatum [543], and Wang et al. saw a strong increase of Nox3 protein after 1 hour of heavy
ion irradiation (1–4 gray) of HeLa, HepG2 and GLC-82 cells [503]. Habashy and colleagues
investigated the oxidant and antioxidant responses in chicken livers after mild heat stress
(35 ◦C) [493]. The group detected a basal mRNA expression of Nox3 in liver tissue, which
was up-regulated after 1 and 12 days of applied heat stress. Finally, as reported by various
studies [462,476,478,544], noise exposure leads to an increase in Nox3 mRNA and protein
levels in the cochlea (Figure 3C).

Chemical exposure can also lead to altered Nox3 expression. Kim et al. described an
up-regulation of Nox3 mRNA after treatment with endosulfan [545], a widely used pesti-
cide that is associated with immune response dysregulation [546,547]. Ye and colleagues
investigated the interplay between oxidative and anti-oxidative responses in rat kidney
after phenol-induced kidney injury [492] and detected an increase of Nox2, Nox3, p22phox

and p47phox mRNA in isolated brain nuclei. Kim et al. detected a protein up-regulation of
Nox3 after mono sodium urate crystal treatment in RAW cells [520].

Some bioactive, substances isolated from medical plants, such as Brevilin A [548] or
Genipin [521], also induced Nox3 mRNA and/or protein up-regulation.

Zuhang et al. observed, as the only incidence so far, an increase in Nox3 protein levels
in ex vivo spiral ganglion cells after an infection, namely with the Cytomegalo virus [549]
(Figure 3C).

While Nox3 involvement during various body functions and disease progression was
intensively investigated (Sections 4 and 5), this last example [549] dramatically displays
the vast gap of knowledge of Nox3 in the context of immunity and infection.

Down-Regulation or No Effect on Nox3 Expression

Owens and colleagues noted a correlation of Nox3 mRNA levels and the Rieske-Iron-
Sulfur protein (RISP) in the Complex III of the mitochondrial respiratory chain. After
RISP knock-down in various breast cancer cell lines they detected a decrease in Nox3
mRNA [550].

In contrast to other studies [462,476,478,544], Vlajkovic et al. observed that Nox3
expression is down-regulated in the rat cochlea after noise exposure (100–110 decibels
[dB]). More precisely, they showed that Nox3, but not Nox2, is down-regulated in the inner
sulcus cell region [479]. Li and colleagues detected Nox3 mRNA in late EPCs together with
Nox1, Nox2, Nox4 and Nox5. Angiotensin-II treatment resulted in a strong increase in the
mRNA expression of Nox2, Nox4 and Nox5, but no expression changes were detected for
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Nox3 [505]. Finally, the antioxidative substances Simvastatin and curcumin reduced Nox3
mRNA levels [504].

Nox3 Regulation via Other Factors

Qian et al. showed a regulatory role of nitric oxide on the direct enzymatic activity
of Nox3 [551]. In COS-7 cells, which were co-transfected with Nox3, as well as NOXO1
and NOXA1, the addition of the NO donator DETA-NONOate inhibited Nox3-mediated
superoxide production in a dose-dependent manner. The group of Kiss et al. reported
dependency of PKC during p47phox-mediated activation of Nox3 [464] (Figure 3A,B),
confirming the findings of Li and colleagues [396].

4. Functions of Nox3

It is not surprising that Nox3-derived ROS, in regard to Nox3 expression in many
different tissues and cell types, fulfill various functions in the body. In this section, the
beneficial functions of Nox3-derived ROS will be discussed, while the causes of ROS
overproduction or ROS production in the wrong locations, which lead do various diseases,
will be summarized in Section 5.

4.1. Signaling Functions of Nox3

Remarkably, three very convincing and nicely conducted studies, which investigated
Nox3-derived ROS in cellular signaling processes, all investigated the signaling functions
of ROS in the context of diabetic liver diseases. The fourth study investigated several cancer
cell lines, and these four studies are, so far, the only research conducted for Nox3-derived
ROS in the context of signaling pathway modifications.

Previous studies have reported a swift increase of H2O2 production after insulin
treatment [552–554] in liver cells and Carnesecchi et al. investigated possible ROS sources
involved in this context in the hepatocyte-like cancer cell line HepG2 [487]. The group
measured a basal H2O2 production without any stimulus and a robust increase (28–40%)
of H2O2 production after treatment with 100 nM insulin. Down-regulation of Nox3 by
siRNA nicely solidified Nox3 as the source of ROS, since Nox3 knock-down led to the
abolishment of H2O2 production. After insulin treatment, HepG2 cells showed increased
phosphorylation of the signaling kinases ERK1/2 and Akt. While Akt phosphorylation was
not altered after Nox3 knock-down, phosphorylation of ERK1/2 was decreased through
the whole time course of insulin treatment. Insulin-induced ERK1/2 activation leads to
Vascular Endothelial Growth Factor (VEGF)-A mRNA and protein expression in HepG2
cells and keratinocytes [555–557]. The group further investigated this topic in the context
of Nox3-derived ROS production. Indeed, an increase in VEGF-A mRNA and protein
expression after insulin treatment was detected, which was strongly decreased after Nox3
knock-down. Notably, the exogenous addition of H2O2 rescued this effect, thus connecting
Nox3, H2O2 and VEGF-A expression. Finally, the group observed a decreased binding
activity of the transcription factor Specific protein 1 (Sp1) [558], which plays a central role
in VEGF-A expression [559,560]. This study is one of the few examples during the time
course of Nox3-focused research, which clearly shows a consistent line of evidence for
Nox3-derived ROS involvement. All critical parameters for Nox-related research were
investigated, i.e., the ROS production-inducing stimulus (insulin), confirmation of the ROS
source by genetic evidence (via siRNA-mediated knock-down); furthermore, an actual
decrease in ROS production confirmed by ROS measurements (same stimulus, same cell
type), a connection of the produced ROS and the regulated signaling pathways (ERK and
Akt signaling) and finally the influenced cellular outcomes (transcription factor regulation)
(Figure 4A).
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Figure 4. Nox3-derived ROS fulfill various important functions in the organism. (A) Insulin treatment
of HepG2 cells leads to Nox3-derived ROS production, which, in turn, induce a extracellular signal-
regulated kinase 1/2 (ERK1/2)-mediated translocation of the transcription factor Specific protein 1
(Sp1). Sp1 binds to the promoter of the VGEFA gene and induces expression of Vascular Endothelial
Growth Factor (VGEF)-A mRNA and VGEF-A protein production. Neither the exact steps of the
insulin-induced signaling cascade, which activates Nox3, nor the exact targets of Nox3-derived ROS
that activate the ERK1/2 pathway are known in detail [487]. (B) Treatment of HepG2 cells with
palmitate induces (1) Nox3 mRNA expression and protein synthesis by an unknown mechanism. The
increased basal Nox3-derived ROS production then (2) activates a signaling cascade, which involves
phosphorylation of the mitogen-activated protein kinases (MAPK) C-Jun-N-terminal Kinase 1/2
(JNK1/2), p38, phosphoinositide 3-kinases (PI3K) and the protein kinase B, also known as Akt, which
ultimately leads to gluconeogenesis [537]. (C) In the inner ear, the vestibular system is responsible
for detection of acceleration and gravity sensing. Three semicircular canals detect and rotational
acceleration. In the vestibule, consisting of the saccule and the utricle, changes in gravity and linear
acceleration are detected. In the vestibule, the maculae are responsible for this function. A gelatinous
matrix is located on top of the maculae. Otoconia, solid crystalline structures, are formed in this
matrix directly above the sensory hair cells. Movement of otoconia in this matrix stimulates the hair
cells, which transfer the sensory information to the ganglion cells. The main inorganic compound in
otoconia is calcium carbonate (CaCO3) but otoconia are not completely inorganic. Various proteins
are necessary for proper otoconial formation. The major protein component is otoconin 90/95
(OC-90/95) [429–431], which is produced by the non-sensory epithelial cells. OC-90/95 is crucial
for proper formation of the inorganic CaCO3 crystallites. The most current mechanism describes
Nox3-derived ROS as crucial mediators of disulfide linkage and subsequent multimerization of
OC-90. The OC-90 multimers then function as nucleation points for calcium ions (Ca2+) and CO3

2−

to form CaCO3. Without Nox3-derived ROS, no OC-90 multimers are present as nucleation points,
Ca2+ and CO3

2− remain in solution and otoconia are not formed [464,466]. The lack of otoconia leads
to the most obvious phenotype of Nox3-deficient mice, i.e., strong balancing deficits [370].
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A study from Li and colleagues investigated the effect of Nox3-derived ROS on the
glycogen levels in HepG2 cells [396]. Insulin resistance is a key feature of type 2 diabetes
and several studies have documented the involvement of elevated ROS production in
insulin resistant cells and tissues [561], which lead to disturbed signaling pathways that
regulate the intracellular glycogen levels [562,563]. The group focused on TNF-induced
signaling as an inhibiting factor of insulin signaling [564,565]. Wistar rats were fed with
a high-fat diet (HFD) for 12 weeks to induce insulin resistance. This was accompanied
by increased TNF plasma levels, decreased hepatic glycogen levels and enhanced hepatic
ROS production. To link these correlative data sets, the researchers switched to an in vitro
model. HepG2 cells were treated with TNF (4–6 ng/mL for 4 days) and showed decreased
intracellular glycogen levels and enhanced total cellular ROS production. qRT-PCR analy-
sis revealed Nox3 as the only expressed Nox isoform on the mRNA level in HepG2 cells,
together with p22phox, p47phox, p67phox and Rac1. TNF treatment increased the mRNA
expression of Nox3, which was also noticed in the liver in vivo after a HFD. Since not
NOXO1, but and only p47phox as possible regulatory subunit of Nox3 was detected in
HepG2 cells, the group tested the previously suggested involvement of PKC during Nox3
activation [464]. Indeed, the PKC inhibitor hypericin abolished TNF-induced ROS produc-
tion. Since PKC signaling induces p47phox translocation from the cytosol to the plasma
membrane, this was also investigated. Fluorescence microscopic and Western blot analysis
of membrane protein extractions confirmed the translocation of p47phox to the plasma
membrane after TNF stimulation. These data show that Nox3-mediated ROS-production
is increased by two independent mechanisms in HepG2 after TNF treatment: Firstly, the
mRNA expression of Nox3 is increased after TNF treatment, and secondly Nox3, is acti-
vated via TNF-mediated PKC activation and p47phox translocation (Figure 3B). The group
next confirmed via siRNA-mediated knock-down Nox3 as the sole ROS source after TNF
stimulation in these cells. Glycogen levels also remained stable after knock-down of Nox3
in contrast to not transfected cells, showing the involvement of Nox3-meditated ROS in this
process. They further investigated the C-Jun-N-terminal Kinase 1/2 (JNK1/2) signaling
pathway as the link between ROS and the observed glycogen decrease, since this pathway is
not only modulated by ROS [566] but is also involved in insulin sensitivity in mice [567,568].
TNF treatment resulted in phosphorylation of JNK1/2, which could be reversed via Nox3
knock-down. This nice publication identified Nox3 as sole ROS source in TNF–stimulated
HepG2 cells, the JNK-pathway as ROS-mediated target, the involvement of ROS in cellular
insulin resistance and a possible interplay of TNF, PKC and p47phox-mediated activation
of Nox3. Furthermore, these findings reveal a clear contrast to the regulation of Nox3
in the inner ear, where Nox3 is only activated via NOXO1 [355,372]. Finally, the group
unraveled two very distinct possibilities to regulate Nox3-derived ROS production, i.e., on
the expression level or by direct signaling-mediated activation.

A follow-up study from the same lab further focused on the role of free fatty acids
(FFA) during insulin resistance and the role of Nox3 in this context [537]. It was previously
shown that elevated ROS levels in general are correlated to insulin resistance [569,570]
and an involvement of FFA was suggested [571–574]. The group saw elevated insulin,
glycohemoglobin and FFA levels in plasma, as well as decreased hepatic glycogen levels
and increased hepatic ROS levels in leptin-deficient mice (db/db mice). This mouse strain
is a commonly used model for type 2 diabetes investigations [575]. In vitro studies with
HepG2 cells revealed an increase of gluconeogenesis and an impaired cellular glycogen
content after palmitate treatment, which mimics insulin resistance in vivo. In this context
also increased total cellular ROS levels were observed. A previous study documented
the expression of Nox3, p22phox, p67phox, p47phox and Rac1 in HepG2 cells, but not of
other Nox isoforms or subunits [396]. Indeed, expression of Nox3 was up-regulated after
palmitate treatment in HepG2 cells and in livers of db/db mice, while Nox1, Nox2, Nox4
or Nox5 were not expressed. Knock-down of Nox3 via siRNA in HepG2 cells reduced
Nox3 mRNA expression and ROS production in untreated and palmitate-treated cells,
nicely establishing Nox3 as the ROS-producing enzyme in this context. Previous studies
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have discovered critical roles of the MAPKs, JNK1/2 [396,576,577] and p38 [578] during
insulin resistance. ROS-mediated modifications of these pathways [566,579], especially
during insulin resistance [580] were also suggested. Indeed, palmitate treatment led to
increased JNK1/2 and p38 phosphorylation in HepG2 cells. The activation of these two
kinases subsequently led to phosphorylation of the kinases Akt, glycogen synthase kinase-3
(GSK3) and the transcription factor Forkhead box protein O1 (FoxO1), finally resulting in
increased gluconeogenesis and reduced glycogen levels. Knock-down of Nox3 reduced
phosphorylation of JNK1/2 and p38 as well as suppressed gluconeogenesis (Figure 4B).
Again, this is an example of a nice and convincing study in which both, the exact ROS
source and the mode of action were clearly described in a cellular system. However, in
contrast to the lab’s previous study [396], a direct link of Nox3-derived ROS in vivo was
unfortunately not found.

Maletter et al. investigated a completely different topic, i.e., the role of Nox3-derived
ROS during cell death signaling. The group focused on the effects of the CD95/Fas ligand
CD95L on the human adenocarcinoma cancer cell lines MDA-MB-231, MDA-MB-468 and
Hs578T [515]. CD95L treatment, previously cleaved by a metalloproteinase [581–583],
resulted in a switch from an apoptotic [584] to a pro-motile metastatic phenotype [585].
Binding of cleaved CD95L to the Fas receptor led to subsequent Ca2+ release mediated by the
transcription factor c-yes [586,587]. The elevated Ca2+ levels activated PI3K [585,588] and
induced total cellular ROS production. Although the used cancer cell lines expressed Nox2,
Nox3 and Nox4, only Nox3 was recruited to the membrane-located signaling platform,
which formed after CD95L treatment. Silencing of Nox3 by siRNA abrogated Ca2+ release
and cell migration in CD95L-treated cells. Unfortunately, no ROS measurements were
performed in Nox3-silenced cells. Therefore, no evidence in this otherwise convincing
study for a direct link between Nox3-derived ROS and the observed signaling effects in
this context could be made.

4.2. Functions of Nox3 in Cell Differentiation

Sasaki and colleagues firstly investigated the involvement of Nox3-derived ROS dur-
ing cell differentiation [589]. They used RAW246.7 cells to investigate a possible role of
Nox-derived ROS during osteoclast differentiation. Previous studies for this topic were
contradictory. Osteoclasts express Nox2 [590]. However, Nox2-defcient osteoclasts still pro-
duce O2

−, and Nox2-deficient mice show no abnormalities in their bone structure [86]. As
redundant ROS sources, Nox4 in differentiated osteoclasts [86,591] and Nox1 in osteoclast
precursors [592] were suggested. Notably, in Nox1-deficient [125,593] and Nox3-deficient
mice [370], no bone abnormalities occur. Sasaki et al. detected small amounts of Nox3
mRNA in RAW246.7 cells (0.001% in comparison to the highly expressed Nox2), while
NOXA1 mRNA could not be detected. After treatment with Receptor Activator of NF-κB
Ligand (RANKL), which is an osteoclast differentiation factor, Nox2 mRNA expression was
strongly down-regulated, while Nox3 expression only slightly decreased. Nox1 expression
on the other hand was strongly increased. Notably, expression of NOXO1, an important
enhancer of ROS production of both Nox1 and Nox3, decreased. Accordingly, the O2

−

production was reduced but did not vanish completely. This suggests a flexible adaptive
switch of Nox enzymes for ROS production during differentiation of osteoclasts. Unfortu-
nately, there was no direct evidence of Nox3-derived ROS during this process, since only
p22phox or p67phox were down-regulated via siRNA.

Several lines of evidence suggest that ROS in general are necessary for the differentia-
tion of cells of the nervous system [594–596], which was shown in detail for the PC12 cell
line [597], glia cells [598], neuroblastoma cells [599] and oligodendrocytes [600]. Previous
studies, which investigated a possible role for Nox-derived ROS during oligodendro-
cyte differentiation [598], only used the very unspecific inhibitors apocyanin [601–603] or
DPI [7,13,604–606]. No genetic evidence (knock-out or knock-down) was provided for Nox
enzyme involvement [79], so this issue has remained unresolved. Acette and colleagues fur-
ther investigated this issue in the oligodendrocyte-like human cancer cell line MO3-13 [512].
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They found that MO3-13 cells express Duox1, Duox2, Nox5 and Nox3. Nox3 knock-down
reduced the expression of Myelin Basic Protein and the nuclear factor Olig-2, which are
two important markers of oligodendrocyte differentiation [607–609]. Unfortunately, no
other cell responses, especially the ROS production, were analyzed after knock-down of
Nox3. Hence, again, a direct link of Nox3-derived ROS and the expression of differentiation
markers in oligodendrocytes could not be made.

Morimoto and colleagues investigated in a nicely conducted study a putative function
for Nox3-derived ROS during proliferation of murine GS cells in vitro and in vivo [528].
In a previous study, the group identified Nox1 as the majorly expressed ROS source in
stably-growing GS cells. Cellular knock-down of Nox1 in cells or a full body knock-out of
Nox1 in mice led to a reduced proliferation activity of GS cells [484]. In this follow-up study,
the group reported a strongly dynamic expression pattern of Nox enzymes in dependency
on their proliferation status. Stably proliferating GS cells strongly expressed Nox1, while
Nox3 and Nox4 were only weakly expressed, as shown previously [484]. Without any
proliferation-stimulating factors, i.e., the growth factors FGF2 and GDNF, Nox1, Nox2 and
Nox3 expression was strongly up-regulated. Notably, when FGF2 and GDNF were added
to actively proliferating GS cells, Nox1 and Nox2 mRNA levels were down-regulated and
only Nox3 mRNA was up-regulated. The expression of Nox3 was modulated by the MAPK
and PI3K signaling pathways, since chemical inhibition of both pathways led to a strong
down-regulation of Nox3 mRNA expression. Knock-down of Nox3 resulted in decreased
ROS production and reduced gene expression of ld4, etv5, Nanos3, Neurig3, Blc6b, Ztb16,
Cdkn1a, CCnd2 and Ccnd3. An increase of gene expression was detected for Ccnd1, Sohlh1
and CDkn1b. Nox3 knock-down finally led to apoptotic cell death and a defect in active
proliferation. The group furthermore expanded their findings by analyzing the testes from
7- to 10-day-old mice. Isolated testicular cells were treated with small hairpin (sh)RNA
against Nox3 and subsequently showed increased self-renewal activity in comparison to
the control cells. This study firstly described the presence of Nox3 in testesand analyzed its
contribution to the self-renewal capability after cytokine stimulation as well as during GS
cell maintenance under non-stimulated conditions. Sadly, a direct mechanistic link between
Nox3- or Nox1-derived ROS and the proliferation capacities was not investigated.

Mazzonetto and colleagues investigated of the interplay of Nox3 and Sonic Hedgehog
(SHH)-mediated signaling during the development of granule cell precursor differenti-
ation [610]. Purkinje cells produce and secrete SHH [611], a protein that is the major
proliferatory stimulus for granule cell precursors [611–614]. After binding to the SHH
receptor called Patched, the intracellular signaling pathway is activated and leads to induc-
tion of proliferation [615]. Dysfunction of this pathway and the subsequent disturbance of
cerebellar neurons during development can cause ataxia, which manifests in neurological
malfunction and motor discoordination [616]. Mazzonetto et al. characterized a BALB/c
mutant mouse line that showed a phenotype which resembled ataxia and was established
in a previous mutagenesis screening [617]. The most obvious phenotype of the mutant
animals was a lack of motor coordination. This phenotype did not get worse with age
indicating a developmental defect. Linkage analysis revealed the location of the mutation
in chromosome 17, which is the syntenic region of the human chromosome 6. Several
other studies have located mutations linked to Nox3 in chromosome 6 in patients with
developmental disturbances and hearing loss [618]. The candidate genes present in the mu-
tated regions were Tiam2, Tfb1m, Cldn20 and NOX3. After applying a singular nucleotide
variant filtering and further data analysis, only one singular nucleotide variant remained
in exon 3 of the NOX3 gene. The mouse line was subsequently named NOX3eqlb after the
newly discovered allele. NOX3eqlb mice showed an unaltered NOX3 gene expression, while
the NOX1 gene was strongly expressed in comparison to WT mice. The group isolated
cerebellar and neural stem (NS) cells and observed a slight increase in total cellular ROS
in NOX3eqlb-derived cells after 7 days and much less ROS production after 12 days in cell
culture. The cerebellum of NOX3eqlb mice showed no abnormalities, but the group reported
a thicker external granular layer, a disorganized Purkinje cell monolayer and more Bromod-
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eoxyuridine (BrdU)-positive cells indicating increased proliferation. Organotypic in vitro
cultures of cerebella and granular precursor proliferator cells isolated from in NOX3eqlb

mutant mice showed a higher proliferation rate in comparison to WT mice. Cultured
neurospheres from isolated NS increased in size much earlier when derived from NOX3eqlb

mice but normalized at day 10 to a similar degree as in WT mice. Other organs such as
the heart, liver, muscles, kidney and other brain regions showed no increased proliferative
activity. Microarray analysis detected 116 up-regulated and 40 down-regulated genes at
day 6 after birth. At day 15, 64 genes were up- and 5 were down-regulated. All of these
genes were involved in proliferation and cell growth, e.g., Cdkn2a, Cd133, CCnb1, Cdk1, Rb1,
Cdc25, Akt1 and Sox2 [619]. Increased levels of SHH protein, the main mitogenic driver
in this context, was detected in the cerebella of NOX3eqlb mice. Additionally, increased
expression of genes down-stream of the SHH pathway (Ccnd1 and Gli1, 2, 3 [620–622]) was
detected. Since SHH-mediated signaling is activated via ROS [623], a connective mecha-
nism was suggested. Unfortunately, in this otherwise excellent study, only the unspecific
inhibitor apocyanin was used, and no direct evidence was given for the involvement of
Nox3-derived ROS in this context.

Feng and colleagues investigated, for the first time, the presence and function of Nox3
in B cells [522]. Upon exposure to antigens, B cells undergo proliferation and activation
mediated by a complex signaling cascade [624–627]. The involvement of ROS during
cellular signaling was established in various immune cells before [4,80,145,146], including
B cells [628–632]. While mitochondria [632] and Nox2 [629] were identified as activated
ROS source in B cells, other Nox enzymes were not investigated. Notably Nox2-deficient B
cells normally proliferate, which suggests that ROS produced by other Nox isoforms might
be more important in this process [629]. Feng et al. analyzed this topic and found that in
ex vivo murine splenic B cells and in the B cell line BAL-17 the mRNA expressions of the
NOX1, NOX3, DUOX2, NOXA1 and NOXO1 genes were up-regulated after B cell receptor
activation. Nox4 and Duox1 mRNA could not be detected. The group measured no total
cellular ROS production in Nox2- or DuoxA1/2-deficient B cells in the early phase (1 h),
but prolonged ROS production at later time points (4–6 h). Additionally, no disturbance in
proliferation was reported, suggesting no role for the early ROS production mediated by
Nox2 and Duox2. Interestingly, prolonged ROS production and proliferation in B cells was
abolished in p22phox- or Nox3-deficient BAL-17 cells, but not in Nox1-deficient cells. Via
the CRISPR/Cas9 knock-out system, the group nicely identified Nox3 as responsible ROS
source. However, instead of using the nicely established knock-out cell lines, the group
only used the globally working ROS scavenger NAC to investigate the role of ROS in the
signaling cascade, which mediates B cell activation. Therefore, a direct mechanistic link
between Nox3-derived ROS and the signaling cascade necessary for B cell activation was
not demonstrated.

Park et al. investigated the role of 8-hydroxy-2′-deoxyguanosine (8-OHdG), an ox-
idatively modified DNA base and biomarker of oxidative distress [179,633–635], and its
paradoxical role as exogenous anti-inflammatory and anti-oxidative component [636]. Treat-
ment of human pancreas cancer cell line (Panc-1) cells with 8-OhdG resulted in decreased
total cellular ROS production and a reduction of Nox1, Nox2 and Nox3 mRNA expres-
sion. [514]. However, none of these Nox isoforms were confirmed as involved ROS sources
via knock-down or knock-out experiments.

Al-Sabbagh et al. investigated the functions of Nox enzymes during decidualization,
a process which summarizes the cellular changes for pregnancy preparation of human
endometrial stromal cells [637]. After 8-bromo-cAMP stimulation, which induces sig-
naling events that lead to decidualization, the group observed a p22phox-dependent and
Rac1-independent response of stromal cells. Despite the fact that Rac1 is not completely
necessary for full Nox3-mediated ROS production, they excluded Nox3 as ROS source and
focused on Nox4, which was confirmed as major ROS source via siRNA knock-down ex-
periments. Unfortunately, since no broad experimental screening via qRT-PCR or Western
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blot experiments were conducted, it remains elusive if and how Nox3 is expressed or if
Nox3-derived ROS fulfill other important functions in human endometrial stromal cells.

4.3. Functions of Nox3 in the Inner Ear

Before Nox3 can be put in the context of ROS-associated benefits or malfunctions for
the inner ear, it should be mentioned that ROS and their subsequent effects on the inner
ear were described before the discovery of Nox3 [469,472]. Moreover, as mentioned earlier
(Section 2), Nox3 is also not the only Nox isoform expressed in the inner ear [479]. It is also
noteworthy that the striking overlap of NOXO1 and Nox3 mRNA expression patterns, as
well as the observed similar phenotypes of NOXO1- or Nox3-deficient animals led to a
synonymous use for NOXO1 and Nox3 deficiency in some occasions [355,370,464].

4.3.1. Functions of Nox3 in the Vestibular System

While the effects of Nox3 deficiency on otoconial development were described in vivo
by Paffenholz and colleges [370], it took 2 years until an indirect hint for the precise
mechanism of Nox3-derived ROS in this process was discovered by Kiss et al. [464]. The
group analyzed a spontaneously emerged mouse mutant line with severe balance deficits,
named “head slant” (hslt), described by Gagnon and colleagues in 2013. (short report
available as PDF on the Jackson Laboratory Website, https://www.informatics.jax.org/
downloads/Reference_texts/J86035.pdf, accessed on 2 February 2024). Kiss et al. further
characterized this mutant mouse line and confirmed strong balance and orientation deficits,
while the hearing capacities were not altered. All of the hslt mutant mice were homozygous
for a mutant NOXO1 gene allele (therefore named NOXO1hslt). The group elegantly showed
via a transgenic rescue with a functional NOXO1 gene allele that the dysfunctional NOXO1
subunit is indeed responsible for this severe phenotype, since all transgenically rescued
animals showed normal gravity and balance perception similar to wild-type (WT) animals.
Strikingly, in all NOXO1hslt animals, a complete absence of CaCO3 and otoconia in the inner
ear was reported. Instead of functional otoconia, otoconia-like unstructured conglomerates
were spotted directly above the sensory hair cells. Other compartments of the inner ear,
like the sensory epithelia, the tectorial membrane of the organ of Corti and the ampullae of
semicircular canals, were all intact. The group also reported a broad expression of NOXO1
mRNA in the sensory and nonsensory epithelial cell layers of the saccule, in the ampullae
of semicircular canals, in the epithelium lining of the scala media and in spiral ganglion
neurons. In vitro expression of the NOXO1hslt protein in HEK293 cells resulted in an
abolished Nox3-mediated ROS production in comparison to the cells, which expressed the
NOXO1wt protein. This was also observed after co-transfection of NOXA1 and NOXO1hslt,
while the co-expression of NOXA1 and NOXO1wt showed maximal ROS production via
Nox3. This study firstly showed a direct and not a correlative connection between NOXO1,
Nox3-derived ROS and otoconia formation. The group suggested changes in the OC-90/95
protein itself or during the delivery of OC-90/95 to the forming otoconia. These suggestions
supported the observations of Paffenholz et al., which showed that H2O2 leads to disulfide
linkage and conformational changes in the secreted OC-90/95 protein [370]. During the
period in which they conducted their study, Paffenholz and colleagues hypothesized that
Nox3-derived ROS might lead to peroxidation of the lipid vesicles in which the globular
substance for otoconia formation is stored. The lipid vesicle peroxidation then could lead
to Ca2+ release on the one hand and accessibility of OC-90/95 to the globular substances on
the other hand. Also, the involvement of Nox3-derived ROS and their influence on CaCO3
concentrations at the otoconia-forming regions of the vestibular system was suggested as
mechanism by a later study [462]. Although the impressive phenotype of Nox3-deficient
animals regarding otoconia was intensively investigated and described in vivo, the study
by Kiss and colleagues firstly provided a deepened mechanistic explanation how the Nox3-
derived ROS might contribute to otoconia formation. The suggested theory of Paffenholz
et al. and Kiss et al. of ROS-mediated disulfide-linkage of OC-90/95 and its important
effect on otoconial formation should be proven right, however 15 years later [466].

https://www.informatics.jax.org/downloads/Reference_texts/J86035.pdf
https://www.informatics.jax.org/downloads/Reference_texts/J86035.pdf
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This follow-up study after nearly 15 years was conducted by Xu and colleagues, who
firstly investigated the suggested direct mechanistic interplay of Nox3-derived ROS and OC-
90/95 in vitro and in vivo [466]. Considering the vast amount of time which passed from
the first discovery of the correlative presence of Nox3 and otoconia [355,370], it is notable
and laudable that at least one study has investigated this research issue directly. The group
therefore generated OC-90/Nox3 double knock-out mice via cross breeding of previously
described mouse strains [370,438] and compared WT, single knock-out and double knock-
out animals with various experimental approaches. OC-90 and Nox3-deficient animals
stayed for a shorter period of time on the rotarod, a testing device for balancing [638], in
comparison to WT animals. OC-90/Nox3-deficient animals endured for an even shorter
period. Notably, while WT mice adapted from experiment to experiment, all other mouse
strains did not adapt, indicating a permanent deficit of balance functions. Measurements
of the vestibular evoked potentials, which reflect the activity of the vestibular nerve,
were completely absent in OC-90/Nox3-deficient mice. The vestibular nerve and its
information relay to the subsequent neuronal network depend on the proper function of
the utricle and saccule, where otoconia are located. The absence of any vestibular-evoked
potential in the double-deficient animals suggested a severe impairment of gravitational
reception [409,461]. Accordingly, in Nox3- and OC-90/Nox3-deficient animals, otoconial
structures were completely absent as depicted via scanning electron microscopy. Double-
deficient animals also displayed loss of hair cell bundles. This loss was not present from
birth but appeared after 3 months. The group used a co-expression system in the NIH/3T3
cell line cultured under extracellular calcification conditions in vitro. Strikingly, transfection
with an empty vector or expression of Nox3 alone induced no or minor calcification,
respectively. Sole expression of OC-90 induced a stronger formation of calcified nodules
on the cell surfaces. Finally, the co-expression of OC-90 and Nox3 together resulted in
the strongest calcification process. This simple but nicely conducted study is the one
and only research performed so far, which clearly showed the importance of Nox3 for
the process of otoconia formation directly and not as a correlative observation. The only
experiments, which would have added important information to these findings, are (i)
ROS measurements, to prove that the transfected Nox3 indeed produces ROS into the
extracellular milieu, and (ii) the addition of a ROS scavenger into the medium, e.g., N-
acetyl cysteine (NAC), to prove that the Nox3-derived ROS are the potentiating factor
of OC-90-mediated otoconial formation. OC-90 has a remarkable number of cysteine
residues [435,639–641], and Xu et al. suggested a mechanism in which disulfide bond-
dependent multimer formation of OC-90 in the endolymph, which is otherwise a soluble
monomer, then serves as scaffolding platform for otoconial growth (Figure 4C). So far, this
is the most reasonable mechanism of Nox3-derived ROS for otoconial formation, and future
studies will hopefully further investigate this important topic that is still not fully resolved.

Jones et al. characterized a number of mouse strains, which all lack otoconia, namely
head tlt, het-Nox3, tilted and tlt-Otop1 [642]. Otoconia-deficient mice failed to swim and
orientate like described before [370,464,466]. The group measured spontaneous activity
of the vestibular primary afferents, which innervate the maculae, even in the absence of
otoconia [643]. The vestibular primary afferents further displayed higher discharge rates
in comparison to WT animals. These data suggest that in absence of stimulation due to
otoconia loss the resting activity in macular primary afferents and the ribbon synapses
present in hair cells of otoconia-deficient mice are still functional. Basaldella and colleagues
further investigated the interplay of the vestibular and proprioceptive system and body
balance in an impressive study [644]. For this purpose, the group used Nox3-deficient mice
as in vivo model system. As mentioned above, these mice are devoid of otoconia in the
utricle and the saccule of the inner ear [370], which leads to defects in perception of gravity
and linear acceleration, while the auditory system remains intact. The research group
analyzed the communication with the lateral vestibular nucleus and other motor neuron
pools. The lateral vestibular nucleus is one of the four major nuclei that form the vestibular
complex. This complex is essential for maintaining the head position and clear vision
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during movement [645,646]. In this context, the group reported that the lateral vestibular
nuclei (LVe) neurons maintain the synaptic input to motor neurons even in Nox3-deficient
mice, in which otoconia are absent and vestibular signaling is non-functional. They also
reported a higher synaptic input density, but no differences in the synaptic inputs mediated
from the LVe neurons to other motor neuron pools. This study demonstrated that genetic
distortion via Nox3 deficiency of vestibular input channels or silencing of the synaptic
output of vestibular neurons leads to comparable connectivity defects between LVe neurons
and flexor motor neurons. Ward and colleagues conducted a comparative study with WT
mice and Nox3-deficient (head tilt, Nox3het−3J) mice as model for otoconial-deficient inner
ear lesions [465]. The group described no eye movement in response to static body tilts
about the earth-horizontal axis in Nox3-deficient mice. Through application of a magnetic
field, nystagmus occurrence in mice can be studied [647–649]. Using this technique, the
group saw that WT mice showed different variants of nystagmus. Nose-first entry into the
magnetic field induced a left-beating nystagmus, tail-first entry resulted in a right-beating
nystagmus. Nox3-deficient mice showed no nystagmus in any of these tested positions. The
group nicely showed that the nystagmus occurrence, usually observed in mice with intact
vestibular functions, was absent in Nox3-deficient mice and concluded that a functional
otoconial structure is critical for the development of a nystagmus in magnetic fields.

4.3.2. Functions of Nox3 in the Cochlea

Interestingly, while Nox3-derived ROS are crucial for otoconia formation and a func-
tional vestibular system [355,370,408,464,466] (Section 4.3.1), in the cochlea, no physiologi-
cal functions of the Nox3-derived ROS have been described since its discovery [355,392].
On the contrary, Nox3-deficient mice showed normal hearing capacities [217,355,650]. In-
stead, non-physiological ROS overproduction by Nox3 results in cochlear damage with
severe outcomes [404,476,651]. Nox3-mediated ROS overproduction can be easily trig-
gered, e.g., by cisplatin-treatment [652–654], by noise exposure [462,470,655] or when blood
flow [656,657] or oxygen tension decrease [656]. The correlative involvement of ROS in the
cochlea and destruction of hair cells as cause for hearing loss was shown in many studies
before [470,658,659]. Of course, the most obvious way to treat this ROS-induced damage is
to counter-act with anti-oxidants [469,660], such as methionine [661,662], lipoic acid [659]
or NAC [663–665] that reduce the global oxidative distress [659,666–670]. No beneficial
role for Nox3-derived ROS in the cochlea was discovered so far. Moreover, all studies,
which investigated this research topic always reported overproduction of ROS via Nox3
and subsequent cochlea damage and hearing loss. Therefore, this field will be completely
discussed in the next section, which summarizes Nox3 involvement in diseases. Remark-
ably, this topic, i.e. investigation of a possible beneficial effect of Nox3-derived ROS in the
cochlea is one of the most intriguing areas for future studies in the Nox3 research field.

5. Roles of Nox3 in Diseases

Since research on Nox3 mainly focused on the most prominent expression region,
namely the inner ear, most of the research of Nox3-associated diseases satellite around
ear-associated illnesses [462,476,478,651]. Therefore, this section will start with this topic.
Nevertheless, tremendous research exploited important roles of Nox3 during lung and
cardiovascular diseases, again revising the view of Nox3 as “restricted to the inner ear”.

5.1. Role of Nox3 in Hearing Loss

Hearing loss affects one out of six people and it is one of the major common sensory
impairments of humans worldwide [656,671,672]. Hearing loss can be caused by various
extrinsic and intrinsic factors, i.e., noise exposure, drug application (including cisplatin),
infections and age-related degeneration [672–675]. The hearing loss in general results from
compromised functioning of the organ of Corti in the cochlea and/or the nerve pathways
connected to the auditory part of the brain [676]. Several research studies have reported that
the nerve connection from the auditory system of the brain to the sound detecting cells (i.e.,
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the hair cells) of the organ of Corti are the most vulnerable parts damaged by endogenous
or exogenous sources [404,677–679]. The organ of Corti is built up from IHCs and OHCs
surrounded by inner and outer phalangeal cells (or Deiters’ cells), inner and outer pillar cells,
Hensens cells and Claudius’ cells, all summed up under the term “supporting cells” [398]
(Figure 5A). The hair cells detect low- or high-frequency sounds in dependency on their
position [680]. Sensory hair cells, in general, do not regenerate in mammals [681,682] and
continuous damage results in the permanent loss of hair cells [683]. Oxidative distress is a
major driver of hair cell death and subsequent cochlear damage [470,539,651,673,684–687],
which can be induced alongside noise [688–691], antibiotics [653,692,693], ototoxic anticancer
drugs [653,694], infection [695,696] and aging [686,687,697–699]. Theses exogenous or
endogenous stress factors all result in increased metabolic activity of the cochlea and
increased ROS production [667,690,700]. In some cases, like low blood pressure and/or
oxygen deprivation, ROS production waves were measured, which started at the luminal
surface of the marginal cells in the stria vascularis [657] and re-occurred after reperfusion
of the cochlea. The increased ROS levels can last for a long period of time, for example,
up to 10 days after noise exposure [469,667,700,701]. This continuous oxidative distress
ultimately contributes to death of OHCs and spiral ganglion cells [702–704], irreversible
cochlea damage and, tragically, permanent hearing loss [404,705,706]. There are many ROS
sources in cells with mitochondria [707–709] and Nox enzymes as the most prominent
ones [6,13,361]. Importantly, mitochondria of OHCs increase their respiratory activity after
noise exposure and generate increased amounts of ROS as byproduct [470,710,711], which
also contribute to the harmful oxidative damage besides Nox enzymes in general and Nox3
in particular. I point to various excellent reviews about ROS in the inner ear [712,713] or Nox
enzymes in this context [686,714] and focus on Nox3-derived ROS. Notably, many studies
have used in vivo Wistar rat models, whose hearing ranges are from around 200 Hertz (Hz)
to 90 kHz [715] and measured auditory brainstem responses (ABR) for determining the
hearing capacity as major experimental output [462,716].

Nagamani et al. first reported a correlation of four patients with interstitial deletion in
the 6q region of the long arm of chromosome 6 and Nox3 expression [618]. Deletions of the
6q region were reported before to be associated with ear anomalies [717–720], but hearing
loss was rarely reported [721]. The study suggested that hearing loss occurred because of
interstitial or terminal deletions in the 6q25 region, precisely between the regions 6q25.2
and 6q25.3. This area harbors 12 protein-coding genes, with the NOX3 gene among them.
The study described for the first time a possible involvement of Nox3-related inner ear
diseases in humans, which started the investigation of Nox3 as harmful ROS source and
possible therapeutic target (Section 6) for patients.
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Figure 5. Overproduction of ROS or ROS production in the wrong location can lead to oxidative
distress, cellular damage, malfunctioning of tissues and organs and finally manifest in diseases.
(A) The cochlea is the organ responsible for hearing and in contrast to the vestibular system, loss
of Nox3 leads to a rather protective outcome for the tissue and the hearing capacity. In the cochlea,
the organ of Corti is responsible for detection of sound waves and neuronal processing. For that,
outer and inner hair cells detect movements of the tectorial membrane, which are induced by
incoming sound waves. Under healthy conditions, hair cells and supporting cells function normally;
however, under exogenous or endogenous stress conditions, supporting cells up-regulate Nox3.
The subsequent ROS overproduction leads to hair cell death and contributes to age-, noise- and
drug-induced hearing loss [462,476,478]. (B) In WT mice, the development of lung emphysemas
with increasing age is inhibited by a complicated signaling cascade in lung endothelial cells [395,483].
(1) Heat shock protein 70 (Hsp70) activates Toll-like receptor 4 (TLR4)-mediated signaling, which
finally leads to activation and translocation of the transcription factor Interferon regulatory factor 3
(IFR3) into the nucleus. IFR3 induces the expression and production of Interferon-β (IFN-β), which is
subsequently secreted and (2) activates the lung cells via binding to the IFN receptor in an autocrine
manner. The IFN receptor-induced signaling cascade results in activation and translocation of the
transcription factor Signal transducer and activator of transcription 3 (STAT3), which then binds to the
promoter of the NOX3 gene in result inhibiting the expression of Nox3. (C) In TLR4-deficient animals,
this autocrine signaling cascade does not activate, which leads to increased mRNA expression and
synthesis of Nox3 and subsequently to an increased ROS production of lung endothelial cells. The
accumulating oxidative damage results in destruction of the alveolar structures and subsequently to
the development of lung emphysemas in TLR4-deficient mice observed with increasing age.
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5.1.1. Noise-Induced Ototoxicity

Prolonged exposure to noise is the most common cause of hearing loss worldwide [722–727]
responsible for 20% of all cases of hearing loss [675]. Exposure to sound pressure levels
that exceed 85 dB or immediate exposure to noise impulses lead to irreversible cochlea
damage. Exposure to moderate sound levels over a prolonged time period can also harm
the spiral ganglion neurons [728,729]. Noise-induced hearing loss is a result from the
combined damaging effects of synaptic damage and cochlear hair cell death [730,731]. The
noise-induced hearing loss can be temporary or permanent in dependency of the duration,
severity and combination of the damaging factors [404]. A number of additional factors can
worsen the progress of hearing loss, e.g., other diseases [164,732], social [470,473] and work
behavior [733,734] or working conditions [735]. The frequency ranges of the impairment
lie between 3.4 and 6 kHz [735]. Previous studies have also suggested genetic components,
which might influence the outcome and severity of noise-induced hearing loss [736,737].
For example, mice that already showed age-induced hearing loss were more susceptible
to additional noise-induced hearing loss [738]. Furthermore, several mouse lines, which
were deficient for antioxidant components, such as superoxide dismutase 1 (SOD1) [700],
glutathione peroxidase 1(GPX1) [700], plasma membrane calcium ATPase 2(PMCA2) [739]
or Cadherin Related 23 (CDH23) [740] showed also increased sensitivity to noise-induced
hearing loss. These findings suggest an important role for ROS in this context in general.
Accordingly, a previous study from Ramkumar et al. reported that noise exposure resulted
in an increase of ROS levels, oxidative distress and increased pro-inflammatory responses in
the chinchilla cochlea [741]. The pro-inflammatory status in the cochlea is mainly attributed
to infiltrating immune cells, mainly monocytes [742–744], which respond to the cochlear
tissue damage and the previously released chemokines from cochlear cells. Together with
the already increased ROS production by Nox3 and mitochondria, the pro-inflammatory
environment induces a vicious cycle that further increases the cochlear damage instead
of dampening it [688,744–746]. Importantly, this pro-inflammatory, pro-oxidative setting
is not restricted to noise-induced ototoxicity but can be applied to any effect that leads to
increased ROS production and cochlear tissue damage. This scenario represents a complex
network of cellular mechanisms and communication in the cochlea that still is incompletely
understood and needs further investigation [747].

A number of studies performed genetic screens to identify possible factors that might
contribute to noise-induced hearing loss. Lavinsky et al. used a well-established Hybrid
Mouse Diversity Panel [748–750] to investigate possible loci for susceptibility towards noise-
induced hearing loss [650]. The Nox3het allele on the murine chromosome 17 was identified
as candidate factor. Nox3het mice were exposed to noise and ABR threshold shifts (4, 8, 12,
16, 24 and 32 kHz) were analyzed. The group measured a reduction in the ABR threshold
shifts of WT mice in comparison to Nox3het mice at 8 kHz suggesting a role for Nox3
during noise-induced hearing loss in the lower frequency spectrum. Zhao and colleagues
performed a genome wide association study (GWAS) in 614 patients of a case-control study
to investigate the interplay of noise kurtosis and lifestyle factors with noise-induced hearing
loss [751]. Complex noise induces greater damage to the auditory system than steady
noise in both animals and humans [752,753]. A complex noise is defined as continuous
background noise with temporal appearance of randomly occurring high-level noises [754].
By transforming time-domain variables, like pulse interval distribution or duration, into
simple variables by kurtosis [755–757], this experimental approach allows to assess the
biological effects of complex noise in animal models [752,753,756]. The group reported that
the risk of acquiring noise-induced hearing loss was 0.806-times higher for people, which
were exposed to complex noise, as shown previously [753,756]. They detected an increased
Guanine-to-Tyrosine polymorphism (single nucleotide polymorphism [SNP] rs12195525,
GG phenotype) in the locus, which is located in the coding region of the NOX3 gene. They
also observed an increased risk for noise-induced hearing loss in GG phenotype patient
groups in which further risk factors, such as smoking or high-volume outputs of technical
devices, occurred.
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The first study that connected the several correlative dots, i.e., Nox3 expression in the
cochlea, per se [355], genetic correlations of noise-induced hearing loss with Nox3 [650,751],
increased ROS levels in the cochlea as damaging factors [470,539,651,673,686,687], induction
of ROS production by noise exposure [667,690,700] and the subsequent hearing loss, was
conducted by Mohri and colleagues [462]. The group investigated the role of Nox3 during
noise-induced hearing loss in their dtTomato-Cre reporter system for Nox3 detection in
mice [462]. The group exposed 2-month-old WT and Nox3-deficient mice (Nox3 marked
with the dtTomato fluorescence tag) to harmful noise at 120 dB for three hours and analyzed
the ABR thresholds. At day 7, a lower ABR threshold shift at a high frequency (32 kHz) was
measured in Nox3-deficient mice in comparison to WT animals. This was accompanied by
a reduced OHC loss in Nox3-deficent animals directly linking Nox3 as damaging factor to
hearing loss during noise exposure. A recent study from Rousset and colleagues revised
previous findings [462,650] concerning the role of Nox3-derived ROS during hearing loss
after white noise exposure [478]. Rousset et al. used the previously described C57BL/6J-
NOX3het−4J mouse strain [457], which carries a loss-of-function allele of Nox3. They applied
RNAscope in situ hybridization on murine cochlea explants and detected strong Nox3
mRNA expression in the spiral ganglion, while Nox3 was only weakly expressed in the stria
vascularis and not detectable in the organ of Corti. The latter is contradictory to several
previous studies [355,462,475,479]. Additionally, they detected Nox3 mRNA in the peripheral
auditory neurons in Rosenthal’s canal. After noise exposure, Nox3 mRNA expression was
increased in cochlear explants, precisely in the medial and the apical cochlea turns. The group
also analyzed the hearing capacities of Nox3-deficient mice and observed no difference in
the audiograms in comparison to WT animals after 6 weeks of age confirming not a general
deficit of hearing in Nox3-deficient animals. Deafening noise exposure (116 dB) led to an
elevation of hearing thresholds at frequencies between 16 and 32 kHz after 24 h in WT mice.
A protective effect in Nox3-deficient animals was only observed for 32 kHz. After 7 days of
noise exposure, ABR measurements showed a better recovery of hearing in Nox3-deficient
mice, while WT animals showed no recovery. Histological examinations of cochlear explants
further showed that Nox3-deficient animals had reduced hair cells loss, conserved auditory
synapses and intact neuron integrity, which all were deceased in WT animals. This study
nicely confirmed previous results [404,462,476,655,758], showing that Nox3 has no direct
role for cochlear development and structures in sharp contrast to the otoconia formation in
the vestibular system [217,370,464]. Even worse, after noise exposure, Nox3-mediated ROS
overproduction results in increased oxidative distress and damage of cochlear structures
(Figure 5A).

Goodarzi and colleagues investigated the combined effects of noise exposure and
silver nanoparticles (Ag-NPs) on the cochlear function in rats [544]. The influence, ei-
ther beneficial or detrimental, of nanoparticles, in general, on biological functions of the
organism is a swiftly expanding research topic [747,759–761]. However, metallic nanopar-
ticles, in particular, exploit toxic effects on cells by increasing the ROS production and
pro-inflammatory cytokine release [762]. Ag-NPs can enter the body in various ways,
e.g., via ingestion, inhalation or even skin contact [763]. Previous studies have reported
toxic effects of Ag-NPs to the cochlea [764–766]. Goodarzi et al. compared completely
untreated Wistar rats with rats exposed to loud noise (104 dB) for different time intervals.
The animals either received not further treatment or were intra-peritoneally injected with
Ag-NPs (100 mg/kg body weight). The group measured distortion product otoacoustic
emissions (DPOAEs) for screening the inner ear function [767,768]. Animals showed a
higher rate of hearing loss when exposed to both noise and Ag-NP at frequencies of 7.26,
8.47 and 9.86 kHz. Oppositely, malondialdehyde (MDA) and SOD levels in the serum were
either increased by noise exposure or Ag-NP treatment alone but were not further increased
by the combined treatment. qRT-PCR analysis further showed that TNFSF2, IL6 and NOX3
gene expressions in the cochlea were increased by one of the treatments alone but were
not further increased by the combinatory treatment. Further investigations concerning
Nox3-derived ROS were not made. A similar research topic was investigated by Shahtaheri
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et al. The group investigated the effects of white noise in combination with aluminum
oxide (Al2-O3) nanoparticles (AO-NPs) on the cochlear structure in rats [769]. AO-NPs
are widely used as thermal insulation material [770], and the exposure to workers that
are involved in AO-NPs manufacturing [771–773] is correlated with many harmful effects
on workers’ health [774–776]. Additionally, workers are often exposed to extreme noise
levels. Regarding this harmful work environment, Shahtaheri and colleagues analyzed the
combinatory harmful effects of AO-NPs and noise exposure (95 dB/20 Hz–20 kHz, 8 h per
day) on the cochlea of Wistar rats. The group detected reduced auditory capacities analyzed
by DOPAE measurements [727,777] and cochlear damage by histochemical analysis in rats
exposed to noise. The damage was further increased by treatment with AO-NPs. AO-NP
treatment alone did not alter the investigated parameters. Notably, Nox3 mRNA levels also
increased after noise exposure in the cochlea, while AO-NP treatment alone did not change
the mRNA expression levels of Nox3. The combinatory effect of both increased Nox3
mRNA expression significantly in comparison to noise exposure alone. This was accompa-
nied by OHC and a supporting cell decrease, while IHC numbers showed no alterations.
The authors suggested an enhanced damaging effect of white noise exposure and AO-NP
treatment on the cochlea due to increased Nox3-mediated oxidative distress. Critically,
neither Nox3 knock-down experiments nor ROS measurements were performed in this
context. Hence, again direct evidence for a Nox3 involvement is missing in this study.

5.1.2. Cisplatin-Induced Ototoxicity

Cisplatin is a commonly used chemotherapeutical agent against solid tumors [778–782].
Similar to most chemotherapeutical applications, cisplatin treatment results in strong side
effects for the patients like nephrotoxicity and ototoxicity [473,783–787]. Cisplatin-induced
nephrotoxicity can be treated with diuretics [788,789], while cisplatin-induced ototoxicity
is a much more severe, cumulative and untreatable problem [539,786,790]. It manifests as
sensorineural, irreversible hearing loss [791–795] due to damage of the organ of Corti in
the cochlea [666,673,796,797]. Specifically, cell death of IHCs and OHCs [473,654,659,798],
of spiral ganglion cells [652,799–801] and of marginal cells of the stria vascularis [802,803]
is increased after cisplatin treatment. Inflammation after cisplatin treatment is another
driving factor, which further progresses the cochlear damage [804–809]. On the sub-cellular
level, cisplatin-mediated cytotoxicity induces DNA damage [810,811], mitochondrial dys-
function [812,813] and increased ROS production by various ROS sources [355,469,813–817].
The accumulating damage due to the oxidative distress further progresses the dysfunction
of cochlea [653,654] and vestibular system [817–819].

Banfi and colleagues first reported cisplatin-induced Nox3-mediated ROS production
by using a co-expression system in HEK293 cells [355]. Mukrerhajea et al. provided further
evidence in vivo in the rat cochlea and in vitro in the OHC line UB-OC-1 [820]. Cisplatin
treatment induced in both systems increased Nox3 expression and ROS production [541].
Kim and colleagues investigated the role of Nox enzymes during cisplatin-induced oto-
toxicity in general [540]. They used the mouse auditory cancer cell line HEI-OC1 and
in vivo experiments for this approach. Cisplatin treatment induced Nox1 and Nox4 mRNA
expression starting after 1 hour. Unfortunately, they claimed that Nox3 mRNA was not
detectable; however, the data were not shown in the publication. Notably, in vivo injection
of cisplatin for 4 days showed a strong induction of the already basally expressed Nox3
mRNA in the cochlea. However, the group focused on Nox1 and Nox4, and Nox3 as ROS
source was not further analyzed. Mohri and colleagues investigated, besides several other
important Nox3-related topics (see Sections 2–4), also the role of Nox3 during cisplatin-
induced hearing loss [476,477]. The group used their well-established reporter system with
the dtTomato-coupled Nox3 protein [462]. Tone-burst stimuli (8, 16, 24 and 32 kHz) were
applied on 2-month-old WT and Nox3-deficient mice either treated with cisplatin or left
untreated. ABR threshold shifts were measured, and WT animals showed deteriorated
ABR thresholds at frequencies of 24 and 32 kHz after cisplatin treatment compared to
Nox3-deficient animals, which showed no deterioration. WT mice also showed OHC loss,
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which was lower in Nox3-deficient mice. TdT-mediated dUTP-biotin nick end labeling
(TUNEL) assays confirmed increased apoptosis of OHC in WT animals in this context as
reported before [476,821]. In Nox3-deficient animals fewer TUNEL-positive OHC were
detected. In the lateral wall of the cochlea and the stria vascularis no TUNEL-positive
cells were seen in both WT and Nox3-deficient mice. The group furthermore showed
that cisplatin treatment increased Nox3 expression in the cochlea predominantly at the
basal turn and in the supporting cells. In detail, no Nox3-expressing OHC either with or
without cisplatin treatment could be detected in WT animals, while weak Nox3-expression
in IHCs and strong Nox3 expression in supporting cells could be observed at least after
cisplatin treatment. Together, these studies provide solid evidence that cisplatin treatment
increases the presence of Nox3 in the cochlea, which leads to a harmful elevation of ROS
production and finally to ototoxicity. Interestingly, in vivo Nox3 is mainly present in the
supporting cells and not the OHCs, which nevertheless suffer the greatest damage through
the increased ROS production (Figure 5A).

Several studies have provided evidence for a protective role of the activating adeno-
sine A1 receptors (A1ARs) [822] and its agonist adenosine during cochlea-related dis-
eases [479,823–830]. In this context, Kaur and colleagues investigated the role of ROS for
the A1AR signaling during cisplatin-induced ototoxicity [758]. They reported that activa-
tion of the A1AR signaling pathway by N6-R-phenylisopropyladenosine (R-PIA) prevents
hearing loss induced by cisplatin and OHC damage in the rat in vivo. They used the
OHC line UB-OC-1 to investigate a role for Nox3-derived ROS in vitro, since ROS have a
pro-inflammatory effect during cisplatin-induced ototoxicity [355,541]. Cisplatin treatment
for 24 h induced A1AR mRNA and protein expression and increased Nox3 mRNA as well
as the total cellular ROS levels. Treatment with R-PIA reduced ROS generation and Nox3
mRNA expression in UB-OC1 cells and in the rat cochlea. Cisplatin treatment of UB-OC-1
cells also induced phosphorylation and nuclear translocation of Signal transducer and acti-
vator of transcription 1 (STAT1), which could be inhibited by additional R-PIA treatment.
STAT1 signaling contributes to the pro-inflammatory response during cisplatin-induced
ototoxicity [831]. Accordingly, treatment with R-PIA reduced cisplatin-induced expression
of TNF in the rat cochlea. However, no experiments after Nox3 knock-down or knock-out
were performed. Therefore, evidence for the identification of Nox3 as relevant ROS source
in this context is missing.

5.1.3. Cytomegalovirus-Induced Hearing Loss

Congenital Cytomegalovirus (CMV) infection often leads to sensorineural hearing loss
accompanied by neurological and developmental disabilities [832–835]. Several studies
have monitored apoptotic cell death in the murine cochlea [836] in neonatal mice after
CMV infection, subsequently leading to sensorineural hearing loss [549,837]. A correlative
increase in total cellular ROS levels was also described in this setting [549]. Due to these
previous observations, Zhuang and colleagues picked this topic up and investigated the
possible ROS sources and the effect of the anti-inflammatory substance Berberine [838]
during CMV-induced ototoxicity [496]. The group detected an increase in apoptosis and
total cellular ROS in neonatal murine ex vivo cultured spiral ganglion cells. An increase in
Nox3 protein expression was also observed. Additional treatment of Berberine reduced
apoptosis, ROS levels and Nox3 expression. However, no genetic evidence was given to
validate Nox3 as ROS source. Most critically, the authors claimed that Nox3 was connected
to mitochondrial ROS production. No specific mitochondrial ROS measurements were per-
formed, and no co-localization studies of Nox3 with mitochondria, e.g., by immunolabeling
and fluorescence microscopy, were conducted. Nevertheless, this is so far the one and only
study that has described an induction of Nox3 protein expression as response to infection.

5.1.4. Age-Induced Hearing Loss

Age-induced hearing loss (presbycusis) [839] affects, as the name implies, elderly
people. This disease is associated with tremendous social consequences [840–843]. Similar
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to other causes for hearing loss, age-induced hearing loss can further progress due to
prolonged noise exposure or ototoxic drugs [844]. On the cellular level, the loss of hair
cells, spiral ganglion cells and cells of the stria vascularis leads to hearing loss majorly at
higher frequencies [841,845]. An increase of age is also accompanied with a disturbance of
redox homeostasis not only in the cochlea [686,697], but also in other organs, since gene
expression of anti-oxidant systems decrease with age [687,698,699].

Du and colleagues investigated the effects of a HFD in combination with a D-galactosidase-
induced rat animal model of aging [846,847] to investigate the cumulative effects on hearing
loss [848]. In this animal model, the continuous administration of D-galactose leads
to numerous detrimental effects based on metabolic disturbance that mimic the aging
process [846,849–851]. These effects include dysfunctional mitochondria [850,852,853],
increased apoptosis [437,854], neurotoxicity [850,855,856], a shortened lifespan [857] and,
after 8 weeks of treatment, symptoms that mimic aging of the cochlea due to increased
ROS production [858–861]. Furthermore, after 8 weeks of D-galactose treatment deletions
in the mitochondrial DNA (mtDNA) in the cochlea increase and mitochondria show an
oval round shape indicating massive damage. The isolated mtDNA from rat cochlea
cells showed increased oxidative damage and subsequent common deletion, which are
both biomarkers for oxidative distress, aging and age-related hearing loss [846,862–866].
Du et al. analyzed ABR thresholds and detected the highest ABR threshold shifts for four
tested frequencies (4, 8, 16, 32 kHz) in groups treated with both HFD and D-galactose
after 12 months. After sole D-galactose treatment Nox3 protein levels increased in the stria
vascularis and the spiral ganglion. HFD treatment alone increased Nox3 protein levels
only in the stria vascularis. The combined treatment of D-galactose and HFD led to the
highest Nox3 expression not only in the stria vascularis and the spiral ganglion, but also
in the organ of Corti. Apoptotic cell death in the inner ear was observed for all three
conditions, but again the highest cell death rate was reported after the combined treatments.
Additionally, all three treatments increased the accumulation of mitochondrial common
deletion [867,868], which accompanies mitochondrial damage due to aging [869,870]. Du
and colleagues deepened their findings from this previous study [848] with the same D-
galactose-induced aging model via RT-PCR and Western blot analysis and reported an
increase in Nox3 and p22phox mRNA and protein expression in D-galactose-treated rats
in the cochlea [475]. Additional Western blot analysis and TUNEL staining showed that
apoptosis increased in the cochlea after D-galactose treatment. These two studies by Du
and colleagues gave the first correlative insights of increased Nox3 expression during
aging, an associated damaging effect to cochlear structures and the subsequent hearing loss.
However, since mitochondria are heavily damaged during this aging model and neither
in vivo experiments with Nox3-deficient animals nor in vitro experiments with Nox3 knock-
down in cells were conducted, the explicit role and the contribution of Nox3-derived ROS
in comparison to ROS produced by the damaged mitochondria remained elusive.

Rousset and colleagues used the A/J mouse strain nmf333, which carries a missense
mutation in the p22phox subunit [871], to characterize the role of Nox enzymes in the cochlea
during age-induced hearing loss [404]. The group firstly defined age-induced hearing loss
in WT animals in their experimental setting. They analyzed ABR threshold levels over an
age range from 4 to 26 weeks and observed threshold shifts close to 45 dB after 4 weeks,
which progressed up to 75 dB with age. They also detected a progressive hearing loss
32 kHz (in 4-week-old mice) and 5.7 kHz (in 26-week-old mice). In accordance with these
data sets, a progressive degeneration of the sensory epithelium from the base to the apical
turn was described with a more pronounced cellular degeneration in the basal region.
Further analysis of IHC innervation revealed a dramatic decrease in the number of synaptic
ribbons per IHC, as well as a decrease in the total neuronal density in the spiral ganglion,
which also progressed with age. Since a deficiency of p22phox affects Nox1-4, the group
analyzed the presence and distribution of Nox mRNA expression in both the mouse and,
highly notably, in the human cochlea. qRT-PCR and in RNAscope in situ hybridization
measurements showed high mRNA expression of Nox2, Nox3 and Nox4 in mouse and
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human cochlea tissue. While Nox2 and Nox4 mRNA was evenly distributed throughout
the whole cochlea, Nox3 mRNA was concentrated in the spiral ganglion and moderately
expressed in the stria vascularis. Most interestingly, Nox3 mRNA was not detected in hair
cells, which is in line with the study from Mohri et al. [462]. p22phox-deficient animals
showed no disturbance in hearing at young age in comparison to WT mice. However,
the loss of the hearing capacities at high frequencies observed in aged WT mice, was
nearly absent in p22phox-deficient animals together with an intact sensory epithelium and
preserved synaptic ribbons. The group further performed a transcriptome analysis of
6-week-old cochlea tissue and detected a down-regulation of ryanodine receptors (Ryr) 1,
2 and 3, which are important for Ca2+ homeostasis and accordingly for proper neuronal
signaling. Several other genes, all revolving around Ca2+ homoeostasis, such as Otoferlin,
Vamp1, and Snap25 or the glutamate transport, such as Slc17a6, Slc17a8 and Gria2 were
down-regulated in absence of p22phox. The group narrowed down the auditory neurons
as main cell type where the down-regulation was observed. This remarkable study firstly
analyzed the mRNA expression of Nox3 in the human cochlea and clearly solidified a
rather detrimental effect of Nox presence on cochlear structures, precisely the neuronal
part. Unfortunately, like in other previous studies of the Nox3 research field, the group
did not clarify the exact interplay of Nox-derived ROS during Ca2+ signaling and the
subsequent age-related hearing loss. Moreover, while nicely showing that also Nox2
and Nox4 mRNA is present in the cochlea, the analysis of p22phox-deficient animals only
enabled suggestions considering the general role of Nox enzymes in the cochlea and not
specifically the role of Nox3, especially since Nox2 and Nox4 might also play important
roles in this organ [405–407]. Protein expression, for example, in cochlea tissue lysates, was
not analyzed, Instead, the research group solely relied on mRNA-detecting techniques.
Since the opinion that mRNA always correlates with protein presence or even activity of
the protein is outdated [529,530,532–534], protein level analysis of the cochlea, especially
from human samples would have been a ground-breaking contribution to the field of
Nox3-related research. Human-related data sets of this topic are still largely missing to
date. In their favor, the group mentioned and discussed these critical points already in
their paper. In summary, the studies of Rousset and colleagues [478,651,872], together with
Mohri et al. [462] represent milestone research articles considering Nox3 investigations
in the inner ear. Continuing in this sense, Mohri and colleagues also investigated the
topic of age-induced hearing loss with their generated mouse line, which expresses the
fluorescent reporter dtTomato in cells that display Nox3 expression [462] (Sections 2–4).
The group compared the ABR threshold shifts in WT and Nox3-deficient animals after 1, 2
and 6 months after birth. An increase of Nox3 protein in the cochlea as well as increased
ABR threshold shifts at frequencies of 8, 24, and 32 kHz occurred in WT mice over time.
Nox3-deficient mice showed no ABR threshold shift increase at all. Especially at high
frequencies (24 and 32 kHz), the ABR thresholds were higher in WT mice in comparison
to Nox3-deficient animals at 6 months from birth. In addition, histologic analysis of the
organ of Corti showed that WT mice at 6 months after birth exhibited OHC loss, while
hair cell loss in Nox3-deficient mice was significantly lower. These findings suggest that
increased Nox3 expression in the organ of Cori leads to OHC destruction and subsequently
contributes to age-related hearing loss (Figure 5A).

5.2. Role of Nox3 during Vertigo

The only study which investigated a rather harmful effect of Nox3-derived ROS
on the vestibular system (in contrast to the crucial function of otoconia formation), was
conducted by Zhang et al., who investigated factors that influence benign paroxysmal
positional vertigo (BPPV) [873]. BPPV is the most common peripheral vertigo-related
disease [874,875] occurring in 2.4% of people [876], which increases with age [877]. BPPV is
characterized by the detachment of otolith particles, particle movement into the semicircular
canal and subsequent loss of otoconial function [441,878]. BPPV is therefore also termed
otolithiasis. In dependency how the proper function of the otoconia is impaired, BPPV
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can be classified in primary BBPV and secondary BPPV. Primary BBPV is induced by
factors that directly damage the otoliths or their surroundings, e.g. hair cell damage or
loss, endolymph ion changes, decreased otolith protein secretion and defects in otolith-
anchoring proteins [441,879]. Secondary BBPV is defined as damage, which is induced as
side effect of other harmful events, such as ear surgery, trauma, ototoxic drugs, Meniere’s
disease [880] or vestibular neuronitis [881]. Systemic factors like osteoporosis [882], vitamin
D deficiency, hypertension, diabetes or cerebrovascular diseases [883] can also contribute to
the severity of this disease. Zhang and colleagues focused on vitamin D deficiency during
BPPV, since vitamin D is important for proper Ca2+ homoeostasis in general [884,885] and
for proper otolith formation and function in particular [881]. Overall, 48 patients with
diagnosed BPPV and 48 control patients from the Affiliated Hospital of Inner Mongolia
Medical University [886] were analyzed in this study. While no difference in age, body mass
index, sex, occurrence of diabetes or hypertension was observed between the groups, BBPV-
diagnosed patients showed a decreased bone density and plasma vitamin D levels. Notably,
mRNA and protein levels of both OC-90 and Nox3 in the serum were decreased in patients
with BPPV. To further analyze the role of vitamin D in this context, vitamin D receptor
(VDR)-deficient mice were analyzed. In whole-tissue lysates of the inner ear, mRNA
and protein levels of OC-90 and Nox3 were decreased in VDR-deficient mice suggesting
a regulatory role of vitamin D in this context. A direct mechanism for VDR-mediated
signaling for Nox3-derived ROS production and OC-90 assembly was not investigated.

5.3. Role of Nox3 during Lung Diseases

For a long time, Nox3-related research only focused on either the inner ear or studies
focused on broad expression studies to improve the catalogue, which lists if, when and
where Nox isoforms are expressed. Most of the latter studies have not focused explicitly
on Nox3, but rather described its expression as additional finding. Zhang and colleagues
investigated, for the first time, a possible connection between Nox3 and pulmonary em-
physema, which is a major contributor to chronic pulmonary diseases [887,888] in a mouse
model [483]. They described developing emphysemas in naive TLR4- and MyD88-deficient
mice beginning at 3 months after birth and peaking between 6 months and 1 year. This
was reflected by increased lung volumes, enlarged air spaces distal to the terminal bron-
chioles and by destruction of the normal alveolar architecture. These factors are typical
for emphysema [887] and occurred in both knock-out animal strains. Notably, all mice
strains did not show any significant differences in any pro-inflammatory parameter that
was analyzed. However, TLR4-deficient animals showed a decreased elastase inhibitory
capacity and increased elastolytic activity in the lung tissue. Since increased oxidative
distress is an important correlative factor of emphysema [889] and lung injuries [890–897],
the group analyzed the total antioxidant capacity, namely levels of glutathione (GSH) and
other antioxidant components in the branchio-alveolar fluid. A strong decrease of GSH
levels was detected in the fluid of knock-out animals. Moreover, isolated lungs and isolated
lung cells from TLR4-deficient animals showed increased O2

− production in comparison
to WT animals. The increased ROS levels further led to more oxidative DNA damage,
which is also correlated with emphysema [898]. Interestingly, while Nox3 mRNA was only
weakly expressed in WT animal lungs and isolated endothelial lung cells, TLR4-deficient
lung samples and lung cells showed an increased Nox3 mRNA expression. Additionally,
isolated lung cells from TLR4-deficient animals showed an increased elastolytic activity
similar to the lung tissue. Knock-down of Nox3 via siRNA in TLR4-deficient lung cells
led to a rescue effect of elastolytic activity, nicely confirming the involvement of Nox3.
These results clearly demonstrated the connection of TLR4 deficiency, increased Nox3
expression, Nox3 as cause for the increased elastolytic activity and therefore the developed
emphysema. A direct mechanism for Nox3-derived ROS was not investigated at that time.
Nevertheless, the study of Zhang and colleagues broke the ”inner ear” stigma of Nox3 in
terms of disease developement.
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In a follow-up study from Zhang and colleagues, a role of Nox enzymes during hyper-
oxia was investigated. Hyperoxia can occur during sustained oxygen supply in critically ill
patients, which can result in respiratory failure [899,900]. Hyperoxia is also an established
model for oxidant-induced lung injury [901,902]. Previous reports of the group demon-
strated that TLR4-deficient mice showed increased oxidant production in lung tissue and
subsequent lung destruction [483], as well as enhanced susceptibility to hyperoxia-induced
acute lung injury [903]. An increase in Nox3 mRNA was also reported in TLR4-deficient
animals, and siRNA-mediated knock-down partially rescued the phenotype related to
TLR4-deficiency [483]. WT mice exposed to hyperoxia showed increased TLR4 mRNA and
protein levels in mouse lung endothelial cells and lung lysates. TLR4-deficient mice were
more susceptible to hyperoxia, as reported before [903], but interestingly, Nox3-deficient
animals showed an increased survival rate. Additional knock-out of Nox3 in TLR4-deficient
animals (TLR4/Nox3 double-deficient mice) nearly rescued the animals comparable to
WT controls. Hyperoxia conditions increased macrophage, lymphocyte and neutrophil
infiltration into the lungs of WT animals, which was further enhanced in TLR4-deficient
animals. Nox3-deficient animals, however, showed no differences compared to WT animals.
Notably, TLR4/Nox3 double-deficient animals showed a partial rescue from this pheno-
type. In WT mice, increased lactate dehydrogenase release as well as increased H2O2 and
lipid peroxidation levels were detected in lungs after hyperoxia exposure. TLR4 deficiency
further increased these parameters, while Nox3-defcient animals showed reduced levels in
comparison to WT animals. These data nicely show that TLR4 signaling somehow inhibits
Nox3-mediated ROS production in lungs, which is uncoupled when TLR4 as regulating
factor is missing. The Nox3-mediated uncontrolled ROS production then leads to lung
destruction. When Nox3, as an ROS source, is removed, it either protects the mice in
general from lung injury during hyperoxia, or it leaves the TLR4-dependent inhibition
as the terminal factor without any effect. The group also discovered that the Heat Shock
Protein 70 (Hsp70) [904,905] is necessary for the TLR4-mediated Nox3 inhibition, since mice
and endothelial lung cells deficient for Hsp70 showed increased Nox3 mRNA and protein
levels. Notably, mitochondrial matrix O2

− levels were decreased in TLR4-deficient lung
cells and were not altered in Nox3-deficient cells, excluding mitochondria as a potential
ROS source in this setting. In addition, this study firstly investigated possible transcription
factors that might influence Nox3 mRNA expression. Chromatin immune-precipitation
assays identified regions between −2534/−2360 and −1792/−1498 base pairs upstream
of the Nox3 promoter as critical binding sites for STAT3 during Nox3 inhibition. In lungs
and endothelial lung cells from endothelial STAT3-deficient mice, more Nox3 expression
during both basal and hyperoxia conditions was detected. Electrophoretic Mobility Shift
Assay (EMSA) analysis showed that Hsp70 induced the STAT3 binding to the Nox3 pro-
moter region only in WT or Myd88-deficient endothelial lung cells, but not in TLR4- or
TRIF-deficient cells. Taken together, this study by Zhang and colleagues is probably the
most detailed report about Nox3 activation, regulation and function in a specific context so
far. The results were solidified by genetic models and ROS measurements not only in vitro,
but also in vivo and no cell type or tissue switching during the study was performed. This
is a remarkable example of how to perform a scientific analysis about a Nox enzyme and
its functions (Figure 5A,B).

Ruwanpura and colleagues further investigated the role of TLR4 and its adaptors
MyD88 adapter-like/Toll/interleukin-1 receptor domain-containing adaptor protein
(MAL/TIRAP) [906,907] for normal lung architecture and function in mice [908]. They
confirmed the findings from Zhang and colleagues [483], i.e., enlargement of the distal
air spaces and destruction of normal alveolar architecture without any inflammation in
6-month-old TLR4-deficient mice. Functionally, they found that the static compliance
(pulmonary compliance during the inspiratory pause) was significantly increased in TLR4-
deficient mice, which was determined by forced oscillatory technique [909–911]. The group
further described increased oxidative distress in lung tissue, increased Nox3 mRNA and
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increased apoptosis of alveolar septal cells. Notably, TLR2 deficiency did not alter any of
the observed parameters suggesting a TLR4-specific mechanism in this context.

Yasuoka et al. focused on the influence of ROS during the development of lung fibro-
sis [502]. During lung diseases, fibrosis is a common side effect, which poses a significant
increase in morbidity and mortality in patients [912–914]. ROS have been implicated as
drivers of fibrosis-related pathophysiology [915–917] and lung dysfunction [918–920]. Fi-
brosis is accompanied with tissue remodeling and tissue growth as well as development
and is regulated by a plethora of growth factors. Yasukoa et al. focused on the insulin-like
growth factor binding protein-5 (IGFBP-5), a prominent factor in this context [921,922], and
its connection to lung fibrosis and ROS production. They found that primary human lung
fibroblasts increased Nox3 mRNA levels and total cellular ROS production after IGFBP-5
or TGF-β treatment. siRNA-mediated knock-down of Nox3 reduced the ROS production
in these cells to baseline levels. However, a role for Nox3-derived ROS in the investigated
in vivo setting was not conducted.

The discovery of Nox3 as important player for the progression of lung diseases was
furthermore confirmed by a series of genetic screens, which delivered correlative data
between the NOX3 gene and different lung diseases. Tremblay et al. conducted a GWAS
to identify candidate genes as predisposing factors for genetic asthma association stud-
ies [923]. The scan, in combination with the Genes-to-Diseases computational analysis
tool [924,925], analyzed 609 subjects from the Saguenay-Lac-St-Jean founder population in
Quebec, Canada [926,927]. Amongst several other genes, the NOX3 gene was identified
as the only NADPH oxidase-related gene. Yin et al. investigated genetic etiology in the
context of non-idiopathic pulmonary hypertension (PH) [928–930]. Overall, 208 patients
were included, 109 patients were diagnosed with non-idiopathic PH and 99 healthy volun-
teers were included as controls. A total of 143 SNPs were detected in the 109 PH patients
with the top hits located in the chromosome 6, precisely in the locus of the NOX3 gene
(SNP termed rs6557421). Notably, PH patients with the detected SNP rs6557421 genotype
had a 10-fold-higher risk to develop PH in comparison to healthy control samples. Cantu
et al. searched for genetic variations that might increase the risk of primary graft dys-
function (PGD) after lung transplantation by a SNP set analysis [931,932]. Rejection of the
grafted lung and subsequent organ dysfunction is a major cause of death during the early
transplantational period, affecting up to 30% of all patients [933–935]. One of the major
pathophysiological aspects associated with PGD is increased oxidative distress occurring
during ischemia/reperfusion events [936–939]. In total, 1039 lung transplant recipients
and 392 donors were included in this study, and 314 of the 1038 recipients developed PDG
and four genes were identified encoding glutathione peroxidase 1 (GPX1), nuclear factor
(erythroid-derived 2)-like 2 (NFE2L2), nitric oxide synthase 3 (NOS3) and glutathione S-
transferase mu 2 (GSTM2), which all are involved in antioxidant responses [940–942]. In the
donor group, the genes for Nox3 (NOX3), nitric oxide synthase 1 adaptor protein (NOS1AP)
and paraoxonase 1 (PON1) were associated with the development of PGD. Within the
NOX3 gene, the SNP rs3749930 had the strongest association with PGD. The detected SNP
marks a nucleotide conversion, which resulted in a threonine to lysine aa substitution in a
trans-membrane portion of the Nox3 protein. In addition, several intronic SNPs within the
NOX3 gene were associated with increased risk of PGD.

All of these studies clearly demonstrate a critical involvement for Nox3-mediated ROS
production as rather destructive factor during lung diseases.

5.4. Role of Nox3 during Cardiovasclar Diseases

The term “cardiovascular diseases“ summarizes a broad catalogue of diseases that
affect one or many components of the cardiovascular system directly. This includes the
heart or the blood circulation system, but also simply all other organs and parts of the
body as well, since oxygen and nutrient supply, mediated by the blood stream, are crucial
for proper functioning of the organism. Thus, this topic intervenes with many other
diseases, which are affected by the cardiovascular system. Similar to nearly any other
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disease outcome, as well as during any kind of cardiovascular disease, increased ROS
production is a major contributing factor that worsens diseases progression [943–948]. Of
course, the involvement of Nox enzymes as ROS sources was intensively investigated,
including Nox3 [162].

5.4.1. Nox3 and Type 2 Diabetes

While fatty acids are crucial components of cellular membranes, chronically increased
levels of FFA, consumed with a HFD (Section 5.1.4) lead to obesity due to excessive deposit-
ing in non-adipose tissues, e.g. the liver [949–952]. Subsequently, the development of in-
sulin resistance [537,571], type 2 diabetes [953] and other hepatic diseases [954] dramatically
increases. Diabetes mellitus affects more than 300 million people worldwide and represents
a disease with high morbidity [955,956]. Type 2 diabetes is associated with various chronic
and acute toxic side effects, leading to dyslipidemia, hyperglycemia [957–959], diabetic
retinopathy [960,961] and chronic hyperinsulinemia. All of these conditions can further
induce or enhance adipositas, which is closely related to insulin resistance [561,567,962,963].
Type 2 diabetes and insulin resistance often correlate with increased oxidative distress and
an increased systemic pro-inflammatory profile [964] in the according tissues and cells,
especially in the liver. Of course, the roles of the Nox isoforms, as primary ROS producers,
were investigated in this context [162]. Since Nox3 was identified as an important ROS
source in association with diabetic diseases in vitro for HepG2 cells [396,487] (Section 5.1.4)
and in a mouse model in vivo [537], further research mostly focused on treatment options.
Cremonini et al. investigated the role of the flavanol (-)-Epicatechin [965,966] during HFD-
induced insulin-resistance in mice [967]. The group detected a strong up-regulation of
Nox3 (60%), Nox4 (274%) and p22phox (237%) protein levels in the liver of mice, which
received a HFD in comparison to normally fed mice. Supplemental Epicatechin in the
diet prevented this up-regulation. On the in vitro level, similar results were observed in
HepG2 cells treated with palmitate and Epicatechin, with exception of p22phox, which
remained unaltered. The increased expression of Nox3 and Nox4 resulted in an increased
total cellular ROS production. No genetic evidence was provided, and only inhibitors
for Nox enzymes were used. Therefore, the specific role of Nox3 or Nox4 could not be
determined.

Gupta et al. investigated the effects of Pancreastatin (PST) on adipocyte cells in vitro
and in vivo [485]. PST is a peptide secreted by neuroendocrine cells [968], which exploits
diabetogenic effects, such as glucose uptake inhibition in liver cells [969,970] or the pan-
creatic β cell response to insulin [971,972]. Accordingly, treatment with PST is associated
with insulin resistance, type 2 diabetes and adipositas [973–975]. Since increased ROS
levels are involved in lipolysis of adipocytes [529,553] and often correlate with type 2
diabetes progression in patients [162,976,977], the effects of PST on the oxidative distress
and chronic insulin induced lipogenesis were also investigated in this study. Neither
insulin treatment nor PST treatment alone were sufficient for induction of total cellular
ROS production in the adipocyte-like cancer cell line 3T3-L1. Combined treatment in-
duced a slight increase of ROS levels. This corresponded with increased Nox3 protein
expression and JNK1/2 phosphorylation. An increase of Nox3 protein expression and
JNK1/2 phosphorylation was also detected in white adipose tissue of mice with artificially
induced insulin-resistance [978]. While these results nicely contributed to previous find-
ings [396,487,537], no siRNA-mediated knock-down of Nox3 or Nox3-deficient animals
were used to clearly confirm Nox3 as the responsible ROS source. Building up from their
previous study, the group around Gupta and colleagues researched on possible treatment
options with the Pancreastatin inhibitor PSTi8 against insulin resistance [979]. Palmitate
treatment of HepG2 cells resulted in lipid accumulation, increased Nox3 mRNA expression,
total cellular ROS production and decreased glycogen synthesis. All of these effects were
reversed by additional treatment of PSTi. PA also induced phosphorylation of JNK1/2
and p38, which was again prevented by PSTi8 treatment. These findings mark PSTi8
as a potential candidate for diabetic treatment. However, since in both studies, Nox3
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was not confirmed as a responsible ROS source, especially since Nox4 is also a promi-
nent ROS source in adipocytes [346,980,981], a clear involvement for Nox3-derived ROS
remains elusive.

Malik et al. investigated a previously described therapeutic role of Pterostilbene
against insulin resistance [982]. Several studies already described anti-cancer and anti-
oxidant effects of Pterostilbene [983], which is a methoxylated Reservatrol analogue [984].
An anti-diabetic effect was also described [985–987]. A mechanism of action was not
investigated yet. Malik et al. treated HepG2 cells with palmitate, which induced cell
death, lipid accumulation, Nox3 mRNA expression, total cellular ROS production and lipid
oxidation. Additionally, PA treatment increased expression of genes for proteins involved in
fatty acid metabolism, i.e., Sterol regulatory element–binding protein (SREBP1c), Carnitine
palmitoyl transferase1 (CPT1), a mitochondrial PA transporter and its transcription factor
Peroxisome proliferator-activated receptor alpha (PPARα). All of these effects were strongly
reduced after additional treatment with Pterostilbene. While anti-oxidant effects were
previously described for Pterostilbene, contradictory, the group observed down-regulation
of anti-oxidative enzymes after additional Pterostilbene treatment, therefore outruling an
anti-oxidative effect in this context. Since no siRNA knock-down of Nox3 was performed a
direct effect of Pterostilbene on Nox3-derived ROS production was not investigated.

Type 2 diabetes negatively affects the outcome of wound healing [988,989] and in-
creased ROS levels correlate with chronic open wounds in patients suffering from Diabetes
mellitus [990]. Kim et al. investigated a possible treatment option for improved wound heal-
ing [991] by testing the anti-oxidative substance Edaravone. Edaravone was already in use
for treatment of acute cerebrovascular diseases [992]. The group used primary human der-
mal fibroblasts from patients or healthy controls and used the human keratinocyte cell line
HaCaT. Furthermore, they conducted a murine in vivo wound healing experiment [993].
Using this model, the group could analyze the expression of Nox3 in tissue flaps near the
wound healing area and observed no differences between normo- and hyperglycemic mice
after 5 days of operative wound creation. The addition of fibrin for wound healing stimula-
tion or the application of Edaravone did not change Nox3 protein expression. Since no ROS
measurements with siRNA knock-down of Nox3 or Nox3 deficient cells were performed,
the role of Nox3-derived ROS during the wound healing process remains elusive.

As in the case of lung diseases [923,928,931], also for cardiovascular diseases, GWAS
studies were conducted to identify possible risk factors which might influence the disease
outcome [994–996]. Radowski et al. performed a GWAS to identify genes related to
hypertension in 340 patients with type 2 diabetes [997]. Among the six identified genes, the
NOX3 gene was also detected, which was previously associated with hypertension [998].
Kwak et al. conducted a GWAS of people with type 2 diabetes to broaden the spectrum of
factors, which could help identifying risk factors for cardiovascular diseases in general and
type 2 diabetes in particular before the disease outbreak occurs [999]. In their pre-print, they
described three variants in genetic loci associated with cardiovascular diseases, especially
with type 2 diabetes. Among them, on chromosome 6, there was an intergenic variant
between the genes TFB1N and NOX3 (SNP termed rs335407).

5.4.2. Nox3 and Adipositas

Similar to type 2 diabetes and insulin resistance, ROS also play a role during the
inflammatory settings associated with adipositas [561,1000–1003]. In adipocytes, the pres-
ence of Nox3 was reported before [485]. Issa et al. investigated the influence of cytokines
on ROS production and lipolysis in the adipocyte-like cell line 3T3-L1 [529]. Treatment
with various pro-inflammatory cytokines (TNF, IL-1β, IFN-γ) induced a slight increase in
cellular O2

− production after 8 h in differentiated 3T3-L1 cells. It was previously shown
that Nox4-derived ROS play an important role for adipocyte differentiation [346,980,981].
Undifferentiated and differentiated 3T3-L1 cells expressed Nox3 as well as Nox4 mRNA.
However, only differentiated cells contained the produced Nox3 and Nox4 proteins. While
Nox4 expression remained unaltered after cytokine treatment, Nox3 protein levels strongly
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increased after 8 h. This study nicely showed a decrease in ROS production via Nox3-
knockdown after cytokine treatment. Nox-derived ROS were associated with lipolysis in
adipocytes before [553] and, indeed, Nox3 knock-down led to an increased lipolysis in
3T3-L1 cells. On the mechanistic level, the group identified an increased phosphorylation
of the hormone-sensitive lipase, an enzyme which mediates lipolysis in adipocytes, at the
serine residue 536.

5.4.3. Nox3 and Stroke

Stroke is a major consequence of hypertension [1004,1005], and elevated ROS levels
have been associated with cerebral hemorrhage [1006–1008]. Michihara and colleagues
therefore investigated the role of Nox enzymes during stroke development [489]. The
group analyzed the cerebrum in a spontaneously hypertensive rat (stroke-prone) model
(SHRSP) [1009]. These SHRSP animals show lower serum cholesterol levels [1010] and
increased levels of oxidized proteins in the aorta, heart, kidney [1011] and brain [1012].
Furthermore, increased 8-OHdG levels in the urine and increased ROS levels in the brain of
16-week-old SHRSP animals were reported [1013]. Increased O2

− levels, enhanced general
Nox activity and increased SOD protein levels were also detected in the brains of SHRSP
animals [1014]. Michihara et al. analyzed the mRNA levels of Nox enzymes in the cerebrum
of SHRSP animals and found increased mRNA levels of Nox2 and Nox3, while Nox1 and
Nox4 were not altered and Nox5 was not detected. Notably, Nox3 protein levels were also
increased, while Nox2 levels did not change in comparison to the control animals. This is
a nice example that both mRNA and protein levels should always be investigated when
suggesting changes in protein presence. However, again, no siRNA-mediated knock-down
or Nox3 knock-out model was used to provide evidence that Nox3 is the responsible ROS
source for the observed effects in SHRSP animals.

5.4.4. Nox3 and Heart Failure

Several studies have investigated Nox enzymes and their roles for the cardiovascular
system in general [102,108,1015] and during human [75,1016–1018], mouse [149,1019–1021]
and rat heart failure in particular [186,1022]. While Nox1, Nox2, Nox4 and Nox5 were de-
tected and investigated in this context, the role of Nox3 remained elusive until its detection
in murine embryonic stem cell-derived cardiomyocytes by Li and colleagues [149]. The
group mainly detected Nox4 mRNA expression, while Nox3 was only weakly expressed
and accordingly focused on Nox4. Bkaily and colleagues further analyzed the role of Nox3
in this setting [1023]. For this purpose, they used the hereditary cardiomyopathy hamster
model [1024–1026], which is well established for cardiovascular disease studies [1027].
They detected Nox1, Nox2 and Nox4, but no Nox3 protein in the ventricular heart muscles
of normal hamsters. In the ventricular heart muscles of cardiomyopathic hamsters, they
observed a reduction of Nox1 and Nox4 protein levels and an increase of Nox3 protein,
while Nox2 levels remained unchanged. These findings nicely demonstrate that Nox iso-
forms can show a dynamic expression in dependency of the tissue status. The fluctuation
of Nox enzyme expression also demonstrates again that siRNA-mediated knock-down or
knock-out experiments are strictly needed when claiming a specific role for a certain Nox
enzyme as ROS source. Unfortunately, this was also not conducted in this study.

ROS production is also associated with the pathogenesis of ischemia/reperfusion
(I/R)-induced heart injuries [1028,1029] occurring during a myocardial infarction. These
injuries include myocardial cell damage and death, arrhythmias or microvascular dys-
function [1030–1032]. Morimoto et al. investigated a putative interplay of ROS and the
chemokine monocyte chemoattractant protein-1 (MCP-1) [1033–1035] during I/R [1036].
In vitro experiments with neonatal cardiomyocytes showed that under normoxic condi-
tions MCP-1 had no protective effect. However, after I/R induction, apoptotic cell death
increased after 6 h and was reduced by treatment with MCP-1. They used Langendorff-
perfused mouse hearts from MHC/MCP-1 mice, which overexpress MCP-1 in the heart for
further in vivo investigations [1037]. The group reported an increase of MCP-1 mRNA and
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ROS production in WT mice after I/R, which was abolished in hearts from MHC/MCP-1
mice. Notably, the group observed mRNA expression of Nox1, Nox2 and Nox3 in the hearts
of WT mice, which decreased after I/R. In the hearts of MHC/MCP-1 mice mRNA levels
were lower at basal conditions and rose after I/R, again suggesting a dynamic interplay
of Nox-derived ROS production. Unfortunately, no Nox silencing or knock-out neither
in vitro nor in vivo was performed. Furthermore, no protein expression was analyzed for
Nox3. Hence, if and how Nox3-derived ROS production is activated and if these ROS are
involved in the context of MCP-1-mediated cardioprotection could not be clarified.

Vats et al. performed a retrospective cohort study [1038] from a population-based
Malmö Diet and Cancer Study [1039] with 30,446 subjects over 24.3 years. The group
analyzed SNPs to detect genetic variations in genes related to oxidative distress and vitamin
intake. The study focused on abdominal aortic aneurysm (AAA) [1040] and unpredictable
ruptured AAA [1041,1042], both manifesting in an irreversible and life-threatening dilation
of the abdominal aorta [1040,1043,1044]. Accordingly, the study only included participants
with occurrence of AAA (25,252 patients in total) [1039]. Oxidative distress has been
suggested as a possible link between various factors that contribute to AAA, such as chronic
inflammation and cell death [1045,1046], with Nox enzymes as correlated endogenous ROS
sources [1045,1047]. During this study, 399 (1.6%) participants were diagnosed with AAA,
and 71 (0.2%) were diagnosed with rAAA in general. Furthermore, an amazing effort was
made in terms of sub-analytic parameter analysis such as sex, smoking status and physical
activity by integrating patient information [1048]. The genetic loci were identified by
GWAS and altered SNPs for the NOX5 gene (rs150003957), and the NOX3 gene (rs3749930)
were detected. The according male patients showed elevated hazard ratios for AAA,
while female patients showed no alterations. Furthermore, participants with the dominant
NOX3 gene SNP rs3749930 showed an increased risk for rAAA in the overall study. The
group additionally performed subgroup analysis to investigate if the detected oxidative
distress-related genotypes had an influence on the effect of antioxidant vitamin intake. They
reported that men with the NOX3 gene variant rs3749930 showed an inverse association
between higher riboflavin vitamin uptake and a hazard risk for intact AAA, which was
also confirmed for the overall study population after sex covariate adjusting.

5.5. Role of Nox3 during Renal Diseases

Chen et al. conducted a GWAS for three phenotypes associated with risk of nephropa-
thy, i.e., serum creatinine levels, creatinine clearance and the glomerular infiltration
rate [1049–1051] in 691 type 2 diabetes patients from West Africa to analyze potential
factors for reduced renal functions as major consequence of diabetic diseases [998]. The
screen detected linkage regions that contain genes, which might influence these three phe-
notypes. The most prominent candidate genes in these regions that have been implicated
in diabetes-induced nephropathy and renal damage were the genes encoding p22phox,
(linker region 16q24), Nox1 (linker region 10q22) and Nox3 (linker region 6q25.1–6q26).
Together with the study from Ye et al. [492], only two studies investigated Nox3 during
kidney-related diseases.

5.6. Role of Nox3 during Gastrointetinal Disaeses

The most dominant Nox isoform in the gastrointestinal tract is Nox1, which was
long termed the “colon NADPH oxidase” [13,81,1052]. Nox1 was also detected in the
stomach under normal and disease conditions [82,118,1053,1054]. In addition to Nox1,
Duox2 is expressed in the rectum, cecum and ascending colon [92,364,1055], and Nox2 and
Nox5 were detected in human gastric samples [1053]. However, so far, Nox3 has not been
detected nor associated with the gastrointestinal tract.

5.7. Role of Nox3 in Other Diseases

Plantinga et al. investigated genetic variants associated with susceptibility to agranu-
locytosis [1056]. Agranulocytosis is defined as a reduced concentration of granulocytes in
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peripheral blood (<500 granulocytes/mL blood) [1057,1058]. Agranulocytosis can be in-
duced by various factors, such as anti-psychotic drugs [1059] or antibiotics [1060,1061], but
is also observed in rare events (0.1–0.35%) in patients during treatment with thionamides
to medicate hyperthyroidism [1062–1064]. This anti-thyroid drug-induced agranulocytosis
(ATDAC) can be a life-threatening condition [1058,1065], especially after the usage of higher
doses of anti-thyroid drugs [1066]. During the conducted GWAS of Plantinga et al., two
independent families and six patients with Graves’ disease (GD) that developed ATDAC
during treatment were analyzed. In 7 out of 11 GD-positive ATDAC patients, a variant of
the NOX3 gene were identified. The group reported that the NOX3 gene variants p.Asn8Ser,
p.Ala198Thr and p.Arg100Ile were absent in ATDAC-negative GD patients and were not
detected in previous genetic screens for predisposition to GD [1067,1068]. Notably, all
variants were located in regions of the membrane-spanning α-helices of the Nox3 protein.

CO poisoning is a consequence of malfunctioning oxygen supply due to carboxyhe-
moglobin forming in red blood cells [1069,1070]. The subsequent hypoxia leads to damage
in various brain regions, such as the hippocampus or the striatum [1071]. However, several
research groups have suggested that hypoxia alone cannot be addressed as solely responsible
for the brain damage. The involvement of various ROS subspecies has been discussed by
Hara et al. and others as possible damage-inducing molecules in this context [490,1072–1075].
A previous study already detected increased Duox2 mRNA after CO exposure (3000 ppm,
40 min) in the rat striatum [1076], but no mRNA of other Nox isoforms was detected. Hara
et al. revised their findings [543] and used their well-established rat model in which CO
exposition (1000 ppm or 3000 ppm) [1072,1077,1078] simulates CO poisoning and brain
damage [1073,1079]. The group found a small increase in Nox3 mRNA, while Nox1, Nox2
and Nox4 remained unchanged.

Mikkola et al. performed a GWAS for identification of new gene loci associated with
canine hip dysplasia [1080]. This canine skeletal disease is a hereditary disorder [1081,1082]
of which the severity varies based on genetic variations [1083–1085] and the dog
breed [1084,1086,1087]. The group analyzed 750 German shepherd dogs and identified
three new genetic loci associated with this disease. One of these newly identified loci is
located on chromosome 1 in an intergenic position between the NOX3 gene and the ARDI1B
gene. The group identified the SNP BICF2P468585, which showed the strongest association
with the disease and which was located approximately 196 kilobases upstream from the
NOX3 gene. Another detected SNP, BICF2S23248027 (also termed rs21911799), was located
in the intron between the exons 9 and 10 of the NOX3 gene.

During a study which investigated the therapeutic effects of Dimethyl fumarate
(DMF) on relapsing-remitting multiple sclerosis (RRMS) in 564 participants, Carlströem
et al. detected a SNP in the NOX3 gene associated with a better DMF treatment out-
come [1088]. RRMS is an autoimmune disease characterized by the entry of immune cells
into the central nervous system (CNS), which leads to pro-inflammatory tissue damage
accompanied by neurological dysfunction [1089,1090]. Like in many other autoimmune
pathological settings [1091,1092], oxidative distress was reported to be a modulating factor
in RRMS [1093–1095]. DMF (Tecfidera®) is one of the most prescribed substances for pa-
tients that suffer from RRMS [1089,1096]. The identified SNP rs6919626 in the NOX3 gene
allele was associated with a probability of an insufficient DMF treatment response. The
group stimulated CD14+ monocytes isolated from patients with the identified NOX3 SNP
rs6919626 with Escherichia coli in vitro and detected a reduced total cellular ROS production.
This study suggested for the first time a possible link between Nox3-derived ROS and MS
disease outcome and treatment.

Li et al. analyzed thyroid tissue samples from 11 patients who suffered from tertiary
hyperparathyroidism (THPT) [1097]. Hyperparathyroidism manifests itself by an enlarge-
ment of the parathyroid gland, increased levels of circulating parathyroid hormone, as well
as disturbed bone and mineral metabolism [1098,1099]. THPT develops during chronic
kidney diseases and differs from hyperparathyroidism in an uncontrolled hypercalcemia,
i.e., excessive Ca2+ levels in the blood [1100]. Since the molecular mechanisms of this
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process remain largely unknown, Li and colleagues investigated this topic by analyzing
blood and thyroid tissue samples from 16 Chinese THPT patients. The group used whole-
exome sequencing for the detection of SNPs and insertions or deletions variants. During the
screen, 17,401 mutations (6690 missense variants, 3078 frameshift variants, 2005 stop-gained
variants and 1630 synonymous variants) were detected in THPT patient samples. From this
data set, a further driver mutation analysis identified 179 mutated genes, one of them being
the NOX3 gene. Expression quantification by qRT-PCR additionally revealed decreased
levels of NOX3 gene mRNA in thyroid gland samples from THPT patients.

6. Nox3 as Therapeutic Target

Although Nox3 and Nox3-derived ROS are associated with many different diseases
(see Section 5), of course, due to the initial discovery in and research focus on the inner ear,
most therapeutical approaches targeted Nox3 in this organ [651,1101]. Nevertheless, re-
search was also conducted to develop therapeutic approaches for Nox3-related involvement
during diabetes, cancer and MS.

6.1. Therapeutic Nox3 Targeting in the Inner Ear
6.1.1. Therapeutic Treatment of Cisplatin-Induced Hearing Loss

The first study which investigated Nox3 as a therapeutical target was conducted by
Mukherjea and colleagues [541]. They focused on treatment of cisplatin-induced ototoxicity
but did not target Nox3 directly. Instead, the group focused on the protein Transient
Receptor Potential Vanilloid 1 (TRPV1), which is expressed in the organ of Corti [1102] and
can be activated by ROS [1103]. The group reported cell death of OHCs, IHCs, supporting
cells, spiral ganglion cells and the stria vascularis in the rat cochlea after 72 h of cisplatin
treatment. Cisplatin treatment increased mRNA levels of both TRPV1 (starting at 24 h and
increasing over 72 h) and Nox3 (maximum at 24 h). Further in vitro studies with the UB-
OC-1 hair cell line confirmed the in vivo observations. Cisplatin treatment induced TRPV1
protein expression and resulted in a higher channel activity, i.e. an increased Ca2+ influx.
Nox3 mRNA and protein levels as well as total cellular ROS production were also increased
after cisplatin treatment. siRNA-mediated knock-down of Nox3 reduced the cisplatin-
induced ROS production, nicely confirming Nox3 as ROS source in this in vitro setting.
Moreover, Nox3 down-regulation also decreased TRPV1 mRNA expression. Vice versa,
down-regulation of TRPV1 via siRNA reduced the cisplatin-mediated increase of Nox3,
suggesting a complex cross-talk between these two proteins. This is not very surprising,
since ROS and Ca2+ are major factors, which influence various cellular signaling pathways.
TRPV1 as a target for siRNA-mediated therapy was subsequently investigated in vivo.
For the analysis of hearing loss, ABR threshold measurements were performed in Wistar
rats, which were injected with scrambled or TRPV1-specific siRNA application into the
cochlea. Animals were then either left untreated or injected with cisplatin (13 mg/kg, i.p.).
In control animals, cisplatin treatment increased ABR thresholds at various frequencies
(8, 16, 32 kHz) within 72 h, which indicates progressing hearing loss. In rats pre-treated
with TRPV1 siRNA the ABR thresholds at 8 and 16 kHz were moderately reduced, while
the cisplatin-induced ABR shifts at 32 kHz showed the strongest reduction after TRPV1
siRNA injection. Histochemical analysis of the cochlea showed damage to and/or loss
of hair cells in rats after cisplatin treatment in the basal and middle turns of the cochlea,
which was reduced after TRPV1 knock-down. While this study nicely establishes TRPV1
as potential target for therapeutic treatment against cisplatin-induced hearing loss, no
in vivo experiments for analysis of Nox3 in this context were performed. Nevertheless, the
study clearly showed that cisplatin treatment induces Nox3 expression in the inner ear and
confirmed Nox3 as ROS source in the hair cell line UB-OC-1 in this context. Encouraged
by their previous findings [541], Mukherjea and colleagues made the next logical step
and focused on Nox3 as siRNA target [476]. Transfection of siRNA against Nox3 led to a
strong reduction of Nox3 mRNA and protein expression in the cochlea of Wistar rats. As
previously discovered [541], cisplatin treatment induced mRNA and protein expression
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of Nox3 in the cochlea, which was reduced after siRNA treatment. Similar observations
were made for spiral ganglion cells and the stria vascularis. Furthermore, cisplatin-induced
cell death of OHCs, spiral ganglion cells and the stria vascularis, which occurred after
3 days, was reduced after siRNA-mediated knock-down of Nox3. Finally, by analyzing
ABR thresholds, the group observed that the cisplatin-induced ABR threshold shift to 35 dB
was reduced to 23 dB after additional treatment with siRNA against Nox3. These two
studies from Mukherjea and colleagues [476,541] not only confirm Nox3 expression in the
rat cochlea, the rather harmful ROS production during ototoxic drug applications and
cisplatin-mediated increase of Nox3 expression, but also nicely demonstrate that targeting
of Nox3 via siRNA shows promising potentials for a therapeutic treatment of hearing loss.

The group among Mukherjea, Rakumar and colleagues further investigated possible
treatment options for cisplatin-induced hearing loss and focused on the increased pro-
inflammatory profile in the cochlea reported after cisplatin treatment [804–807,809]. The
group investigated in this context a possible involvement of the cytosolic transcription
factor STAT1 [831]. STAT1 is phosphorylated after the detection of various cellular stress
factors, including pro-inflammatory cytokines, translocates to the nucleus and regulates
expression of iNOS, TNF [1104,1105] and various factors involved in cell death [1106,1107].
The group observed STAT1 phosphorylation and STAT1 translocation into the nucleus after
cisplatin treatment in UB-OC-1 cells and in rat cochlea explants. Increased phosphorylation
of STAT1 was specifically detected in OHCs, the stria vascularis and spiral ganglion cells.
The group nicely identified Nox3-derived ROS as important factor, since Nox3 knock-down
via siRNA reduced the phosphorylation of STAT1 in UB-OC-1 cells and in rat cochlea
explants. Moreover, the increased pro-inflammatory profile and cell death of UB-OC-1
cells and rat cochlea OHCs, and the induced hearing loss measured by ABR thresholds
after cisplatin treatment all could be attenuated by STAT1 knock-down. Unfortunately,
a direct protein target for the Nox3-derived ROS on the mechanistic level, which regulates
STAT1, was not identified. The latest study from the Ramkumar lab investigated the role
of the chemokine C-X-C motif chemokine ligand 1 (CXCL1) in a similar context [1108].
Cisplatin treatment led to CXCL1-mediated signaling in vitro and in vivo finally resulting
in increased pro-inflammatory factors and hearing loss, as described before [1109–1111].
Inhibition of CXCL1 signaling showed a protective effect against hearing loss. Among the
up-regulated factors induced by CXCL1 signaling, the NOX3 gene was also described. This
study focused on the therapeutic possibilities by targeting the chemokine signaling during
cisplatin-induced hearing loss. Therefore, the role of Nox3 in this setting was not further
investigated.

Shin et al. designed and investigated a new synthetic compound, named KR-22332, as
a treatment for cisplatin-induced hearing loss [542] 2013. Interestingly, the group analyzed
zebra fish larvae for their evaluations as addition to the commonly used Wistar rat model.
Zebra fish possess hair cells in their lateral line system [1112], which remarkably resembles
mammalian inner ear hair cells [1112–1114]. Ototoxic hair cell death can therefore be easily
analyzed with this approach [807,1113,1115]. Cisplatin treatment induced significant hair
cell loss in zebra fish, which could be reduced by additional treatment with KR-22332.
The same results were obtained in vitro with the hair cell line HEI-OC1. Further in vivo
experiments with Wistar rats were conducted. Similar to previous findings [355,476,541],
the group reported increased cochlear damage and an increase of Nox3 protein levels after
cisplatin exposure, which both were reduced by additional K-22332 treatment. Cisplatin-
induced hearing loss, determined by an ABR threshold shift measurements at 67 dB, was
also reduced to 38.5 dB after K-22332 treatment, altogether suggesting a promising com-
pound for hearing loss treatment after cisplatin exposure. Among steroids, which showed
some promising treatment options against cisplatin-induced ototoxicity [1116–1118], the
glucocorticoid dexamethasone exploited minimal side effects and protective effects against
cisplatin-inflicted damage in the inner ear [1119–1125]. Dinh et al. analyzed the effects
of dexamethasone in vitro with rat explants of the organ of Corti [1126]. Cisplatin treat-
ment induced Nox3 mRNA expression, total cellular ROS production and, subsequently,
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OHC death starting from the basal turn of the organ of Corti after 72 h, while IHCs were
not affected. Dexamethasone treatment showed a dose-dependent protective effect in
this context.

Kim and colleagues investigated a possible treatment option, which reverses peroxi-
somal and mitochondrial dysfunction during cisplatin-induced ototoxicity [1127]. They
focused on fenofibrate, a pharmaceutical substance usually used to treat unbalanced lipid
blood levels [1128]. Fenofibrate already displayed protection against gentamycin-induced
ototoxicity [1129] and against cisplatin-induced nephrotoxicity [1130]. Fibrates, such as
fenofibrate work mechanistically by binding to the peroxisome proliferation-associated
receptor (PPAR), which regulates various cellular functions, mainly the cellular lipid and
energy metabolism [1131,1132]. The group investigated hearing loss by ABR threshold
shift measurements after cisplatin and fenofibrate treatment and observed, like before, that
cisplatin induces higher ABR shifts at all frequency (4, 8, 16, 32 kHz) in mice. Additional
fenofibrate treatment alone did not change ABR thresholds. Further analysis of cochlear
rat explants showed destruction of OHCs and IHCs, which could be prevented by addi-
tional treatment with fenofibrate. These results were confirmed in vitro in the hair cell line
HEI-OC1. The group also measured a strong increase in Nox3 and Nox4 protein levels and
total cellular ROS production in murine cochlea explants after cisplatin treatment, which
was reduced after fenofibrate treatment. They also saw a correlative increase in NF-κB p65
protein levels, which suggests a possible regulatory role for Nox3 expression.

6.1.2. Therapeutic Treatment of Noise-Induced Hearing Loss

Building up on their previous findings, which showed a connection between TVRP1-
mediated Ca2+ influx and Nox3-mediated ROS [541], as well as noise-induced Nox3-
derived ROS production in rat cochleae [741], the group of Mukerjeah and colleagues
further investigated the complex interplay of Ca2+, ROS and pro-inflammatory cytokines
during noise-induced hearing loss [655]. ROS as critical drivers of cochlea damage in gen-
eral have been described several times before [657,667,690,700]. Noise exposure results in
increased Ca2+ levels in the cochlea, which, in turn, leads to chronically increased ROS lev-
els [668,1133–1136]. Both factors, permanently increased Ca2+ and ROS levels, subsequently
lead to an increased pro-inflammatory status of the cochlea [804–806], which attracts im-
mune cells that also further progress the inflammation [807,1137–1139]. Dhukhwa et al.
focused on the pro-inflammatory cytokine TNF, which was associated with noise exposure
in the rat cochlea before [745,1140,1141] as a possible therapeutic target. After noise expo-
sure, the group measured ABR threshold shifts from 25 to 50 dB at frequencies of 8, 16 and
32 kHz in Wistar rats. This was associated with increased mRNA and protein expression of
TRPV1, Nox3, TNF, COX2 and iNOS in the rat cochlea. Additional treatment of animals
with capsaicin, the typical agonist of TRPV1 [1142], strongly reduced the mRNA and pro-
tein expression of mentioned proteins. Sequestration of TNF by treatment of animals with
Etanercept, an IgG1 receptor covalently linked to two TNF receptors [806,1143], reduced
TNF and Nox3 protein levels as well as ABR threshold shifts. Early administration (first
2 h of noise application) showed an even stronger otoprotection. However, neither in the
in vivo model, nor in the in vitro cell culture experiments, Nox3 knock-out or knock-down
animals or cells were used to provide evidence of Nox3 as activated ROS source. Moreover,
the possibility that the noise application itself might activate the ROS production of Nox3
alone was not investigated, since no ROS measurements were performed.

After Oishi et al. successfully down-regulated Nox3 expression in the cochlea via
direct injection into the murine inner ear [1144], Nacher-Soler and colleagues targeted
Nox3 via siRNA in vivo as therapeutical option against sensorineural hearing loss [716].
The group developed a screening method for detecting especially effective Nox3-directed
siRNA by establishing a co-expression system. This system resembles early research studies
during discovery of the enzyme (Section 1), in which Nox3, p22phox, NOXO1 and NOXA1
of either mouse or human origin, were expressed in the cell lines HEK239, HeLa and
CHO. ROS production measured by a water soluble triazonium salt (WTS) reduction assay
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was used as Nox activity output. Using this biomarker assay, the group identified two
potent siRNAs out of ten tested in total, which showed strong down-regulation of Nox3
at very low concentration ranging between 0.1 and 1.13 nM. In mouse cochlear explants,
a concentration of 80 nM was necessary to induce a reduction of Nox3 expression to 50%
after 48 h. The siRNA #248 showed the most potent effect of the two selected siRNAs and
fully matched with the human Nox3 sequence. In vivo delivery of siRNA via intracochlear
injection resulted in 60% down-regulation of Nox3 siRNA in the mouse and might therefore
bear a relevant human therapeutic approach.

Rousset et al. focused on the new therapeutical possibilities of in vitro designed
microRNAs [872]. Like shRNA- or siRNA, microRNA-mediated knock-down of the tar-
geted mRNA is commonly used techniques to investigate cellular processes [1145–1148]
and depicts new opportunities for therapeutically uses in patients [1149–1151]. Rousset
and colleagues addressed the optimization of miRNAs for a better therapeutical use in
general [1152–1154] and chose the subunit p22phox of the Nox isoforms Nox1-4 as one of
the therapeutic targets. Indeed, they reported a decrease in p22phox mRNA expression
in hair cells, after transduction with an optimized miRNA. However, by only targeting
p22phox and not Nox3 specifically, this therapeutic approach will target all Nox isoforms,
which can show a highly fluctuating expression profile in dependency on the biological
context [6,361,505].

6.2. Therapeutic Nox3 Targeting as Diabetic Treatment

Type 2 diabetes is accompanied by vision loss due to diabetic retinopathy, which is
a major complication in diabetic patients [960,961,1155,1156]. Vision loss during diabetic
retinopathy is caused by a loss of pericytes and vascular endothelial cells, which leads to
vascular dysfunction and neurological inflammation [1157]. There are several treatment
options available already, such as the application of anti-VEGF or PKC inhibitors [1158,1159],
which are, however, not fully satisfactory due to the complex processes involved in diabetes,
such as hyperglycemia and increased oxidative distress [1160–1162]. Cai et al. investigated
the glucagon-like peptide 1 (GLP-1), an insulin tropic peptide, which showed potential
for diabetes treatment [1163,1164] due to its anti-oxidative properties [1165,1166]. They
induced type 2 diabetes in Wistar rats by applying a HFD to investigate this topic. The group
described high glucose levels, reduced thickness of retinal cellular structures, namely the
columnar and cone photoreceptors, the outer and inner nuclear layer, the inner plexiform
layer and the retinal ganglion cell layer and an increased apoptotic cell death of the
according retinal cells. All of these parameters were reduced after treatment with GLP-1.
The authors also investigated a possible role of Nox3, however, only immunohistological
staining of WT retinal explants was performed. A proper negative control staining for
Nox3 in Nox3-deficient samples was not conducted. Furthermore, no mRNA or protein
level expression was analyzed from retinal lysates to further validate Nox3 involvement
and no ROS production was performed. As a result, neither the involvement nor the role of
Nox3-derived ROS could be made in this study.

6.3. Therapeutic Nox3 Targeting during Cancer

Saleem et al. investigated a possible therapeutic role of Brevilin A, a plant-derived
sesquiterpene lactone [1167–1169], against breast cancer cells [548]. The group used the hu-
man breast cancer cell line MCF-7 in this context and reported a dose-dependent reduction
of migratory abilities, induction of cell cycle arrest and subsequent cell death after Brevilin
A treatment. Further supplementation of the globally working ROS scavenger NAC led to
reversed effects suggesting the general involvement of ROS. Indeed, the group measured
an increase in total cellular ROS levels after Brevilin A treatment starting at 1 hour and
reaching its peak after 2 h. Notably, the group measured an increase of Nox2 and Nox3
protein levels after Brevilin A treatment and therefore suggested the involvement of these
two Nox isoforms. However, in comparison to the ROS production, which peaks after two
hours, the increase of Nox2 and Nox3 was reported earliest after 24 h, which is too late
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to explain the described early and quick ROS burst. Moreover, no Nox3-deficient cells or
siRNA-mediated knock-down of Nox enzymes was conducted. Therefore, the role of Nox3
in this setting remains elusive.

6.4. Therapeutic Nox3 Targeting during Multiple Sclerosis

Choi et al. investigated an agonist of the lysophosphatidic acid (LPA) receptors as
possible treatment option in multiple sclerosis (MS) [1170]. ROS overproduction plays a
critical role for the pathological development of MS [1171–1174], e.g., disruption of the
blood–brain barrier or acceleration of trans-endothelial migration of peripheral immune
cells into the CNS, which further lead to tissue damage. Therefore, ROS indirectly contribute
to lesion persistence and deterioration in MS. Several reports have mentioned an induction
of ROS production after LPA treatment and subsequent signaling after binding to plasma
membrane-located receptors [1175–1177]. LPA functions as both a plasma membrane
component and an extracellular signaling mediator in various tissues [1178]. As signaling
molecule, LPA induces various processes, such as cell survival, angiogenesis, neurogenesis,
and neuroplasticity in the nervous system [1178–1180]. Choi et al. tested the LAP receptor
antagonist Ki16425 on MS development and the role of ROS in this context. The group
therefore used an established MS model in mice [1181]. Treatment with Ki16425 deteriorated
the motor disability, spinal demyelination, enhanced the infiltration of immune cells, such
as microglia and Th1 or Th17 helper cells into the spinal cord [1182] and progressed blood–
brain barrier disruption [1183]. These events massively worsened the MS symptoms in
treated mice. The group also detected increased levels of pro-inflammatory cytokines and
of 4-Hydroxynonenal, a common marker of oxidative distress [1184], in the spinal cord of
Ki16425-treated animals. They also reported increased mRNA levels of Nox2 and Nox3 after
high doses Ki6425-treatment. On the contrary, treatment with the LPAR agonist 1-oleoyl-
LPA alleviated the described parameters including Nox3 and Nox2 mRNA expression in
the spinal cord of treated animals. While the effects of LAP-mediated signaling on the
MS disease outcome were clearly demonstrated in this study, no evidence was given that
Nox3-derived ROS were responsible for the observed enhanced oxidative distress in the
spinal cord.

7. Concluding Remarks

According to PubMed there are 192 articles, which mention Nox3. The detailed
knowledge about this Nox isoform, however, is surprisingly low. With exception of a few
ground-breaking milestone articles, most of the studies have only described correlative
increase or decrease of Nox3 mRNA in their research context. Confirmation of Nox3-
derived ROS as an involved physiological factor on the genetic level or ROS measurements
as representative enzymatic output were rare events, on average, of all conducted studies.
Despite the fact that Nox3 is expressed not only in the inner ear but also in various cell types
and organs, the “inner ear stigma” remains until today. Because of that, Nox3 might be the
most underrated Nox isoform to date. Therefore, this review should not only be a helpful
compendium of Nox3-associated research but should also function as an encouraging call
to all researchers interested in Nox enzymes and Nox-dependent ROS production to focus
more on this Nox isoform. The roles and functions of Nox3 are not just limited to the inner
ear but extend far beyond it.
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