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Abstract: Ferroptosis, as a novel regulable cell death, is characterized by iron overload, glutathione
depletion, and an accumulation of lipid peroxides. Recently, it has been discovered that ferroptosis is
involved in ischemia/reperfusion (I/R)-induced acute kidney injury (AKI) and plays a crucial role in
renal tubular cell death. In this study, we tried to investigate the effect and mechanism of liproxstatin-
1 (Lip-1) in I/R-induced AKI and seek the key regulator of ferroptosis in I/R-induced AKI. Mice
were administrated with clamping bilateral renal pedicles for 30 min. We found that early growth
response 1 (EGR1) might be a key regulator of ferroptosis, and Lip-1 could suppress ferroptosis via
EGR1. Meanwhile, Lip-1 could reduce macrophage recruitment and the release of inflammatory
cytokines. These findings indicated that Lip-1 alleviated I/R-induced AKI via regulating EGR1, and
it might pave the theoretical basis of a new therapeutic strategy for I/R-induced AKI.
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1. Introduction

Acute kidney injury (AKI) is a group of clinical syndromes, which leads to the remain-
ing part of the kidney function being unable to keep the electrolyte balance and acid–base
balance. It has been estimated that more than 13.3 million patients were affected by AKI
and about 1.7 million individuals lose their lives around the world each year [1]. The
incidence of AKI in hospitals is about 10~15%, and it could be more than 50% in several
departments (such as oncology, transplantation center, intensive care unit (ICU), and car-
diac surgery) [2–4]. The in-hospital mortality rates of AKI are 5.1%, 13.7%, and 24.8%
from stage I to stage III, respectively [5]. AKI is regarded as a crucial risk factor that could
progress to chronic kidney disease (CKD) and end stage kidney disease [6]. Moreover,
there are nearly 2 million AKI patients that could not make a complete recovery, and the
risk of progressing to CKD is high [7]. In addition, the 30-day and 90-day mortality of
patients without AKI in ICU were much lower than their counterparts with AKI [8]. It is
obvious that patients without AKI possessed better medium-term to long-term outcomes
than their counterparts with AKI [9,10]. Many factors could result in the occurrence of AKI,
for instance ischemia/reperfusion (I/R), sepsis, folic acid, and cisplatin. The injury and
death of renal tubular cells are the early and pivotal pathophysiology of I/R-induced AKI,
and they are accompanied by peritubular endothelial dysfunction and inflammatory cell
infiltration [11,12].
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Ferroptosis was first described by Stockwell in 2012 [13]. It is a novel regulable cell
death and characterized by iron overload, glutathione (GSH) depletion, and an accumu-
lation of lipid peroxides. Ferroptosis has been widely explored in various diseases, such
as various cancers, neurodegenerative diseases, cardiovascular diseases, and many organ
injuries [14]. Many studies have shown that the GSH peroxidase 4 (GPX4) performed a
crucial role in repressing ferroptosis and might be a potential target [15]. A large amount
of renal tubular cell death occurred in Gpx4−/− mice, which illustrated that the favorable
renal function was dependent on the GPX4 [16]. Legumain could interact with GPX4 and
promote lysosomal autophagy of GPX4 to promote ferroptosis in I/R-induced AKI [17].
Recently, it has been discovered that ferroptosis is involved in I/R-induced AKI and plays
a significant role in renal tubular cell death [18]. Many compounds have been developed
and applied in I/R-induced AKI via targeting ferroptosis. XJB-5-131 possessed a high
affinity to renal tubular cells and prevented them from I/R-induced AKI via ferroptosis,
not pyroptosis or necroptosis [11]. Pachymic acid could upregulate the solute carrier family
7 member A11 (SLC7A11) and GPX4 to repress ferroptosis [19]. Irisin treatment could
upregulate GPX4 expression [20]. These results show that targeting ferroptosis might be a
promising therapy for I/R-induced AKI.

Liproxstatin-1 (Lip-1), a spiroquinoxalinamine derivative, was discovered in 2014 [16].
It has a therapeutic effect on bronchial epithelial cell injury [21], renal fibrosis [22], pul-
monary fibrosis [23], and severe acute pancreatitis-induced AKI [24]. It has been demon-
strated that Lip-1 attenuated I/R-induced organ injury, such as I/R-induced hepatic dam-
age [16], lung transplantation-induced cold I/R injury [25], and I/R-induced heart in-
jury [26]. Nonetheless, the mechanism of Lip-1 in attenuating I/R-induced AKI is still
unclear. In this study, we tried to investigate the effect and mechanism of Lip-1 in an
I/R-induced AKI model and seek the key regulator. We found that Lip-1 could alleviate
I/R-induced AKI through upregulating early growth response 1 (EGR1)/TP53/SLC7A11,
and Lip-1 could also reduce kidney inflammation via recruiting macrophages and decreas-
ing the release of inflammatory cytokines.

2. Materials and Methods
2.1. Mice and Renal I/R Model

The C57BL/6J mice (male, 6~8 weeks, 20~22 g) were bought from Beijing Vital River
Laboratory Animal Technology Co., Ltd (Beijing, China). The mice were fostered in specific
pathogen-free (SPF) cages at the Xiamen University Laboratory Animal Center. The Lip-1
was dissolved in DMSO (50 mg/mL) for storage and was adjusted to 2% DMSO (1 mg/mL)
with phosphate-buffered saline (PBS) before injection. The Lip-1+I/R group was treated
with Lip-1 (10 mg/kg i.p., S7699, Selleck, Houston, TX, USA) 1 h prior to I/R operation [16],
while the I/R group and sham group were treated with PBS. The sham group, I/R group,
and Lip-1+I/R group were anesthetized and kept on a 37 ◦C thermostatic table. The
bilateral kidneys of the three groups were exposed via flank incision, then nontraumatic
clamps were utilized to clamp bilateral renal pedicles for 30 min in the I/R group and the
Lip-1+I/R group. The sham group did not experience this process. After suture, the three
groups were treated with PBS by injection (1 mL, 37 ◦C) via i.p. and fostered in SPF cages
with food and water. All the mice were sacrificed after 24 h.

2.2. Histological Stain and Assessment

Kidney samples were collected, washed with PBS, fixed in 4% paraformaldehyde,
dehydrated, and embedded with paraffin. The paraffin blocks containing kidneys were
sectioned into 5 µm thick sections and these sections were used for hematoxylin and eosin
(H&E) staining, Masson staining, Periodic Acid–Schiff (PAS) staining, and Prussian Blue
(PB) staining. The images were obtained by using a fluorescence microscope (Olympus
IX51, Tokyo, Japan). The renal tubular injury score of H&E staining was calculated by
taking a total of 50 renal tubules (5 HPFs per mouse, n = 6). Each renal tubular score was
based on tubular epithelial cell flattening (0–1), brush border loss (0–1), cell membrane bleb
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formation (0–2), interstitial edema (0–1), cytoplasmic vacuolization (0–1), cell necrosis (0–2),
and tubular lumen obstruction (0–2). The renal tubular injury score of Masson staining was
evaluated by the total score based on each score’s signs of renal tubular damage (brush
border loss, vacuolization, cell desquamation, tubule dilatation, and tubule degeneration)
from 0 to 3. The renal tubular injury score of PAS staining was based on the percentages of
renal tubular damage: 0, normal kidney; 1, less than 10%; 2, 10–25%; 3, 25–50%; 4, 50–75%;
and 5, more than 75%.

2.3. Transmission Electron Microscopy (TEM)

Kidney samples were fixed with electron microscope fixative and 1% osmic acid for 2 h
at room temperature, dehydrated with increasing concentrations of ethanol (30%, 50%,
70%, 80%, 95%, 100%) for 20 min per concentration and acetone twice for 15 min each time
at room temperature, and then embedded with epoxy resin (90529-77-4, SPI, West Chester,
PA, USA). The samples were sectioned into 60~80 nm sections with an ultramicrotome
(UC7, Leica, Weztlar, Germany) and stained with 2% uranyl acetate for 8 min and 2.6% lead
citrate for 8 min in a dark room. The images of tubular epithelial cells were gained via
TEM (HT-7800, HITACHI, Tokyo, Japan). The mitochondrial damage score was calculated
by taking a total of 50 mitochondria (5 HPFs per mouse, n = 6). Each mitochondrial score
was based on Flameng’s scale [27]. The percentage of damage in 50 endoplasmic reticula
was evaluated.

2.4. Renal Function

The kidney coefficient was calculated by the formula: (kidney weight × 100)/body
weight. The blood of mice was collected and centrifuged at 3000 rpm to obtain serum. The
creatinine (CRE) and blood urea nitrogen (BUN) were detected by a fully biochemical in-
strument (BS-240Vet, Mindray, Shenzhen, China) and the corresponding kit (105-000452-00
and 105-000457-00, Mindray, Shenzhen, China).

2.5. Renal Iron Measurement

Proper kidney tissues were homogenized in extracting solution with an iron content
assay kit (BL898B, Biosharp, Hefei, China). The samples were centrifuged with 12,000× g
at 4 ◦C and the supernatant solution was measured with a microplate reader (Thermo,
Waltham, MA, USA) at 562 nm.

2.6. GSH Assay

The GSH content in renal tissues and cells were detected with a GSH assay kit (BC1175,
Solarbio, Beijing, China). The renal tissues and cells were homogenized in the extracting
solution of the GSH assay kit. The samples were centrifuged with 8000× g at 4 ◦C and
the supernatant solution was measured with a microplate reader (Thermo, Waltham, MA,
USA) at 412 nm.

2.7. Malondialdehyde (MDA) Assay

The MDA content in renal tissues and cells were detected with an MDA assay kit
(BC0025, Solarbio, Beijing, China). The renal tissues and cells were homogenized in the
extracting solution of the MDA assay kit. The samples were centrifuged with 8000× g at
4 ◦C, and the supernatant solution and reaction reagents were boiled in water for 1.5 h.
The samples were centrifuged with 10,000× g at room temperature, and the supernatant
solution was measured with a microplate reader (Thermo, Waltham, MA, USA) at 532 nm
and 600 nm.

2.8. Collection and Bioinformatics Analysis of GEO Database

The GSE126805 (41 kidney samples after and before transplantation, post vs. pre) and
GSE87487 (10 liver samples after and before transplantation, post vs. pre) databases were
downloaded from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.
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nih.gov/geo/, accessed on 14 September 2022). The ferroptotic genes were downloaded
from the FerrDb V2 database (http://www.zhounan.org/ferrdb/current/, accessed on
14 September 2022). The gene expression of GSE126805 and GSE87487 databases were
processed with the “edgeR” package [28]. The differentially expressed genes (DEGs)
between “before implantation” and “after reperfusion” in GSE126805 and GSE87487 were
obtained via the “limma” package [29], and DEGs were acquired with |log2 (FC)| > 1 and
p (adj.) < 0.05.

2.9. RNA Sequencing and Analysis of Mice Renal Samples

The kidneys of the sham group and the I/R group were washed with cold PBS and
excluded non-kidney tissue including connective tissue and adipose tissue. Then samples
contained in embedding cassettes were put into lipid nitrogen and subsequently sent to
Shanghai Applied Protein Technology Co., Ltd. (Shanghai, China). for RNA sequencing to
detect the mRNA expression. The DEGs were obtained through the “limma” package [29],
and DEGs were acquired with |log2 (FC)| > 1 and p (adj.) < 0.05 (Supplementary Table S1).
The GO and KEGG were performed by the “clusterProfiler” package. These results were
displayed by the “ggplot2” package and the “G0plot” package [30].

2.10. Real Time Quantitative PCR (RT-qPCR) Assay

Total RNA of kidney tissues and HK2 cells were obtained via using the tissue RNA
kit (AC0202, Shandong Sparkjade, Jinan, China) and cell RNA kit (AC0205, Shandong
Sparkjade, Jinan, China), respectively, then they were reversely transcribed to cDNA by
using the Evo M-MLV RT Kit (AG11711, Accurate Biotechnology, Changsha, China). The
RT-qPCR was performed with the Hieff®qPCR SYBR Green Master Mix (11201ES08, Yeasen,
Shanghai, China) and primers by using RT-PCR systems (CFX96, Bio-Rad, Hercules, CA,
USA). All primers were gained from the PrimerBank (https://pga.mgh.harvard.edu/
primerbank/, accessed on 31 October 2022) and synthesized by Sangon Biotech (Shanghai,
China). The primer sequences are shown in Supplementary Table S2.

2.11. Western Blot (WB) Assay

The total protein of renal tissues and cells was extracted with the RIPA buffer (R0010,
Solarbio, Beijing, China), then protein contents of samples were quantitatively detected
by the Pierce™ BCA assay kit (23227, Thermo, Waltham, MA, USA). The protein samples
were added into 10% SDS polyacrylamide gel for electrophoresis, transferred onto a PVDF
membrane, blocked with 5% skimmed milk in a TBST solution for 1 h at room temperature,
and blotted with their corresponding primary antibodies (β-actin (mouse monoclonal
antibody, 1:5000, A5441, Sigma, St. Louis, MO, USA), EGR1 (rabbit monoclonal antibody,
1:1000, MA5-15008, Thermo, St. Louis, MO, USA), TP53 (mouse monoclonal antibody,
1:1000, ab26, Abcam, Cambridge, UK), SLC7A11 (rabbit monoclonal antibody, 1:1000,
ab175186, Abcam, Cambridge, UK), and GPX4 (rabbit monoclonal antibody, 1:10,000,
ab125066, Abcam, Cambridge, UK)) overnight at 4 ◦C. After washing thrice with TBST,
PVDF membranes were incubated with a secondary antibody solution for 1 h at room
temperature. After removing the secondary antibody solution, the PVDF membranes were
detected by the Tanon 5200 system (Tanon, Shanghai, China). The densitometry of protein
bands was measured by Image J.

2.12. Immunohistochemistry (IHC) and Immunofluorescence (IF) Assay

For the IHC assay, the paraffin sections of kidney samples were applied for
4-hydroxynonenal (4-HNE, mouse monoclonal antibody, 1:25, ab48506, Abcam, Cam-
bridge, UK) immunohistochemistry (IHC) staining. The intensity of 4-HNE staining was
detected by Image J. The paraffin sections of kidney samples were applied for F4/80 (rabbit
polyclonal antibody, 1:500, GB113373, Servicebio, Wuhan, China) to observe macrophages.
The images were obtained by using a fluorescence microscope (Olympus IX51, Tokyo,
Japan). The counts of F4/80+ macrophages were counted (5 HPFs per mouse, n = 6). For
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the IF assay, the kidney tissues were fixed in a 4% paraformaldehyde solution at 4 ◦C,
incubated in a 30% sucrose solution and then embedded in OCT (4583, Sakura, Torrance,
CA, USA). The kidney samples were sectioned into 5 µm thick sections and permeabilized
with a 1% Triton X-100 buffer. Then, the sections were blocked with a 10% casein solution
and incubated with an EGR1 antibody solution overnight at 4 ◦C. In addition, the sections
were incubated with IgG (H + L) antibody (A0516, Beyotime Biotechnology, Shanghai,
China) for 60 min at room temperature. Finally, the sections were washed with PBS and
added to DAPI (ab104139, Abcam, Cambridge, MA, USA). The images were obtained via a
confocal system (FV1000MPE-B, Olympus, Tokyo, Japan).

2.13. Cell Line and Cell Culture

The human renal tubular cell HK2 was bought from ATCC. HK2 was cultivated in
a DMEM high glucose media with 10% fetal bovine serum and cultured in a humidified
incubator at 37 ◦C with 5% CO2.

2.14. Cell Viability

A total of 5 × 103 HK2 cells were seeded into a 96-well plate and incubated overnight,
then HK2 cells were managed with different concentrations of erastin (S7242, Selleck,
Houston, TX, USA) and Lip-1 (1 µM) for 12 h. Then, each well was added into 10 µL
MTT (5 mg/mL) and the 96-well plate was incubated for 4 h at 37 ◦C. Next, the medium
was removed, and each well was added into 150 µL DMSO. Finally, the 96-well plate was
measured with a microplate reader (Thermo, Waltham, MA, USA) at 570 nm.

2.15. Lentiviral Infection

The EGR1 shRNA was purchased from Shanghai Genechem. The plasmid-containing
EGR1 shRNA were transfected into 293T cells with Lipofectamine 2000 for 6 h, and fresh
medium was added into the 293T cell culture dish, and the viral particles were obtained
from the supernatant solution after 48 h. When the density of HK2 cells reached 20–25%,
the HK2 cells were infected by lentivirus for 8 h, and fresh medium was added into the HK2
cell culture dish. After the HK2 cells were cultured for 48 h, the puromycin (1.0 µg/mL)
was utilized to treat cells to gain EGR1 knockdown cells.

2.16. Statistical Analysis

Statistical analysis (unpaired t-test) of data was administrated by using Prism 9.
The value of p < 0.05 was considered significant (* p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001).

3. Results
3.1. Lip-1 Alleviated I/R-Induced AKI

The administration of Lip-1 and management of I/R-induced AKI are displayed
in a schematic diagram (Figure 1A). After I/R management, the renal tubular injury
was evaluated in renal sections by H&E staining and it was obvious that Lip-1 could
reduce renal tubular injury (Figure 1B,E). The Masson staining and PAS staining showed
that vacuolization of renal tubular cells, tubular dilation, and brush border loss were
observed in I/R mice, and Lip-1 could prevent the occurrence of these pathological features
(Figure 1C,D,F,G). Compared with the I/R group, the kidney coefficient, BUN, and CRE
significantly decreased in the Lip-1+I/R group, which indicated that Lip-1 could protect
the kidney from injury (Figure 1H–J). Lip-1 could slightly reduce BUN and CRE without
kidney coefficient variation (Figure S1A–C), and there was no significant tissue injury in
normal mice (Figure S1D).
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Figure 1. Lip-1 alleviated I/R-induced AKI. (A) The schema of the I/R-induced AKI model and Lip-1
management. (B) H&E staining of kidney, bar: 200 µm. (C) Masson staining of kidney, bar: 200 µm.
(D) PAS staining of kidney, bar: 200 µm. (E) Renal tubular injury score of H&E staining. (F) Renal
tubular injury score of Masson staining. (G) Renal tubular injury score of PAS staining. (H) Kidney
coefficient of mice. (I) BUN levels of mice. (J) CRE levels of mice. **** p < 0.0001.

3.2. Lip-1 Suppressed Ferroptosis of Renal Tubular Cells in I/R-Induced AKI

According to the previous reports, ferroptosis displayed a crucial role in I/R-induced
AKI [11,18,31]. The typical hallmarks of ferroptosis were observed in the renal tubu-
lar cells of the I/R group, such as increased mitochondrial membrane densities, smaller
mitochondria, reduced/vanished mitochondria cristae, and swollen endoplasmic retic-
ula, and Lip-1 treatment could reduce these changes (Figure 2A–C). The non-heme iron
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in the kidneys of the I/R group increased and could be reduced with Lip-1 treatment
(Figure 2D). However, there was no obvious Fe3+ accumulation in the I/R groups with
PB staining (Figure S2). Compared with the I/R group, Lip-1 increased GSH and re-
duced MDA in the kidney (Figure 2E,F). The IHC staining showed that the 4-HNE was
remarkably increased in the I/R group, which could be apparently reversed by Lip-1 treat-
ment (Figure 2G,H). These results suggest that Lip-1 could protect renal tubular cells from
ferroptosis in I/R-induced AKI.
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Figure 2. Lip-1 suppressed ferroptosis of renal tubular cells in I/R-induced AKI. (A) TEM images
of renal tubular cells from diverse groups, bar: 2 µm (top) and 1 µm (bottom). The black arrows
indicate mitochondria and the white arrows indicate endoplasmic reticula. (B) Quantification of
mitochondrial damage in TEM of the renal tubular cells. (C) Quantification of damaged endoplasmic
reticulum in TEM of the renal tubular cells. (D) Iron level of kidney. (E) GSH level of kidney.
(F) MDA level of kidney. (G) Quantification of 4-HNE staining in kidney. (H) 4-HNE staining of
kidney, bar: 200 µm (top) and 50 µm (bottom). *** p < 0.001, **** p < 0.0001.
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3.3. EGR1 Might Be a Crucial Regulator of Ferroptosis in I/R-Induced AKI

A total of 290 DEGs and 641 DEGs were identified from GSE126805 (post vs. pre)
and GSE87487 (post vs. pre), respectively, while 2090 DEGs were identified from kidney
samples of our mouse model (I/R vs. control). There were 15 ferroptotic DEGs in the I/R
of human kidneys (Figure 3A), and these DEGs are displayed in a volcano plot (Figure 3B).
There were only 3 ferroptotic DEGs (EGR1, IL1B, and SOCS1) in the I/R of human kidneys
(Figure 3C). There was a set of 10 ferroptotic DEGs in GSE126805 (post vs. pre) and the
kidney samples of our mouse model (I/R vs. sham) (Figure 3D), and the 10 ferroptotic
DEGs are displayed in a volcano plot (Figure 3E). In the chordal graph of KEGG, EGR1
might play a crucial role in GSE126805 (post vs. pre) (Figure 3G). The STRING interaction
network showed that EGR1 was closely related to TP53 (Figure 3F). The Sankey diagram
of RNA sequencing and analysis of mouse renal samples indicated that Trp53 might be a
target of Egr1 in mouse models (Figure 3H). The above results indicated that EGR1 might
be a crucial regulator of ferroptosis in I/R-induced AKI via regulating TP53.
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3.4. Lip-1 Inhibited Ferroptosis of Renal Tubular Cells via Regulating EGR1/TP53/SLC7A11 in
I/R-Induced AKI

EGR1 obviously increased in the I/R group while Lip-1 treatment could significantly
decrease the EGR1 expression (Figure 4A). According to previous reports, EGR1 could
promote TP53 transcription [32,33]. The mRNA expression of Egr1 in the kidneys of the I/R
group increased and mRNA expression of Trp53 was accordingly increased (Figure 4B,C).
As SLC7A11 was the target of TP53 [34,35], the mRNA expression of Slc7a11 and Gpx4
were downregulated (Figure 4D,E). These changes were evidently reversed by Lip-1 treat-
ment, and these results were further validated through WB (Figure 4F–J). The above
results indicated that Lip-1 suppressed ferroptosis of I/R-induced AKI via regulating
EGR1/TP53/SLC7A11.
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3.5. Lip-1 Inhibited Ferroptosis of Renal Tubular Cells via Regulating EGR1 in HK2 Cells

We used erastin to induce ferroptosis of the human tubular cell HK2 and found that
1 µM erastin could distinctly lead to HK2 cell ferroptosis, which could be reversed by
Lip-1 treatment (Figure S3). The RT-qPCR results showed that EGR1 and TP53 were up-
regulated while SLC7A11 and GPX4 were downregulated with erastin treatment, which
was reversed by Lip-1 (Figure S4). The WB results further confirmed the RT-qPCR results
(Figure 5A–E). In order to investigate whether EGR1 was responsible for promoting fer-
roptosis, we knocked down EGR1 with shRNA; the knockdown efficiency was proven
by RT-qPCR and WB (Figures S5A and 5F,G). After knockdown of EGR1, the expres-
sion of TP53 was decreased while the expression of SLC7A11 and GPX4 were increased
(Figures S5B–D and 5F,H–J). When EGR1 was knocked down, GSH significantly increased
(Figure 5K). The increased MDA in the erastin group could both be reduced in EGR1
knockdown or Lip-1 treatment (Figure 5L). The above results indicated that EGR1 was a
ferroptosis promoter and Lip-1 inhibited ferroptosis via regulating EGR1 in HK2 cells.
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Figure 5. Lip-1 inhibited ferroptosis of HK2 cells via regulating EGR1. (A–E) WB assay of HK2 cell
with DMSO, erastin, and Lip-1+erastin treatment. (F–J) WB assay of HK2 cell with EGR1 knockdown.
(K) GSH levels of HK2 with DMSO, erastin, and Lip-1+erastin treatment after EGR1 knockdown.
(L) MDA levels of HK2 with DMSO, erastin, and Lip-1+erastin treatment after EGR1 knockdown.
* p < 0.05, ** p < 0.01, *** p < 0.001.
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3.6. Lip-1 Reduced Recruitment of Macrophages and Release of Inflammatory Cytokines In Vivo

The infiltrated F4/80+ macrophages in the kidneys of the I/R group markedly in-
creased, while F4/80+ macrophages distinctly decreased with Lip-1 treatment (Figure 6A,B).
CCL2, acting as a chemokine, could trigger the recruitment of F4/80+ macrophages. We
then detected Ccl2 expression in the kidney samples of mice, and it was discovered that
Lip-1 could reduce the mRNA expression of Ccl2 (Figure 6C). According to the previous
reports [36,37], EGR1 could stimulate CCL2 transcription and secretion. Based on the
Sankey diagram (Figure 3H) and the data from a previous paper [31], we found that the
expression of Ccl2 increased in the erastin group. The increased expression of CCL2 in
the erastin group of HK2 cells could be reduced by Lip-1 administration (Figure 6D). In
addition, the inflammatory factors (Tnfα, IFNγ, Il1β, and Il6) significantly increased in the
I/R group and these inflammatory factors decreased in the Lip-1+I/R group (Figure 6F–H).
These results suggest that ferroptosis of renal tubular cells induced kidney inflammation
via recruiting macrophages and releasing inflammatory cytokine, which could be reduced
by Lip-1.

Antioxidants 2024, 13, x FOR PEER REVIEW  12  of  17 
 

3.6. Lip‐1 Reduced Recruitment of Macrophages and Release of Inflammatory Cytokines In Vivo 

The  infiltrated F4/80+ macrophages  in  the kidneys of  the  I/R group markedly  in-

creased, while  F4/80+ macrophages  distinctly  decreased with  Lip-1  treatment  (Figure 

6A,B). CCL2, acting as a chemokine, could trigger the recruitment of F4/80+ macrophages. 

We then detected Ccl2 expression in the kidney samples of mice, and it was discovered 

that Lip-1 could reduce the mRNA expression of Ccl2 (Figure 6C). According to the pre-

vious reports [36,37], EGR1 could stimulate CCL2 transcription and secretion. Based on 

the Sankey diagram (Figure 3H) and the data from a previous paper [31], we found that 

the expression of Ccl2 increased in the erastin group. The increased expression of CCL2 in 

the erastin group of HK2 cells could be reduced by Lip-1 administration (Figure 6D). In 

addition, the inflammatory factors (Tnfα, IFNγ, Il1β, and Il6) significantly increased in the 

I/R group and these inflammatory factors decreased in the Lip-1+I/R group (Figure 6F–

H). These results suggest that ferroptosis of renal tubular cells induced kidney inflamma-

tion via recruiting macrophages and releasing inflammatory cytokine, which could be re-

duced by Lip-1. 

 

Figure 6. Lip-1 reduced renal inflammation. (A) F4/80+ staining of kidney samples from mice, bar: 

200 µm (left) and 100 µm (right). The black arrows indicate positive F4/80+ staining cells. (B) Counts 

of renal F4/80+ macrophages in HPFs. (C) RT-qPCR results of Ccl2 in kidneys of mice. (D) RT-qPCR 

results of CCL2 in HK2 cells. RT-qPCR results of Tnfα (E), Ifnγ (F), Il1β (G), and Il6 (H) in kidney 

samples from mice. *** p < 0.001, **** p < 0.0001. 

Figure 6. Lip-1 reduced renal inflammation. (A) F4/80+ staining of kidney samples from mice, bar:
200 µm (left) and 100 µm (right). The black arrows indicate positive F4/80+ staining cells. (B) Counts
of renal F4/80+ macrophages in HPFs. (C) RT-qPCR results of Ccl2 in kidneys of mice. (D) RT-qPCR
results of CCL2 in HK2 cells. RT-qPCR results of Tnfα (E), Ifnγ (F), Il1β (G), and Il6 (H) in kidney
samples from mice. *** p < 0.001, **** p < 0.0001.
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4. Discussion

AKI is a group of clinical syndromes, and it is defined as the sudden (≤7 days) and
persistent decline of renal function and characterized by CRE ≥ 1.5 times baseline, an
increase of ≥0.3 mg/dL within any 48 h period, or urine volume < 0.5 mL/kg for ≥6 h [38].
The one-year survival rate of patients with stage II–III AKI who resolved within 7 days
is more than 90%; however, the mortality of patients in hospital who never resolved is
47% and the one-year survival rate of the remaining patients is only 77% [39]. Although
the high mortality of AKI needs more attention, there is still a lack of a unified treatment
plan [40]. Therefore, taking effective and protective measures in time is significant to
prevent the occurrence of AKI. During renal surgery (such as renal nephrectomy), the renal
vasculature needs to be blocked to ensure that the operation can be implemented (≤30 min).
In addition, the donor kidney needs to be irrigated and stored in a special preservation
solution with ice treatment during kidney transplantation; however, the organ preservation
solution usually does not contain a protective agent. Hence, investigating the mechanism
of I/R-induced AKI and developing effective drugs are urgent for medical researchers.

Ferroptosis could be summarized by the following characteristics: metabolic disorder
of iron, destruction of cellular antioxidant system, production of reactive oxygen species,
and accumulation of lipid peroxides [41]. Ferroptosis has been regarded as the potential
target to prevent or cure AKI. It was found that ferroptosis might be more correlative than
necroptosis and apoptosis in I/R-induced AKI [18,42]. Erastin is the first compound that
could trigger ferroptosis via inhibiting system Xc

−, which could suppress GSH synthe-
sis [43]. GPX4 transforms lipid peroxides to corresponding alcohols, and GSH could reduce
the oxidated active site selenol of GPX4 [44]. The erastin-induced ferroptosis could be pre-
vented by many compounds, such α-tocopherol, ferrostatin-1, and quercetin [31,45]. Lip-1
was screened from over 40,000 drug-like small molecules, and it could repress buthionine
sulfoximine-, erastin-, and RSL3-induced ferroptosis of mouse embryonic fibroblast cells
at low concentrations [16]. In our study, Lip-1 could significantly protect kidneys from
I/R-induced AKI, however its application is limited because it should be assisted with
DMSO and a cosolvent (such as polyethylene glycol) to enhance solubility. The absorption
and pharmacokinetics of Lip-1 need be further investigated. We used 10 mg/kg Lip-1
before renal I/R and the effect on kidney protection was obvious, and indicated that Lip-1
indeed arrived in renal tubular cells and played a role in protecting them from ferroptosis
in renal I/R. Although poor solubility restricted the application of Lip-1, optimizing the
chemical structure of Lip-1 might make it obtain higher bioavailability and solubility.

Ferroptosis is a novel regulable cell death. Although the iron level was significantly
increased in the kidney samples of the I/R group, the PB staining of kidneys in I/R showed
no iron content. The results might be attributed to the iron content assay kit that mainly
detected the Fe2+ (not Fe3+), thus it could be speculated that the increased iron content
in kidneys of I/R was mainly Fe2+. According to the results of RNA sequencing and
analysis, we identified EGR1 as the key molecule that promotes ferroptosis. EGR1 is a
zin-finger transcription factor of the immediate early gene family [46], and it could be
rapidly induced by hypoxia, growth factors, and other regents [47]. EGR1 could bind
to the promoter regions of many downstream target genes via its three DNA-binding
domains [48]. The expression of EGR1 could not be detected in normal adult kidneys [49],
and it regulates inflammation and fibrosis in various tissues including kidneys [46]. Recent
research showed that EGR1 played a renoprotective effect via increasing SOX9 expression
by directly binding to the promoter of the Sox9 after I/R- and folic acid-induced AKI [50].
In another research study, EGR1 was regarded as a ferroptosis inducer in acute myocardial
infarction because it inhibited GPX4 to promote ferroptosis via miR-15a-5p [51]. In our
investigation, we firstly demonstrated that EGR1 was a ferroptosis inducer in I/R-induced
AKI. Knockdown of EGR1 could significantly increase expression of SLC7A11 and GPX4
via downregulating TP53 expression, accompanied by an elevation of GSH and a reduction
of lipid peroxides. We also found that Lip-1 could distinctly decrease EGR1 expression
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during I/R-induced AKI, which demonstrated that Lip-1 inhibited ferroptosis through
suppressing EGR1 expression.

It has been proven that several types of cell death participate in I/R-induced AKI, how-
ever there is still no consensus on which type of cell death plays the core role in I/R-induced
AKI. Ferroptosis plays a significant role in I/R-induced AKI and could lead to inflamma-
tion because ferroptotic renal tubular cells could release CCL2 and recruit macrophages.
According to the RNA-sequence analysis, EGR1 was involved in ferroptotic renal tubular
cells. EGR1 could promote inflammation in various diseases, such as cholestatic liver,
I/R-induced lung injury, and atherogenesis [52–54]. Egr-1 deficiency in primary renal
tubuloepithelial cells isolated from mice could weakly respond to pro-inflammatory and
pro-fibrotic stimuli ex vivo, and Egr1−/− mice with tubulointerstitial nephritis expressed
less TNFα and CCL2 [46]. Lip-1 could apparently reduce the expression of EGR1 and CCL2,
reduce the infiltration of macrophages in vivo, and reduce levels of inflammatory cytokines
in renal tubular cells.

5. Conclusions

In summary, our research proved that Lip-1 could alleviate I/R-induced AKI via
suppressing ferroptosis (Figure 7). Our investigation indicated that (i) Lip-1 suppressed
ferroptosis of renal tubular cell in I/R-induced AKI; (ii) EGR1 might be a key regulator
of ferroptosis in I/R-induced AKI; (iii) Lip-1 inhibited ferroptosis of renal tubular cell via
regulating EGR1/TP53/SLC7A11; and (iv) Lip-1 reduced infiltration of macrophages and
release of inflammatory cytokines. This work paves the theoretical basis of new therapeutic
strategies for I/R-induced AKI.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antiox13020182/s1. Table S1: All genes of I/R vs control assayed by
RNA-sequence. Table S2: Primer sequences used for RT-qPCR. Figure S1: Management with Lip-1 and
corresponding solvent in vivo. (A) Kidney coefficient of mice. (B) BUN levels of mice. (C) CRE levels
of mice. (D) H&E staining of heart, liver, spleen, lung, and kidney (n = 5), bar: 200 µm. Figure S2: PB
staining of kidney from diverse groups, bar: 200 µm. Figure S3: Various concentrations of erastin and
Lip-1 (1 µM) were used to treat HK2 cells. Figure S4: RT-qPCR results of EGR1 (A), TP53 (B), SLC7A11
(C), and GPX4 (D) in HK2 with DMSO, erastin, and Lip-1+erastin treatment. Figure S5: RT-qPCR
results of EGR1 (A), TP53 (B), SLC7A11 (C), and GPX4 (D) in HK2 with EGR1 knockdown.
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