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Abstract: The oxidative-stress-elicited deterioration of chondrocyte function is the initial stage of
changes leading to the disruption of cartilage homeostasis. These changes entail a series of catabolic
damages mediated by proinflammatory cytokines, MMPs, and aggrecanases, which increase ROS
generation. Such uncontrolled ROS production, inadequately balanced by the cellular antioxidant ca-
pacity, eventually contributes to the development and progression of chondropathies. Several pieces
of evidence show that different growth factors, single or combined, as well as anti-inflammatory cy-
tokines and chemokines, can stimulate chondrogenesis and improve cartilage repair and regeneration.
In this view, hypothesizing a potential growth-factor-associated action, we investigate the possi-
ble protective effect of post-operation knee fluid from patients undergoing prosthesis replacement
surgery against ROS-induced damage on normal human knee articular chondrocytes (HKACs). To
this end, HKACs were pre-treated with post-operation knee fluid and then exposed to H2O2 to mimic
oxidative stress. Intracellular ROS levels were measured by using the molecular probe H2DCFDA;
cytosolic and mitochondrial oxidative status were assessed by using HKACs infected with lentiviral
particles harboring the redox-sensing green fluorescent protein (roGFP); and cell proliferation was
determined by measuring the rate of DNA synthesis with BrdU incorporation. Moreover, superoxide
dismutase (SOD), catalase, and glutathione levels from the cell lysates of treated cells were also mea-
sured. Postoperative peripheral blood sera from the same patients were used as controls. Our study
shows that post-operation knee fluid can counteract H2O2-elicited oxidative stress by decreasing
the intracellular ROS levels, preserving the cytosolic and mitochondrial redox status, maintaining
the proliferation of oxidatively stressed HKACs, and upregulating chondrocyte antioxidant defense.
Overall, our results support and propose an important effect of post-operation knee fluid substances
in maintaining HKAC function by mediating cell antioxidative system upregulation and protecting
cells from oxidative stress.

Keywords: reactive oxygen species; osteoarthritis; chondrocytes; growth factors; post-operation
knee fluid

1. Introduction

Cartilage is a zonal, dense, aneural, avascular, and alymphatic connective tissue with
excellent load-bearing functions, accounting for the easy mobility of joints [1]. Cartilage
cells, called chondrocytes, are the primary mediators of the anabolic and catabolic pro-
cesses that maintain extracellular matrix (ECM) integrity [2]. Chondrocytes respond to
many factors, such as proinflammatory cytokines and growth factors, participating in
ECM homeostasis by controlling the ECM’s degradation and synthesis [2]. The disruption
or imbalance of this homeostasis leads to cartilage damage and breakdown, promoting
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degenerative joint diseases [3]. Among the potential risk factors for cartilage damage
are age [4–6], biomechanical stress [7,8], sports injuries [9,10], the improper structure
and mal-alignment of the joints [11,12], obesity [13], genetics [14,15], polymorphisms and
mutations in extracellular matrix genes [16–18], and the excessive production of reactive
oxygen species (ROS) [19–21]. Besides being involved in the oxidative metabolic turnover
of cartilage tissue [22], ROS are also required to maintain essential intracellular signal-
ing pathways and modulate ionic homeostasis, playing an important role in controlling
chondrocyte function [23]. However, oxidative-stress-associated damage occurs when the
cellular antioxidant capacity is insufficient to counteract excessive ROS production [20].
Elevated ROS levels may thus contribute to the degradation of cellular membranes and
ECM components [24,25], the release of oxidized molecules in the cellular content, and
chondrocytes’ senescence and death [21,26]. Such conditions increase synovial inflamma-
tion, which in turn increases ROS generation and the amount of degradation products [20];
indeed, synovium and activated chondrocytes are sources of proinflammatory cytokines,
mainly IL-1beta, interferon-gamma, and TNF-alpha, which are involved in increasing ROS
generation [27,28]. The association between this uncontrolled ROS production and the
inappropriate cellular antioxidant defense is thus the primary trigger of osteoarthritis (OA)
development and progression [29–31]. Though cartilage damage is the principal feature,
OA is a whole joint disease involving the surrounding tissues (subchondral bone, ligaments,
and synovium), and it is accompanied by changes in the subchondral bone and synovial
inflammation [32]. Interestingly, OA has a non-systemic nature, having higher prevalence
in large joints, such as the knee and hip; moreover, the main cytokine pool involved in
its pathogenesis is derived from chondrocytes and synovial fibroblasts rather than from
circulating blood inflammatory cells [33]. Therefore, in an effort to restore cartilage home-
ostasis, chondrocytes can also increase the levels of anti-inflammatory cytokines, such as
IL-10, IL-4, and IL-13 [33,34]. Several pieces of evidence, both in vitro and in vivo, show
that different growth factors, including transforming growth factor-β (TGF-β), insulin-like
growth factor-I (IGF-I), and platelet-derived growth factor (PDGF), individually or com-
bined, can stimulate chondrogenesis, improving cartilage repair and regeneration [35–38].
Accordingly, the application of growth factors may represent a promising treatment for
cartilage defects and damage and for osteoarthritis treatment [38]. In this regard, in vitro
studies have shown the importance of autologous human serum in chondrocyte mono-
layer expansion, which was shown to maintain chondrocyte proliferation and minimize
chondrocyte apoptosis [39–41]. Moreover, human platelet lysate (HPL) has been identified
as a valuable alternative to fetal bovine serum (FBS) to promote chondrocyte prolifera-
tion and maintain their chondrogenic features [42]. In this regard, platelet-rich plasma
(PRP) therapy has gained prominence as a simple and non-invasive approach for knee
arthritis treatment [43]. Indeed, by releasing anti-inflammatory cytokines, chemokines,
and growth factors, PRP can stimulate chondrocyte proliferation and differentiation, ulti-
mately reducing inflammation and promoting cartilage repair and regeneration [44]. The
synovial membrane has a blood supply, and some soluble factors like inflammatory and
anti-inflammatory cytokines can be present in the patient’s blood [45,46]. For instance, IL-6
and IL-10 concentrations were higher in patients with knee OA than in healthy controls [45].
In this view, considering a possible growth-factor-associated action, we hypothesized that
post-operation knee fluid (POKF) from patients who underwent prosthesis replacement
surgery would possess potential protective effects against oxidative-induced stress on
human knee articular chondrocytes (HKACs). This study’s results support our hypothesis
and suggest an important effect of POKF-contained substances in maintaining HKAC
function by decreasing intracellular ROS levels, preserving cytosolic and mitochondrial
redox homeostasis, and upregulating antioxidant cell defense, ultimately conserving the
proliferation of oxidatively stressed HKACs.
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2. Materials and Methods
2.1. Patients and Serum Sample Preparation

This study was conducted on 20 patients diagnosed with bilateral knee OA who un-
derwent total knee arthroplasty using a posterior-stabilized implant (Nexgen LPs; Zimmer,
Warsaw, IN, USA). Patients had a mean age of 70 years (range 58–74) and a male-to-female
ratio of 2:3. Patients with coagulation problems, diabetes, liver diseases, or malnutrition
were excluded from the study. None of the 20 patients received whole blood units through
transfusion during the postoperative period. The post-operation knee fluid (POKF) and the
post-operation peripheral blood sera (POPBS) were isolated as previously described [47].
POKF was centrifuged in Falcon tubes at 2200 rpm for 20 min at 37 ◦C; POPBS were instead
treated in serum separator tubes and centrifuged at 2500× g for 10 min at 10 ◦C. The
supernatant from both POKF and POPBS was then collected and stored at −80 ◦C.

2.2. Cell Culture and Treatments

Human knee articular chondrocytes (HKACs) were purchased from Innoprot (Catalog
number #P10970, Derio (Bizkaia), Spain). HKACs were routinely grown in a chondrocyte
medium with supplement (Innoprot #P60137) in a 5% (v/v) CO2 humidified atmosphere at
37 ◦C, as previously done for human endothelial cells [48]. On reaching confluence, the cells
were passaged at a split ratio of 1:2 using trypsin–EDTA (Lonza, Basel, Switzerland) and
subcultured until within passage five. Unless differently stated, HKACs were cultured in
96-well black plates (Corning, Lowell, MA, USA) until 70 to 80% sub-confluence. According
to previous experimentation using human sera [49–51], cells were serum-starved for 8 h
before being treated for 12 h with POKF and POPBS at a final concentration of 5%. For the
ROS and redox status evaluations (cytoplasmic and mitochondrial), cells were treated with
H2O2 at a 300 µM final concentration for 3 h, without removing the serum treatment.

2.3. Determination of Intracellular ROS Levels

The levels of intracellular ROS were determined using 2′,7′-dichlorodihydrofluorescein
diacetate (H2DCF-DA), as previously described, with minor modifications [51]. After 12 h
of sera treatment, HKAC cells were incubated for 30 min in Hanks balanced salt solution
(HBSS) containing 10 µM carboxy-H2DCFDA; cells were then washed with phosphate-
buffered saline (PBS) and fluorescence was measured using a GENios plus microplate
reader (Tecan, Männedorf, CH) at 485 nm excitation and 535 nm emission. Oxidative stress
was induced by the addition of H2O2 at a sub-lethal dose of 300 µM [52].

The treatment-induced variation in fluorescence was kinetically measured over a time
course of three hours. All fluorescence measurements were corrected for the background
fluorescence and protein concentration. Results were evaluated by comparing measure-
ments from five different experiments and expressed as the mean ± standard deviation
(SD) of the relative fluorescence unit (RFU) values [53].

2.4. Determination of Cytosolic and Mitochondrial Redox Status

The cytosolic and mitochondrial redox status was measured using HKACs infected with
lentiviral particles harboring the redox-sensitive green fluorescent protein (roGFP) [54,55]. The
dynamic range of roGFP allows it to respond linearly to increasing doses of oxidants; more-
over, roGFP can be targeted to different cellular compartments, including mitochondria,
nuclei, and plasma membranes [54–57]. Cells stably transfected constitutively expressed
roGFP in both cytosol and mitochondria, as observed under a fluorescence microscope.
After 12 h of sera treatment, stable transfectants were washed with PBS and incubated
with HBSS containing 300 uM H2O2 and only HBSS to serve as a control. The fluorescence
was measured with a GENios plus microplate reader (Tecan, Männedorf, Switzerland),
where the oxidized form of roGFP was read with a fluorescence excitation maximum of
400 nm, while the reduced form was read with a fluorescence excitation maximum of
485 nm. The fluorescence ratio between the readings at 400 nm and the readings at 485 nm
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gives information about the extent of the oxidative status in the cytosolic and mitochondrial
compartments, respectively.

2.5. Determination of Cell Proliferation

Cell proliferation was measured via an ELISA-based assay for the quantification of
5-bromodeoxyuridine (The Cell Proliferation ELISA, BrdU, Chemiluminescent, Roche,
Basel, Switzerland), incorporated into the genomic DNA of proliferating cells [58]. After
12 h of sera treatment, HKACs were incubated with DMEM with 2.5% FCS containing
300 µM H2O2 (or without H2O2 to serve as a control), plus the BrdU probe, at a 10 µM con-
centration for 10 h. After removing the supernatant, the cells were fixed with a Fix-Denat
solution for 30 min. The Fix-Denat was then discarded, and cells were incubated with
an anti-BrdU antibody conjugated to peroxidase (anti-BrdU-POD) for 90 min. Following
three rinses with a washing buffer, a substrate solution was added and it was allowed to re-
act for 3–10 min at room temperature. Finally, light emission was read using a GENios Plus
microplate reader (Tecan, Männedorf, Switzerland). Results were normalized for protein
content and expressed as the mean ± SD of the relative fluorescence unit (RFU) values.

2.6. Protein Extraction

After treatment, cells were washed with chilled PBS and incubated in ice-cold lysis
buffer (CytoBuster; Novagen, Darmstadt, Germany) containing protease and phosphatase
inhibitors for 10 min at 4 ◦C. Cells were then scraped, and the lysate was centrifuged at
16,000× g for 5 min at 4 ◦C. The supernatant was collected and stored at −80 ◦C. Protein
content was determined using the Bradford assay following the manufacturer’s protocol
(Sigma, St. Louis, MO, USA) [59].

2.7. Determination of Superoxide Dismutase (SOD) Activity

Superoxide dismutase (SOD) activity was determined using a superoxide dismutase
(SOD) activity assay kit (BioVision, Abcam, Waltham, MA, USA) [60]. The kit utilizes a
WST-1 molecule (Water-Soluble Tetrazolium 1) that generates a water-soluble formazan
dye upon reduction by the superoxide anion, which is liberated following the addition of
an enzyme solution present in the kit. The superoxide reduction rate is linearly correlated
with the xanthine oxidase activity, and it is inhibited by SOD. SOD inhibition activity can
be colorimetrically determined at 450 nm. Cells were treated with sera, and proteins were
extracted and quantified as described in Section 2.6. The supernatant of each sample and
different blanks containing equal protein amounts were used to measure the SOD activity.
Samples and blanks were read using a plate reader at 450 nm (GENios Plus microplate
reader, Tecan, Männedorf, Switzerland). To calculate the SOD activity (as inhibition rate %),
the following equation was used:

SOD Activity (inhibition rate %) =
(Ablank1 − Ablank3) − (Asample − Ablank2)

(Ablank1 − Ablank3)
× 100

where ABlank1 is the absorbance of the solution without the sample, ABlank2 is the
absorbance of the solution without the enzyme working solution, and ABlank3 is the
absorbance of the solution without the enzyme working solution and the sample.

2.8. Determination of Catalase Activity

Catalase is a ubiquitous antioxidant enzyme present in nearly all living organisms. It
catalyzes the decomposition of hydrogen peroxide (H2O2) into water and oxygen. Here,
catalase activity was determined using a fluorometric assay kit (BioVision, Abcam, Waltham,
MA, USA) where catalase first reacts with H2O2 to produce water and oxygen; then, the
unconverted H2O2 reacts with a probe (OxiRed™) to produce a fluorescent molecule, which
can be measured at Ex/Em = 535/587 nm [61]. Catalase activity is reversely proportional
to the signal. Cells were treated with sera, and proteins were extracted and quantified as
described in Section 2.6. Fluorescence was quantified using a GENios plus microplate reader



Antioxidants 2024, 13, 188 5 of 18

(Tecan, Männedorf, Switzerland) with an excitation wavelength of 535 nm and an emission
wavelength of 590 nm [56]. The difference measured between the positive control’s and
the sample’s fluorescence was used to determine the amount of H2O2 converted by the
catalase present in the sample with respect to the H2O2 standard curve generated. Catalase
activity can be calculated as follows:

CAT Activity =
B

30∗V
∗ Sample Dilution Factor = nmol/min/mL = mU/mL

where B is the decomposed H2O2 amount from the H2O2 standard curve (in nmol). V is the
pre-treated sample volume added into the reaction well (in mL), and 30 is the reaction time
(30 min). Unit definition: One unit of catalase is the amount of catalase that decomposes
1.0 µmol of H2O2 per min at pH 4.5 at 25 ◦C. Results were normalized for protein content
and expressed as mU/mg.

2.9. Determination of Glutathione (GSH) Activity

The activity of glutathione (GSH) was measured by employing a fluorometric assay
kit (BioVision, Abcam, Waltham, MA, USA) that provides a tool for the detection of GSH,
GSSG, and total glutathione separately [62]. The O-phthalaldehyde (OPA) molecule reacts
with GSH (not GSSG), generating fluorescence, thus specifically quantifying GSH. The
addition of a reducing agent converts GSSG to GSH, so (GSH + GSSG) can be determined.
To measure GSSG specifically, a GSH quencher is added to remove GSH, preventing
reaction with OPA (while GSSG is unaffected). A reducing agent is then added to destroy
the excess quencher and convert GSSG to GSH. Thus, GSSG can be specifically quantified.
Cells were treated with sera, and proteins were extracted and quantified as described in
Section 2.6. The GSH before and after adding the reducing agent was quantified using the
GSH standard curve generated simultaneously in the 96-well black plate. Samples and
standards were read using a fluorescence plate reader equipped with Ex/Em = 340/420 nm
(GENios Plus microplate reader (Tecan, Männedorf, Switzerland)). Fluorescence values
were corrected for background fluorescence and normalized for protein content, and the
ratio of GSSG to GSH was used to determine the redox status of GSH in the cell.

2.10. Statistical Analysis

The results are displayed as the mean value along with the standard deviation (SD).
To determine the statistical significance among various treatments, a one-way ANOVA
followed by a post-hoc comparison Tukey test was performed. Wherever applicable, an
unpaired t-test was used to compare the means of two sets of data. Any p values less than
or equal to 0.05 were considered statistically significant.

3. Results and Discussion
3.1. Circulating Factors in POKF Protect Chondrocytes from H2O2-Induced Oxidative Stress

H2O2 is an important redox metabolite in redox sensing, signaling, and modula-
tion [63]. Along with hydrogen sulfide (H2S) and nitric oxide (NO), H2O2 acts as a second
messenger and activates (via specific oxidations) downstream pathways (such as homeo-
static, pathological, or protective pathways), leading to different metabolic responses in
cells, including cell proliferation, survival, or death [64,65]. In vitro studies have shown that
H2O2 treatment can induce oxidative-stress-associated chondrocyte damage, producing ge-
nomic instability, reducing chondrocytes’ replicative ability, and inducing catabolic changes
in cartilage composition by decreasing glycosaminoglycan (GAG) and proteoglycan syn-
thesis [25,66–68]. Moreover, chondrocytes’ functions, such as DNA and protein synthesis,
are negatively affected by H2O2-elicited ATP depletion [69]. We hypothesized that the
circulating factors present in POKF may exert a protective effect against H2O2-induced
oxidative damage in HKACs. We first investigated whether KOPF could counteract the
H2O2-induced intracellular ROS increase to test our hypothesis. To this end, HKACs were
pre-treated with 5% POKF and 5% POPBS (used as a control) for 12 h, respectively. Cells
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were then treated with the sub-lethal 300 µM H2O2 dose, as previously determined in
viability dose–response experiments with H2O2 [47], and intracellular ROS levels were
kinetically determined over a 3-h time course. Values at 2 h (steady state) were used for
comparison (Figure 1A). As depicted in Figure 1A, both POKF- and POPBS-pre-treated
HKACs maintained unchanged levels of ROS in the absence of H2O2. Compared to H2O2-
untreated cells, a significant increase in ROS was observed in POPBS-pre-treated HKACs
following H2O2 exposure (Figure 1A). In contrast, H2O2-exposed cells failed to show an
ROS increase in POKF-pre-treated HKACs compared to H2O2-unexposed cells (Figure 1A).
These results suggest that potential circulating antioxidant factors present in POKF, but not
in POPBS, are able to counteract the H2O2-induced increase in ROS in cultured HKACs.
The protective effect of POKF compared to POPBS is even more evident in Figure 1B, where
the delta value (D), the difference in the intracellular ROS rise between the H2O2-treated
and untreated groups, is significantly higher within the POPBS groups than the POKF
groups. In summary, released factors in synovial fluid following prosthesis replacement
surgery, rather than circulating blood factors, may act as antagonists of H2O2-induced
oxidative stress by counteracting the increase in intercellular ROS.

3.2. Circulating Factors in POKF Preserve Cytosolic and Mitochondrial Redox Status in
Oxidatively Stressed Chondrocytes

ROS are natural by-products of multiple enzymatic reactions in various cellular com-
partments, such as peroxisomes, the endoplasmic reticulum, mitochondria, and cyto-
plasm [70]. Cytoplasmic ROS are mainly produced by nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase (NOX) and nitric oxide synthase (NOS) activity and are
involved in various metabolic processes, such as autophagy, glycolysis, oxidative phos-
phorylation, and the pentose phosphate pathway [70–72]. Mitochondria are the primary
ROS source, mainly produced during the oxidative phosphorylation process [70,73]. ROS
overproduction can mediate mitochondrial damage and contribute to a wide range of patho-
logical conditions, including OA [71,74]. Mitochondrial dysfunction in OA chondrocytes
is indeed associated with increased oxidative stress [75], mtDNA damage [76], increased
mitochondrial membrane permeability, decreased activity of respiratory chain complexes
II and III and ATP production, inflammatory responses, and cell death [77–80], which
ultimately result in cartilage damage and degeneration [74]. Thus, we next investigated
the ability of POKF to overcome H2O2-induced oxidative stress within specific cellular
compartments, such as the mitochondria and cytosol. To this end, two human HKAC
lines constitutionally expressing the redox-sensing green fluorescent protein (roGFP) in
both cytosolic (cyto-roGFP) and mitochondrial (mito-roGFP) compartments were used to
detect the cytosolic and mitochondrial redox status, respectively. Cyto-roGFP-HKAC and
mito-roGFP-HKAC stable lines were pre-treated with 5% POKF and 5% POPBS for 12 h
before exposure to the sub-lethal 300 µM H2O2 dose [47]. The mitochondrial and cytosolic
redox states were then kinetically determined over a 3-h time course, and values at 2 h
(steady state) were used for comparison (Figure 2A,B). In the absence of H2O2, the extent
of redox status was nearly the same in both the cytosolic and mitochondrial compartments
of HKACs pre-treated with both POKF and POPBS (Figure 2A,B). Upon treatment with
H2O2, POKF pre-treatment was able to counteract the H2O2-induced oxidation in both
compartments, while POPBS pre-treatment had no protective effect (Figure 2A,B). Indeed,
non-significant changes in redox status were observed in both the cytosol (Figure 2A) and
mitochondria (Figure 2B) of POKF-pre-treated HKACs exposed to H2O2, compared to the
H2O2-unexposed HKACs. In contrast, POPBS pre-treatment failed to prevent oxidation
increases, resulting in the significant elevation of cytosolic and mitochondrial oxidation
compared to the H2O2-unexposed groups.
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plasmatic and mitochondrial redox status. Human knee articular chondrocytes were pre-treated
with the post-operation knee fluid (POKF) and the postoperative peripheral blood sera (POPBS) for
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POKF’s protective effect against H2O2-induced redox changes is also highlighted
by the low D value (small difference in redox changes between H2O2-treated and H2O2-
untreated groups) in both the cytosolic (Figure 3A) and mitochondrial (Figure 3B) com-
partments of POKF-pre-treated HKACs as compared with POPBS-pre-treated HKACs.
Indeed, a high D value (large difference in redox changes between H2O2-treated and H2O2-
untreated groups), indicative of little or no protective effect, was found instead in both the
cytosolic (Figure 3A) and mitochondrial (Figure 3B) compartments of POPBS-pre-treated
HKACs as compared to POKF-pre-treated HKACs. The current findings indicate that the
circulating factors present in the POKF can preserve both the cytosolic and mitochondrial
redox status of HKACs under oxidative stress conditions. The protective effect exerted
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by POKF on the functionality of the two subcellular compartments may thus potentially
contribute to preserving cell integrity and eventually reducing cartilage damage.
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Figure 3. Changes in cytoplasmatic and mitochondrial redox status. The delta value (D) represents
the difference in relative fluorescence units (RFU) between H2O2-exposed (+H2O2) and -unexposed
(−H2O2) cells in both POKF- and POPBS-pre-treated groups for both cytosolic (A) and mitochondrial
(B) roGFP-expressing HKACs. *, significantly different from each other at p < 0.05.

3.3. Circulating Factors in POKF Preserve the Proliferative Ability of Oxidatively
Stressed Chondrocytes

Chondrocyte senescence is an age- and oxidative-stress-related factor inducing matrix
homeostasis imbalance, affecting the cartilage repair efficacy, and contributing to OA
development [81–83]. As oxidative stress was found to affect chondrocytes’ viability and
inhibit their proliferation [83–85], we investigated the ability of POKFs to preserve or
increase the proliferation of oxidatively stressed HKACs.

Under H2O2-induced oxidative conditions, POKF pre-treatment was able to preserve,
but not increase, HKAC proliferation (Figure 4A). Indeed, POKF-pre-treated cells exposed
to H2O2 showed the same proliferation levels as H2O2-unexposed cells. On the other hand,
a significant decrease in HKAC proliferation was instead observed in POPBS-pre-treated
HKACs, indicating the lack of protection against H2O2-elicited oxidative stress (Figure 4A).
POKF’s ability to preserve HKAC proliferation is also indicated by the low D value (small
difference in cell proliferation rate between H2O2-treated and untreated POKF groups)
compared to the D value of the POPBS groups (Figure 4B). Indeed, the high D value (large
difference in cell proliferation rate between H2O2-treated and untreated POPBS groups) is
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indicative of POPBS’s poor protective effect against the H2O2-induced HKAC proliferation
decrement (Figure 4B). Besides corroborating the negative impact of oxidative stress on
chondrocytes’ proliferation, these results also suggest that the growth factors released in
the synovial fluid following prosthesis replacement surgery may preserve the proliferation
of oxidatively stressed chondrocytes, possibly delaying the onset of senescence.
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Figure 4. Effect of post-operation knee fluid and hematic sera on H2O2-induced changes in cell
proliferation. (A) Human knee articular chondrocytes were pre-treated with the post-operation knee
fluid (POKF) and the postoperative peripheral blood sera (POPBS) for 12 h before exposure to H2O2.
Cell proliferation was evaluated as reported in Materials and Methods, 3 h after the POKF and POPBS
treatments, in the absence (−H2O2) or presence (+H2O2) of H2O2. Results are expressed as relative
luminescence units (RLU) (B). The delta value (D) is the difference in RLU between H2O2-exposed
and -unexposed cells in both POKF- and POPBS-pre-treated groups. *, significantly different from
each other at p < 0.05; ns, not significantly different from each other at p < 0.05.

3.4. Soluble Factors in POKF Failed to Increase SOD Activity in Oxidatively Stressed Chondrocytes

Our current data show a protective role of POKF against the H2O2-induced (1) ROS
increase, (2) cytosolic and mitochondrial redox imbalance, and (3) decreased chondrocyte
proliferation. To further corroborate POKF’s antioxidant potential in oxidatively stressed
HKACs, we investigated its ability to modulate the levels of relevant antioxidant enzymes
such as superoxide dismutase (SOD), catalase, and glutathione (GSH). Superoxide dismu-
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tase (SOD) catalyzes the dismutation of the superoxide anion into hydrogen peroxide and
molecular oxygen. There are three major families of SOD, depending on the protein fold
and the metal cofactor: (1) the Cu/Zn type (which binds both copper and zinc), (2) the Fe
and Mn types (which bind either iron or manganese), and (3) the Ni type (which binds
nickel). Interestingly, chondrocytes constitutively express all these three enzymes; their
expression has been reported to be high in normal cartilage and dramatically depleted in
advanced OA cartilage, further exacerbating chondrocytes’ oxidative stress response and
promoting their degeneration [86]. In this light, we believed that it was reasonable to check
the level of SOD under our experimentally induced oxidative conditions. We evaluated the
total SOD activity since the used protocol allowed us to determine both Cu/Zn SOD and
Mn-SOD activity. Considering both the H2O2-exposed and H2O2-unexposed groups, chon-
drocytes pre-treated with POKF showed higher but not significant SOD activity compared
to those pre-treated with POPBS (Figure 5).
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Figure 5. Effect of post-operation knee fluid and hematic sera on H2O2-induced changes in SOD
activity. Human knee articular chondrocytes were pre-treated with the post-operation knee fluid
(POKF) and the postoperative peripheral blood sera (POPBS) for 12 h before exposure to H2O2.
SOD activity was evaluated as reported in Materials and Methods, 3 h after the POKF and POPBS
treatments, in the absence or presence of H2O2. Results are represented as % of the inhibition activity
of SOD. ns, not significantly different from each other at p < 0.05. SOD, superoxide dismutase.

Moreover, when comparing the H2O2-exposed groups with the H2O2-unexposed
groups, both POKF and POPBS failed to significantly increase the SOD levels, suggesting
that both treatments were unable to induce an increase in enzyme activity under the
experimentally induced oxidative conditions. One reason for SOD’s limited role under our
experimental conditions could be the presence of H2O2. Indeed, although H2O2 can elicit
further ROS generation inside the cells, it is, however, itself a product of SOD, which can
eventually modify the enzymatic activity. In fact, H2O2, if present in excess inside the cell,
can induce modifications of the SOD structure determining the enzyme inhibition [87]. In
this regard, a different scenario may be present in vivo with pathology-derived oxidative
stress, where the POKF treatment might be able to increase the activity of SOD, thus
providing antioxidant protection.

3.5. Soluble Factors in POKF Trigger Catalase Activity in Oxidatively Stressed Chondrocytes

Catalase is a ubiquitous antioxidant enzyme present in nearly all living organisms.
It catalyzes the decomposition of H2O2 into water and oxygen, thus being an effective
detoxifying enzyme. A recent study revealed that in patients with an age-related progres-
sive degenerative joint disease, catalase is capable of counteracting hydrogen peroxide,
protecting against chondrocyte injury and knee OA progression by suppressing oxidative
stress [88]. This finding prompted us to investigate catalase activity under our experimental
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oxidative conditions. Contrary to POPBS, POKF pre-treatment increased the catalase levels
in the H2O2-exposed group compared to the H2O2-unexposed one (Figure 6). Moreover,
comparing the H2O2-exposed groups, the increase in catalase levels was significantly higher
in POKF-exposed cells than in POPBS-exposed ones, suggesting a more potent antioxidant
effect of POKF compared to POPBS (Figure 6). The data also indicated that POKF has
potent antioxidant potential in normal conditions, as, when comparing H2O2-unexposed
cells, POKF pre-treatment was able to significantly increase the catalase levels compared to
POPBS (Figure 6).
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Figure 6. Effect of post-operation knee fluid and hematic sera on H2O2-induced changes in catalase
activity. Human knee articular chondrocytes were pre-treated with the post-operation knee fluid
(POKF) and the postoperative peripheral blood sera (POPBS) for 12 h before exposure to H2O2.
Catalase activity was evaluated as reported in Materials and Methods, 3 h after the POKF and POPBS
treatments, in the absence or presence of H2O2. Results are represented in mU/mg. *, significantly
different from each other at p < 0.05; ns, not significantly different from each other at p < 0.05.

3.6. Soluble Factors in POKF Lower GSSG/GSH Ratio in Oxidatively Stressed Chondrocytes

Glutathione is the major intracellular low-molecular-weight thiol, playing a critical
role in tissue and cell defense against oxidative stress. Indeed, glutathione is essential in
maintaining the proper cellular redox potential and protecting cells against oxidative dam-
age. In the cells, glutathione can be either reduced (GSH) or oxidized (GSSG), and redox
homeostasis and oxidative stress protection depend on the total glutathione concentration
and the GSH/GSSG ratio [89]. In this context, it is also possible to express the relation be-
tween reduced and oxidized glutathione as the GSSG/GSH ratio, which is employed more
often to disclose disturbances in the cellular/tissue redox metabolism [90]. The GSSG/GSH
ratio is indeed commonly used as a biomarker of the redox balance in both cells and tissues,
and its value is considered an index of cellular oxidative stress [90]. OA-related models
of stressed cartilage disclose several mechanisms in which glutathione provides oxidative
stress resistance and resilience, acting as a key player in modulating these phenomena [91].
Moreover, variations in chondrocytes’ oxidative status associated with cartilage changes
during aging have been reported [19]. In fact, an age-induced increase in the GSSG/GSH
ratio implies a higher basal level of oxidative stress associated with cartilage aging and
diseases such as OA cartilage [92,93]. In view of this, we determined both reduced and
oxidized glutathione in oxidatively stressed HKACs exposed to POKF and POPBS and
expressed the value as the GSSG/GSH ratio. As depicted in Figure 7, no significant differ-
ence in the GSSG/GSH ratio was found between H2O2-exposed and H2O2-unexposed cells
within the POKF group, and similar results were also reported for the POPBS group. How-
ever, comparing both the H2O2-exposed and H2O2-unexposed groups, cells pre-treated
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with POKF showed significantly lower GSSG/GSH ratios compared to the POPBS-treated
ones, suggesting that the POKF treatment was able to trigger GSH synthesis, significantly
minimizing oxidative stress. Our current findings demonstrate that POKF pre-treatment
can increase the GSH concentration, maintaining GSH in its reduced form and ultimately
decreasing the GSSG/GSH ratio. In this regard, it is important to note that a reduced
cytosolic redox status is essential in maintaining the function of cellular proteins, enzymes,
and redox-sensitive signaling pathways. Chondrocytes’ response to cytokines and growth
factors is tightly linked to the cellular redox status and intracellular antioxidant systems’
action. Indeed, the involvement of ROS in mediating chondrocyte and ECM component
damages has stimulated many studies on the role of endogenous and exogenous antioxi-
dants as potential drugs to mitigate cartilage ROS damage [24,92,94]. Many of these have
focused on the use of antioxidant medicinal plants [95], resveratrol [96], NSAIDs [97], and
SOD mimetics [98], with the purpose of not only alleviating inflammation and pain but also
locally protecting the cartilage against the harmful effects of ROS. Moreover, increasing
the body’s antioxidant content through the diet [99], oral supplements [100], and/or their
intra-articular administration [101] has also been suggested to combat ROS and decrease
their damaging effects on chondrocytes [102]. However, clinical studies are required to
determine the long-term effects of antioxidant diets, supplements, and possible drugs.
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Figure 7. Effect of post-operation knee fluid and hematic sera on H2O2-induced changes in
GSSG/GSH ratio. Human knee articular chondrocytes were pre-treated with the post-operation knee
fluid (POKF) and the postoperative peripheral blood sera (POPBS) for 12 h before exposure to H2O2.
GSSG/GSH ratio was evaluated as reported in Materials and Methods, 3 h after POKF and POPBS
treatments, in the absence or presence of H2O2. Results are expressed as the ratio of the relative
fluorescence units (RFU) obtained for both GSSG and GSH. *, significantly different from each other
at p < 0.05; ns, not significantly different from each other at p < 0.05.

On the other hand, the potential antioxidant role of growth factors has not been widely
explored yet, except in the study by Jallali, N. et al. [103], showing that IGF-1 was able
to decrease ROS levels and ROS-mediated cell death and increase glutathione peroxidase
(GPX) activity in rat articular cartilage. In this regard, in line with Jallali, N. et al., the results
of our study support the potential use of endogenous growth factors as preventive and
therapeutic approaches to combat the detrimental effects of ROS-induced cartilage damage.
Our findings indeed indicate that POKF possesses the ability to preserve the growth of
oxidatively stressed chondrocytes, protecting them from ROS-associated damage.
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4. Conclusions and Future Directions

Our study showed that POKF could overcome exogenously induced oxidative stress
and its associated inhibition of chondrocyte proliferation. The current findings support the
hypothesis that growth factors in POKF play a crucial role in protecting the proliferation
of HKACs against oxidative stress. Such an effect appears to be achieved through the
upregulation of antioxidative enzymes, which effectively counteract the harmful effects
of H2O2-induced oxidative stress, ultimately safeguarding HKAC proliferation. Based
on the current data, we believe that POKF has the potential to serve as a valuable tool
against oxidative-associated chondrocyte conditions and help to pave the way for new
and innovative treatments. POKF, which is typically discarded, could be repurposed to
treat chondropathies, early OA, or mild OA in other body regions by employing it in
the patients from whom it was initially collected. Besides being safe, since it is obtained
via an autologous donation, this approach could offer a minimally invasive and effective
therapy that could help to alleviate the pain, inflammation, and stiffness associated with
these conditions. Delivering POKF directly into the joint could target the underlying
pathology and stimulate cartilage repair, leading to improved joint function and quality of
life for affected patients. POKF’s therapeutic applications may also be envisaged in patients
different from the fluid donors. Indeed, after appropriate separation and purification,
the active fluid components can be therapeutically employed to treat patients suffering
from chondropathies or OA. By using the fluid’s components, it may be possible to avoid
the need for prosthetic implants, which is particularly beneficial for patients in the early
stages of the disease. This approach may also be effective for patients with advanced
chondropathies and/or OA who have not responded to other forms of treatment. This
method of treatment has the potential to provide a more natural and effective way to
manage these conditions, reducing the need for invasive procedures and improving patient
outcomes. Given the results of our research, we believe that further exploration into the use
of POKF could lead to the development of effective treatments for individuals suffering
from cartilage damage caused by ROS.
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