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Abstract: Resveratrol is a natural phenolic compound with known benefits against neurodegener-
ation. We analyzed in vitro the protective mechanisms of resveratrol against the proinflammatory
monomeric C-reactive protein (mCRP). mCRP increases the risk of AD after stroke and we previously
demonstrated that intracerebral mCRP induces AD-like dementia in mice. Here, we used BV2 mi-
croglia treated with mCRP for 24 h in the presence or absence of resveratrol. Cells and conditioned
media were collected for analysis. Lipopolysaccharide (LPS) has also been implicated in AD progres-
sion and so LPS was used as a resveratrol-sensitive reference agent. mCRP at the concentration of
50 µg/mL activated the nitric oxide pathway and the NLRP3 inflammasome pathway. Furthermore,
mCRP induced cyclooxygenase-2 and the release of proinflammatory cytokines. Resveratrol effec-
tively inhibited these changes and increased the expression of the antioxidant enzyme genes Cat and
Sod2. As central mechanisms of defense, resveratrol activated the hub genes Sirt1 and Nfe2l2 and
inhibited the nuclear translocation of the signal transducer NF-κB. Proinflammatory changes induced
by mCRP in primary mixed glial cultures were also protected by resveratrol. This work provides a
mechanistic insight into the protective benefits of resveratrol in preventing the risk of AD induced by
proinflammatory agents.

Keywords: resveratrol; monomeric C-reactive protein; lipopolysaccharide; oxidative stress; inflam-
mation; BV2; primary mixed glial cultures

1. Introduction

Resveratrol is a phenolic compound of the stilbene family. Its active trans form
(trans-3,5,4’-trihydroxystilbene) has multiple health benefits shown in years of preclinical
research. It is a powerful antioxidant that also exhibits anti-inflammatory, anti-aging and
anti-neurodegenerative properties [1–4], among others. Animal studies showed that trans-
resveratrol is able to cross the blood–brain barrier [5]. This supports the possibility that
resveratrol could be protective for brain cells. Resveratrol is synthesized by more than
70 species of plants to stimulate cell defense in response to stress conditions. It is present
in considerable amount in mulberries, lingonberries, cranberries, peanuts, the skin of red
grapes, and in some medicinal herbs. In addition, resveratrol was initially associated with
red wine as its main source. This misleading perception might lead to resveratrol being
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discredited after new studies showed no significant reductions in all-cause mortality with
moderate drinking [6] and for concerns about possible alcohol addiction. However, moder-
ate drinking in old men and women is consistently associated with a lower risk of dementia
when compared with lifetime abstainers [7]. Whatever the active ingredient is in wine,
resveratrol should be studied as a pure nutraceutical-type compound. In fact, therapeutic
doses cannot be obtained from diet and require supplementation. Resveratrol doses in
clinical trials with positive outcome were in the range of 150–250 mg/d for lowering blood
pressure [8], for cerebrovascular and cognitive benefits in postmenopausal women [9,10],
and cognitive benefits in overweight old men [11]. These authors hypothesized that the
benefits found are at least partially based on the ability of resveratrol to modulate cerebral
blood flow and vessel responsiveness during demand [9–11], and in association with im-
provement of the metabolic profile [8,11]. The proposed underlying molecular mechanisms
include modulation of endothelial nitric oxide, decrease in oxidative stress, and activation
of calorie restriction-like pathways (i.e., sirtuin 1 (SIRT1), AMP-activated protein kinase
(AMPK) and nuclear factor-like 2). However, a number of clinical trials did not report bene-
fits and thus, the results of meta-analysis are controversial [12]. We can speculate that either
higher dosages or combination with other compounds to improve bioavailability could
have worsened the outcome. Resveratrol is a hormetic agent and is not devoid of adverse
effects at elevated concentrations [13,14]. Noticeably, a recent review of the limited number
of clinical trials performed in Alzheimer’s disease (AD) patients concluded a delay of cog-
nitive impairment following resveratrol supplementation in comparison with placebo [15].
However, the bioavailability and pharmacokinetics of resveratrol after oral administration
are poor. Circulating resveratrol is mainly bound to albumin [16,17]. The hydrophobic
structure of resveratrol may limit its absorption into target tissues. A main drawback is its
rapid metabolism to less active glucuronide and sulfate conjugates [5,18,19]. The resulting
low plasma and brain levels of trans-resveratrol after oral doses [5] have raised uncertainty
about the administration regimen. Experimental strategies with innovative nanocarriers
to improve the aqueous solubility and bioavailability of resveratrol have already shown
benefits in the field of cancer therapeutics [20] and in brain delivery [21]. Research on
innovative carriers and formulations of resveratrol to improve its bioavailability in humans
is ongoing [22–24]. Improvements in pharmacokinetics will overcome the safety concerns
in resveratrol dosing [25].

There is an interplay between oxidative stress and inflammation, as one may promote
the other leading to a damaging spiral. With advancing age, an imbalance between the
generation of reactive oxygen species (ROS) and its clearance leads to chronic inflammation.
In turn, sustained inflammatory processes contribute to an increased risk of age-related
diseases, including AD [26,27]. Resveratrol is effective in reducing oxidative stress in AD
in vitro neuronal models [28–32]. These studies show that amyloid ß peptides induce
oxidative stress in PC12 cells [28,29], human neural stem cells [30], HT22 cells [31] and
primary neurons [32] that parallels cytotoxicity. The antioxidant protective mechanisms
of resveratrol in these models included an increase in mitochondrial enzyme manganese
superoxide dismutase (SOD2), inhibition of the redox-regulated transcription factor NF-kB,
and activation of the master regulator of cell energy AMPK. Furthermore, resveratrol is
effective against oxidative stress in immortalized lymphocytes from AD patients by increas-
ing expression of genes encoding antioxidant enzymes and survival factors [33]. Resveratrol
also shows antioxidant properties in in vivo rodent models of AD [31,32,34–36]. Transgenic
mouse models of AD [31,32] and rat chemical AD models induced by colchicine [34,36] or
angiotensin II [35] show oxidative stress as a deleterious mechanism associated with cogni-
tive loss. Chronic intake of resveratrol inhibits oxidative damage by activating antioxidant
systems in the brain, including SOD2 and reduced glutathione. Furthermore, as a phenolic
agent it can also induce direct antioxidant effects.

Resveratrol has anti-inflammatory capacity in models of neurodegenerative disease,
as shown by its downregulation of tumor necrosis factor α (TNFα) and other proinflam-
matory molecules [4,37–39]. Microglia are the key cells in the inflammatory processes
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associated with AD and in the interplay with oxidative stress and inflammation [40]. Pre-
vious studies showed that resveratrol inhibited amyloid ß-induced phenotype activation
in microglial cell lines BV2 and N9 [41,42]. Several studies also showed that resveratrol
protected against the proinflammatory effects of lipopolysaccharide (LPS) in microglial
cells, using an in vitro model of neuroinflammatory diseases [43–50]. However, pro-
tective mechanisms of resveratrol that dampen microglial over-reactivity during AD
progression are poorly characterized.

Here, we aimed to analyze the antioxidant protection mechanisms of resveratrol in
BV2 microglia activated by monomeric C-reactive protein (mCRP) as a novel model of
AD. The monomeric form of CRP is produced by activation and further disaggregation
of the circulant pentameric CRP and has strong proinflammatory properties [51]. mCRP
expression is strongly associated with the risk and progression of diseases dependent upon
chronic inflammation [52–54]. In the brain it may increase AD risk after stroke [55,56].
In vivo and in vitro preclinical studies showed that mCRP induced the two main AD
pathological markers, amyloid ß and hyperphosphorylated tau, and AD-like dementia
in mice [56–58]. Resveratrol intake is known to decrease peripheral blood CRP levels in
humans [59,60]. However, to our knowledge, the effects of resveratrol on mCRP within
brain cells has not been studied to date. In addition, we used LPS as a reference agent
involved in AD and other neurodegenerative diseases [61]. The proinflammatory effects of
LPS on microglial cells are inhibited by resveratrol, as indicated above, which we analyzed
further here. Resveratrol is effective against phenotype activation by LPS in both microglial
cell lines and primary cultures. Therefore, we also aimed to confirm resveratrol inhibition
of BV2 activation by mCRP in microglia grown in primary mixed glial cultures.

2. Materials and Methods
2.1. Cell Culture

BV2 microglial cells were used in this study (#ATL03001, ICLC, Banca Biologica e
Cell Factory, Genova, Italy). The BV2 cell line was established from C57BL/6 mouse
microglia, and it is a valued microglial model for the study of brain neuroinflammatory
mechanisms [62]. BV2 cells were grown in RPMI 1640 medium (Biowest, Riverside, Newry
and Mourne, UK) supplemented with L-glutamine 2 mM, gentamycin 50 µg/mL and 10%
heat-inactivated fetal bovine serum (FBS) (all supplements were from Gibco, Thermo Fisher
Scientific, Waltham, MA, USA). Cells were seeded in T25 flasks (NuncTM, Thermo Fisher
Scientific) and sub-cultured 1:10 when they reached 80–90% of confluence.

Primary glial cultures were used for selected experiments to confirm the benefits of
resveratrol against glia activation by mCRP. For these purpose, mixed glial cultures were
prepared from cerebral cortices of C57BL/6 mice at 2–4 days of age following established
procedures [63]. Briefly, cortices were minced and disaggregated into a single cell solution
by enzymatic and mechanical processing. Cells were resuspended in DMEM:F12 with
HEPES and L-glutamine (#31330038, Gibco). This medium was supplemented with gen-
tamycin 50 µg/mL and 10% FBS (all culture reagents were from Gibco, Thermo Fisher
Scientific). Cells were seeded in 96- or 24-well plates (Nunc, ThermoFisher Scientific, Mu-
nich, Germany) at 8 × 104 cells/cm2 or in 8-well chamber slides (Lab-Tek Chamber Slides;
Nunc, ThermoFisher Scientific) at 6 × 104 cells/cm2. The medium was replaced every
5–7 days. Cultures contained mainly astrocytes and microglia.

2.2. Drugs and Experimental Design

mCRP was generated from the native CRP protein (YO Proteins, Ronninge, Sweden).
A pure solution of CRP monomers was obtained by urea/EDTA chelation and subsequent
dialysis, as previously described [57].

The LPS strain was E. coli 026:B26 (L-2654, batch #120M4028, Sigma-Aldrich, St. Louis,
MO, USA). All other reagents were also from Sigma-Aldrich where not otherwise indicated.

For experiments, BV2 cells were seeded in 96- or 12-well plates (Nunc, ThermoFisher
Scientific) at 5 × 104 cells/cm2 or in 8-well chamber slides (Lab-Tek Chamber Slides; Nunc,
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Thermo Fisher Scientific) at 1 × 104 cells/cm2. After 24 h, the medium was replaced
with fresh culture medium without FBS, containing vehicle (DMSO) or resveratrol (1 µM
to 50 µM, dissolved in DMSO). The final concentration of DMSO in all wells was 0.1%.
After 1 h of pretreatment, cells were stimulated with the proinflammatory agents mCRP
(50 µg/mL) or LPS (0.1 µg/mL, 1 µg/mL) and incubated for 24 h. Each treatment was
performed in 2–3 wells and the whole experiment was repeated 3–5 times in cultures of
different cell passage.

Primary glial cultures in well plates and chamber slides were used at 18–21 days
in vitro. Treatments with resveratrol (10 µM to 50 µM) and mCRP (50 µg/mL) were
performed following the same procedure used in BV2 cells. However, primary cultures
were not subjected to serum starvation to avoid astrocyte damage. Each treatment was
performed in 3–4 wells and the whole experiment was repeated in two independent
primary cultures.

2.3. Nitrites Assay

Nitric oxide generation was determined with the colorimetric Griess reaction that
detects nitrite (NO2

−), a stable reaction product of nitric oxide and molecular oxygen,
following standard procedures [57]. Nitrite levels in the fresh conditioned media were
calculated with a nitrite curve in each 96-well plate. The results were expressed as a
percentage of mCRP 50 µg/mL or LPS 1 µg/mL values, as peak values.

2.4. Enzyme-Linked Immunosorbent Assay (ELISA)

Conditioned media were collected and preserved at −70 ◦C until analysis. Levels
of TNFα and interleukin 1ß (IL1ß) were measured using the Mouse TNF alpha uncoated
ELISA kit and IL-1 beta Mouse Uncoated ELISA Kit, respectively (Invitrogen, Thermo
Fisher Scientific). Samples were analyzed in duplicate. TNFα results were obtained in
ng/mL and IL1β results in pg/mL.

2.5. Western Blotting

Protein extracts were obtained from the treated BV2 cells in 12-well plates at ter-
mination. Cultures were washed with cold PBS, homogenized in a cold RIPA buffer
supplemented with protease and phosphatase inhibitors, and centrifuged. The supernatant
concentration of proteins was determined by the Bradford protein assay (Bio-Rad, Hercules,
CA, USA). Western blotting analysis of specific proteins was performed following standard
procedures. Briefly, 10 µg of denatured protein samples were separated by SDS-PAGE at
100 V. Electrophoresed proteins were blotted onto PVDF membranes at 200 mA for 90 min.
The membranes were then incubated for 1 h with a blocking agent followed by overnight
incubation with the primary antibody at 4 ◦C. The primary antibodies used were anti-
inducible nitric oxide synthase (iNOS) (1:1000; #610421, BD Bioscience, BD Transduction
Laboratories, Franklin Lakes, NJ, USA), anti-nucleotide-binding domain, leucine-rich–
containing family, pyrin domain–containing-3 (NLRP3) (1:1000; #NBP2-12446SS, Novus
Biologicals, Bio-Techne, Centennial, CO, USA), anti-actin (20-33) (1:10,000; #A5060, Sigma-
Aldrich, St. Louis, MO, USA) and anti-ß-tubulin (1:10,000; #T4026; Sigma-Aldrich). Mem-
branes were rinsed and incubated for 1 h with the secondary antibodies. The antibodies
used were sheep-anti-mouse HRP conjugated (1:2000; #NA931, Amersham, General Electric,
Boston, MA, USA) and donkey-anti-rabbit HRP conjugated (1:2000; #NA934, Amersham).
The proteins were visualized by enhanced chemiluminescence detection in a Chemidoc™
Imaging System (Bio-Rad, Hercules, CA, USA). The densitometric analysis was performed
using Image Lab software (v3.0.1, Bio-Rad). The protein levels were normalized using
ß-tubulin. Samples from all treatments were included on each membrane.

2.6. Real-Time Quantitative Polymerase Chain Reaction (qPCR)

Extraction of RNA from BV2 cells was carried out using TRIsureTM reagent (Meridian
Bioscience, Bioline, London, UK), following manufacturer’s instructions. Samples were
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checked for RNA concentration and quality using a ND-1000 spectrophotometer (Nan-
oDrop Technologies, Wilmington, DE, USA). Reverse transcription from RNA to cDNA
was performed using a High-Capacity cDNA Reverse Transcription Kit (Thermo Fischer
Scientific, Waltham, MA, USA). Three hundred ng of RNA per sample were loaded in a
thermal cycler (FlexCycler, Analytikjena, Jena, Germany). cDNA samples were stored at
−20 ◦C until analysis.

Gene expression was analyzed by qPCR using TaqMan® Fluorescein amidite (FAM)-
labeled specific probes (Thermo Fisher Scientific) and a Quantimix Easy Probe kit
(Biotools, Madrid, Spain). The reaction mix containing 6.75 ng of cDNA was loaded in
a CFX96TM Real-Time System (Bio-Rad). The Taqman assay probes were Actb (Actin
beta, #Mm02619580_g1), Cat (Catalase, #Mm00437992_m1), Clec7a (C-Type lectin do-
main containing 7A, Mm01183349_m1), Cox2 (Cyclooxygenase 2, Mm00478374_m1),
Il6 (Interleukin 6, #Mm00446191_m1), Nfe2l2 (NFE2 like BZIP transcription factor 2,
Mm00477784_m1), Nos2 (Inducible nitric oxide synthase, Mm00440502_m1), Sirt1 (Sir-
tuin (silent mating type information regulation 2 homolog) 1, #Mm00490758_m1), and
Sod2 (Superoxide dismutase 2, #Mm01313000_m1). Samples were analyzed in duplicate.
Results were normalized to actin beta gene expression using the comparative cycle
threshold method (∆∆CT).

2.7. Immunofluorescence Assay

Cells in chamber slides were fixed with 4% paraformaldehyde for 30 min, permeabilized
with 0.2% Triton X-100 for 8 min and incubated with a blocking solution for 1 h.

BV2 were then incubated overnight at 4 ◦C with anti-nuclear factor κ-light-chain-
enhancer of activated B cells (NF-κB) antibody, p65 subunit, active subunit, clone 12H11
(1:200; #MAB3026, Chemicon, Merck, Darmstadt, Germany). Slides were washed and incu-
bated with Alexa Fluor 488-conjugated secondary antibody (1:1000; #A-11001, Molecular
Probes, Thermo Fischer Scientific). Slides were mounted with Fluoroshield with DAPI
(Sigma-Aldrich, Merck). Imaging was performed with an Andor Dragonfly 200 Spinning
Disk confocal (Oxford Instruments, Abingdon, Oxfordshire, UK). 405 nm and 488 nm
diode lasers were used to visualize DAPI nuclear fluorescence and NF-κB p65 fluorescence,
respectively. Images were taken every 0.5 µm at 40x. Cell images at the midline of the
nucleus were used for each cell analysis. Nuclear NF-κB p65 fluorescence was analyzed
using ImageJ [64].

Primary cultures were incubated for 1 h at room temperature with anti-glial fibrillary
acidic protein (GFAP) antibody (1:500; #Z0334, Dako, Agilent, Santa Clara, CA, USA) to
stain astrocytes. The secondary antibody was conjugated with Alexa Fluor 546 (1:1000;
Thermo Fisher Scientific). Microglia were stained with lectin from Bandeiraea simplici-
folia conjugated with fluorescein (1:400; #L2895, Sigma-Aldrich). Slides were mounted
with Fluoroshield (Sigma-Aldrich, Merck). Microphotographs to visualize changes in cell
morphology were taken on a Nikon E1000 microscope.

2.8. Statistical Analysis

Results are expressed as the mean ± SEM. Normal distribution was checked with the
Shapiro–Wilk test. Data were analyzed by two-way ANOVA with the factors: resveratrol
and either mCRP or LPS. Tukey’s multiple comparisons test was used for the post hoc
analysis. Statistical outliers were identified by Grubbs’ test (α = 0.05). The results were
considered significant with a value of p < 0.05. The software used were GraphPad Prism
v6.01 (GraphPad Software, La Jolla, CA, USA) and IBM SPSS Statistics v23 (IBM Corp.,
Armonk, NY, USA).

3. Results
3.1. Resveratrol Inhibited TNFα Production Induced by mCRP and LPS

TNFα is a master proinflammatory cytokine whose production by activated microglia
in the brain is induced by a variety of agents and conditions.
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mCRP at 50 µg/mL potently induced TNFα release by microglial BV2 cells which was
inhibited by resveratrol to levels close to the control treatment (Figure 1a). LPS at 0.1 µg/mL
induced less TNFα release than mCRP, while resveratrol showed a non-significant tendency
to reduce the LPS effect at the tested concentration of 25 µM (Figure 1b).
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Therefore, resveratrol protected against TNFα release from BV2 microglia after a
proinflammatory injury, implying reduced activation of the inflammatory phenotype and
subsequent downstream signaling.

3.2. Resveratrol Inhibited the Induction of the Nitric Oxide Pathway by mCRP and LPS

Nitric oxide is a signaling molecule produced by activated microglia via the enzyme
iNOS. An excess of nitric oxide production will cause nitrosative and oxidative stress.

mCRP at 50 µg/mL induced a significant increase in nitric oxide production, as
detected by nitrite levels in the conditioned media, with a 14-fold increase over basal
values. Resveratrol showed a concentration-response inhibitory effect that was statistically
significant at the concentration of 50 µM (Figure 2a). LPS induced an approximate 3- and
5-fold increase in nitrite levels over basal levels at the concentration of 0.1 µg/mL and
1 µg/mL, respectively. Resveratrol reduced nitric oxide generation by LPS (Figure 2b).
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Protein levels of the iNOS enzyme were determined to confirm the protective action of
resveratrol on the nitric oxide pathway. iNOS protein was significantly increased by mCRP
at 50 µg/mL and by LPS at 0.1 µg/mL. Resveratrol efficiently inhibited the increase in
iNOS levels by mCRP (Figure 3a). However, inhibition of LPS-induced iNOS by resveratrol
up to 25 µM did not reach significance, probably due to the high dispersion of the data
(Figure 3b).
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indicated in graph; post hoc test, *** p < 0.001 compared to control, # p < 0.05 compared to mCRP
in the absence of resveratrol. Results and representative blots are displayed in the upper and lower
panels, respectively. RV, resveratrol.

Therefore, resveratrol was able to inhibit the induction of iNOS and subsequent
production of NO, a main mechanism leading to oxidative stress and proinflammatory
signaling by activated microglia.

3.3. Resveratrol Inhibited the Induction of the NLRP3 Inflammasome Pathway by mCRP and LPS

NLRP3 is a key sensor inflammasome found in microglia cells. This pathway is
activated in response to diverse proinflammatory stimuli, including oxidative stress signals.

Protein levels of NLRP3 in BV2 cells were significantly increased by mCRP at 50 µg/mL
and by LPS at 0.1 µg/mL. Co-incubation with resveratrol at 10 µM, or a higher concentra-
tion, reduced NLRP3 levels induced by both mCRP (Figure 4a) and LPS (Figure 4b).

These results showed that resveratrol was effective in avoiding the activation of the
NLRP3 inflammasome pathway, which can lead to a spiral of neuroinflammation and
further oxidative stress.

3.4. Resveratrol Inhibited the Activation of NF-κB by mCRP

Next, we studied the central mechanisms of mCRP as a much less characterized
proinflammatory agent than LPS. First, we analyzed the nuclear translocation of NF-κB that
initiates the transcription of genes involved in inflammation and oxidative stress, among
other pathways.

Resveratrol decreased the nuclear content of p65 subunit of NF-κB after mCRP activa-
tion in BV2 microglial cells (Figure 5a). p65 and p50 form the most common heterodimers
of the NF-κB complex, and increased detection of p65 in the cell nucleus indicates NF-κB
activation. Morphological changes of polarization were observed in the mCRP treated
microglia that were partially reverted by resveratrol. Confocal microscopy images of
a representative cell from each treatment are shown in Figure 5b and images at lower
magnification are shown in Figure 5c.
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Figure 4. Protein levels of NLRP3 in BV2 microglial cells, induced by mCRP (a) or LPS (b), in the
absence or presence of resveratrol. Statistics: two-way ANOVA, significance of factors is indicated in
graph; post hoc test, ** p < 0.01, *** p < 0.001 compared to control, # p < 0.05 compared to LPS in the
absence of resveratrol. Results and representative blots are displayed in the upper and lower panels,
respectively. RV, resveratrol.
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Figure 5. Immunofluorescence detection of NF-κB p65 in BV2 microglial cells. (a) Quantification
of NF-κB p65 in the nucleus after exposure to mCRP, in the absence or presence of resveratrol.
(b) Representative confocal images used for analysis. In the upper panel, images show green
fluorescence for NF-κB p65 and blue fluorescence for DAPI nuclear staining; in the bottom panel,
images of the same cells show green fluorescence. (c) Cell cultures stained for NF-κB p65 shown at
lower magnification. Statistics in (a): two-way ANOVA, significance of factors is indicated in graph;
post hoc test, ** p < 0.01 compared to control, ### p < 0.001 compared to mCRP in the absence of
resveratrol. RV, resveratrol, A.U., arbitrary units.

Therefore, the analysis of NF-κB showed that resveratrol protected against its activa-
tion and subsequent downstream deleterious mechanisms.

3.5. Resveratrol Inhibited the Induction of Proinflammatory Genes by mCRP

In a second step, we analyzed the changes in the expression of selected proinflamma-
tory genes induced by mCRP and their modulation by co-incubation with resveratrol.

Increased expression of Nos2, the gene codifying for iNOS, in mCRP treated BV2
confirmed the activation of the nitric oxide pathway. Resveratrol inhibited iNOS production
at the gene level (Figure 6a).
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Figure 6. Expression levels of proinflammatory genes in BV2 microglial cells, induced by mCRP
in the absence or presence of resveratrol. (a) Nos2. (b) Cox2. (c) Clec7a. (d) Il6. Statistics: two-way
ANOVA, significance of factors is indicated in graph; post hoc test, * p < 0.05, *** p < 0.001 compared
to control, ## p < 0.01, ### p < 0.001 compared to mCRP in the absence of resveratrol. RV, resveratrol.

The cyclooxygenase pathway is also activated by mCRP, as shown by increased Cox2
expression. Similarly to the nitric oxide pathway, resveratrol inhibited cyclooxygenase 2
production and prevented the proinflammatory effects of its enzymatic activity (Figure 6b).

mCRP increased the expression of Clec7a, a gene codifying for a pattern recognition
receptor in microglia. Interestingly, resveratrol decreases Clec7a mRNA levels in mCRP
treated BV cells and in control cells. Therefore, resveratrol decreased both, the basal
levels and those induced by mCRP, showing a preventive and protective function against
downstream inflammatory processes (Figure 6c).

Interleukin 6 is a first line cytokine in the brain and the expression of Il6 gene was
increased by mCRP and inhibited by resveratrol (Figure 6d).

Taken together, resveratrol showed powerful anti-inflammatory properties by inhibit-
ing the transduction of genes that trigger a variety of pathways.

3.6. Resveratrol Induced Antioxidant Genes to Protect against mCRP

Finally, we analyzed the changes in the expression of antioxidant and detoxifying genes
induced by resveratrol that may protect against mCRP injury in a scenario of intertwined
oxidative stress and inflammatory processes.

Resveratrol increased Sirt1 gene expression as expected, although the effect was lower
in the presence of mCRP (Figure 7a). The encoded protein SIRT1 can upregulate antioxidant
and anti-inflammatory genes.
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Figure 7. Expression levels of antioxidant genes induced by resveratrol in BV2 microglial cells,
either control or mCRP treated. (a) Sirt1. (b) Nfe2l2. (c) Cat. (d) Sod2. Statistics: two-way ANOVA,
significance of factors is indicated in graph; post hoc test, * p < 0.05, ** p < 0.01, *** p < 0.001 compared
to control, # p < 0.05, ## p < 0.01, ### p < 0.001 compared to the absence of resveratrol. RV, resveratrol.

Resveratrol induced the expression of Nfe2l2, but in this gene the effect was mainly in
the cells treated with mCRP. mCRP itself also induced this transducer of antioxidant and
detoxifying genes (Figure 7b).

As probe of their protective antioxidant mechanisms, resveratrol induced the expres-
sion of the two first line defense genes Cat and Sod2. mCRP also induced an increase in
the expression of both genes (Figure 7c,d, respectively). Catalase is widely present in the
cytoplasm and superoxide dismutase 2 in the mitochondria.

Therefore, resveratrol induced powerful antioxidant and detoxifying mechanisms.

3.7. Resveratrol Inhibited Proinflammatory Changes Induced by mCRP in Mixed Glial Cultures

We used primary mixed glial cultures to test the inhibitory effect of resveratrol on
microglia activation by mCRP in a physiological setting.

Images of the cultures did not evidence significant morphological changes of astrocytes
with mCRP treatment. However, the microglia changed to a larger cell with flat morphology
in the presence of mCRP. These changes were greatly reduced by resveratrol. Representative
images of glial cultures are shown in Figure 8a.

Analysis of nitrite levels in the conditioned media showed an increase in nitric oxide
release by cultures exposed to mCRP that was partially inhibited by resveratrol in a
concentration-response effect (Figure 8b).

Similarly, resveratrol significantly inhibited the mCRP-induced increase in the release
of the key cytokine IL1ß (Figure 8c).
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Figure 8. Proinflammatory changes induced by mCRP in primary mixed glial cultures in the presence
or absence of resveratrol. (a) Microphotographs of cultures showing astrocytes (GFAP, red fluores-
cence) and microglia (lectin, green fluorescence) submitted to treatments as indicated in the figure.
(b) Nitrite levels in the culture media indicative of nitric oxide generation. (c) IL1ß release to the
culture media. Statistics: two-way ANOVA, significance of factors is indicated in graph; post hoc test,
* p < 0.05, *** p < 0.001 compared to control, # p < 0.05, ## p < 0.01, ### p < 0.001 compared to mCRP in
the absence of resveratrol. RV, resveratrol.

4. Discussion

Resveratrol has been shown to protect against many harmful agents and conditions,
but it had not previously been tested against mCRP. The protective results of resveratrol
against mCRP shown here are relevant for possible future therapies in diseases involving
this activated harmful form of CRP. Furthermore, the mCRP pathways uncovered here are
relevant for the control of neuroinflammatory diseases where it may have a role.

In this study, we showed the protective action of resveratrol in two in vitro models
of BV2 cells, treated with either LPS or mCRP, which mimic the aberrant activation of
microglia associated with AD and other neurodegenerative diseases. LPS is a used in vivo
model of AD neuroinflammation [61,65]. The LPS recognizing receptor, Toll-like receptor 4
(TLR4), is mainly expressed on microglia. In addition, TLR4 is also activated by amyloid
ß, thus sharing downstream pathways with LPS [66]. Therefore, LPS-activated microglial
cultures are a reliable model to study AD neuroinflammation in an in vitro setting. BV2
microglial cells have been used extensively to characterize the mechanisms of protective
agents against LPS. mCRP is a novel and promising agent in the study of proinflammatory
mechanisms associated with the onset and progression of AD. In a previous study, we had
shown protection of mCRP dementia in the mouse by the anti-inflammatory agent N-[1-(1-
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Oxopropyl)-4-piperidinyl]-N’-[4-(trifluoromethoxy)phenyl]urea (TPPU) [57]. TPPU is an
inhibitor of the soluble epoxide hydrolase enzyme and therefore enhances the concentration
of the beneficial epoxyeicosatrienoic acids [67]. Furthermore, we showed that mCRP at the
concentration of 100 µg/mL activated the nitric oxide pathway in BV2 microglia which
was inhibited by TPPU [57]. Here, we used a lower concentration of 50 µg/mL mCRP and
analyzed several inflammatory pathways known to be induced by LPS. Unlike LPS, the
sequence of mCRP on microglial signaling is not known. mCRP may interact with the cell
through a cholesterol binding sequence (a.a. 35–47) [68] that allows its attachment to the
membrane lipids, complement component C1q and other elements [68,69]. However, we
found that mCRP induces BV2 polarization to an activated phenotype as does LPS.

Resveratrol inhibited the aberrant activation of the nitric oxide pathway and the
NLRP3 inflammasome pathway in both proinflammatory models, mCRP and LPS. The
nitric oxide/NOS system plays an important role in many physiological processes. From
the different NOS isoforms, iNOS is expressed by activated microglia. Nos2 is the gene that
codifies for the inducible form. This gaseous molecule modulates inflammatory cascades
and therefore it may cause neuroinflammation [70]. In addition, excess production of nitric
oxide together with insufficient antioxidant defense contribute to the unbalanced redox state
associated with AD and other neurological diseases [71,72]. Furthermore, the multiprotein
oligomer NLRP3 belongs to the inflammasome family and is a crucial player on the innate
immune response. However, its aberrant activation may cause inflammatory damage and
contribute to the progression of neurodegenerative diseases, such as AD [73,74]. A third
pathway involved in neuroinflammatory processes is the production of prostaglandins and
other downstream arachidonic acid metabolites through increased cyclooxigenase activity.
From the two enzyme isoforms, COX-1 and COX-2, the latter is more likely involved in
neurodegenerative processes due to its higher expression in brain [75,76]. The relevance of
this pathway in neurodegeneration is more controversial than that of nitric oxide and the
NLRP3 inflammasome. However, resveratrol also counteracted this pathway, as shown by
inhibition of Cox2 transduction.

Remarkably, resveratrol showed powerful protective properties against mCRP by
inhibiting the three major signaling pathways discussed above that lead to downstream
cascades of proinflammatory and pro-oxidant mediators. For instance, resveratrol coun-
teracted the increase in TNFα cytokine levels and IL6 cytokine gene expression by mCRP.
TNFα is involved in innate immunity and inflammation signaling and can cause necrosis
or apoptosis. Genetic or pharmacological inhibition of TNFα was proposed to prevent
or decrease the progression of AD pathology [77,78]. IL6 can promote a homeostatic or
pathological role in the brain depending on the stimulus [79]. IL6 levels in the brain in a
setting of neuroinflammation is a proposed target in the fight against AD [80].

Resveratrol protective effects shown here against LPS confirmed previous reports in
BV2 microglia challenged with this proinflammatory agent [44–46,81].

We also used primary mixed glial cultures to confirm the resveratrol protection against
mCRP as a novel agent in study. We showed a response pattern to mCRP and resveratrol
similar to that of BV2 cells. We found a protective response against activation of the iNOS
pathway. Furthermore, resveratrol inhibited the increased generation of IL1ß. One pathway
inducing this cytokine is the NLRP3 inflammasome [82]. These results confirm that the
main target cells of proinflammatory agents are microglia, as shown for LPS in a comparison
between mixed cultures and pure microglia cultures [83]. Microglia are the main innate
immune cells in the brain [84]. However, astrocytes contribute to the innate immune response.
These cells can also release cytokines and other proinflammatory mediators, especially under
conditions of sustained neuroinflammation such as in the AD brain [85]. It should be noted
that resveratrol was able to normalize the levels of the three main pro-inflammatory cytokines
IL1ß, IL6 and TNFα in either primary cultures or BV2 cells.

In the analysis of early signaling mechanisms, we found here that resveratrol increased
Sirt1 expression in the BV2 microglia, which would lead to an increase in the synthesis of
the protein SIRT1. This is consistent with the known feature of resveratrol as an activator
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of SIRT1 [86]. SIRT1 is a deacetylase enzyme that regulates the activity of several transcrip-
tional factors and enzymes involved in cell metabolism, stress defense and survival [87,88].
It may be coupled to another nutrient sensing molecule, AMPK [89]. SIRT1 pathway is
considered the main effector of resveratrol benefits in experimental models of AD [90],
although this pleiotropic agent can act through several mechanisms [4]. We previously
showed an increase in Sirt1 expression parallel to the antioxidant and anti-aging effects
in lymphocytes from AD patients treated with resveratrol [33]. We also showed that Sirt1
overexpression induced cognitive improvement in transgenic AD mice [91] similar to that
of resveratrol supplementation [92]. Here, we propose that SIRT1 is the main mediator of
antioxidant and anti-inflammatory mechanisms leading to the protection against mCRP
and LPS.

Studies reported in N9 microglial cells conclude that SIRT1/AMPK pathway is in-
volved in the protective effect of resveratrol against the activation of the NLRP3 inflamma-
some and NF-kB by LPS [47]. In BV2, activation of SIRT1 by resveratrol and its inhibition
with an antagonist demonstrated the involvement of this deacetylase in the modulation
of proinflammatory cytokines induced by LPS [48]. In BV2 microglia challenged with
mCRP, SIRT1 induced by resveratrol might modulate both key pathways NLRP3 and
NF-κB leading to inhibition of downstream inflammatory targets. SIRT1 may also mediate
the antioxidant gene response of resveratrol against mCRP oxidative damage [93]. SIRT1
is an activator of nuclear factor E2-related factor 2 (Nrf2), whose Nfe2l2 gene expression
was shown here to be activated by resveratrol and mCRP. Nrf2 transcriptional activity
subsequently induced gene expression of antioxidant genes, as shown by parallel increases
in Cat and Sod2 expression in BV2 cells. Interestingly, hub transcription factors such as
NF-κB and Nrf2 are stimulated by resveratrol, but also respond to ROS [94] as shown here
for Nfe2l2 gene expression, in a crosstalk between the mechanisms of this hormetic agent
and those of mCRP.

A schematic representation of the proposed protective mechanisms induced by resver-
atrol against proinflammatory activation of microglial cells is displayed in Figure 9. Results
for mCRP are those found in this study. Results for LPS are from this study and previously
published data, as referred to above. We speculate that anti-inflammatory mechanisms of
resveratrol against both agents, mCRP and LPS, are common.

Antioxidants 2024, 13, x FOR PEER REVIEW 14 of 19 
 

and infrared laser multiphoton microscopy will be used for in vitro and in vivo studies, 
respectively. These studies would reveal subcellular targets in microglia and other brain 
cells. Despite its low bioavailability in vivo, resveratrol induces undoubted brain benefits, 
as demonstrated by a large number of preclinical and clinical studies for AD [4,15,100]. 
Promising results in enhancing stability, pharmacokinetics and pharmacodynamics of 
resveratrol in in vitro and in vivo cancer studies were recently critically reviewed [96]. 
Likewise, improved formulations of resveratrol to avoid its poor bioavailability and phar-
macokinetics in brain tissue will improve its neuroprotective potential. 

Therefore, the analysis of resveratrol protection in both AD models of inflammation, 
mCRP and LPS, strengthened the value of this nutriceutical agent. However, all the ex-
perimentation is carried out in in vitro models. We can speculate on the validity of the 
findings in humans, although further confirmation in in vivo preclinical models is re-
quired. Furthermore, there are other inflammatory/oxidative stress mechanisms not ana-
lyzed here that may play a role in the benefits of resveratrol on microglia. This is the case 
of the modulation of nicotinamide adenine dinucleotide phosphate oxidase 2 [101,102] 
and mitogen-activated protein kinases (ERK1/2, JNK, and p38) [45]. Recent insights into 
the contributions of resveratrol against persistent neuroinflammation include improving 
mitochondrial status and glucose metabolism in microglia [47,99,103]. 

 
Figure 9. Schematic representation of the protective mechanisms of resveratrol against the proin-
flammatory agent mCRP and LPS. 

5. Conclusions 
Resveratrol protected against the polarization of BV2 microglia into an activated phe-

notype induced by two critical proinflammatory agents, LPS and mCRP. 
The characterization of mCRP proinflammatory and pro-oxidant mechanisms in BV2 

microglia showed the activation of the inflammatory/oxidative cascades of nitric oxide, 
NLRP3 inflammasome and COX-2 in this novel in vitro model. 

Resveratrol protective mechanisms against mCRP required the modulation of SIRT1, 
Nrf2, and NF-ĸB pathways that reduced downstream inflammatory mediators and, most 
notably, induced antioxidant enzymes. 

Resveratrol protective mechanisms against activation to proinflammatory phenotype 
by mCRP was confirmed in primary mixed glial cultures. 

Figure 9. Schematic representation of the protective mechanisms of resveratrol against the proinflam-
matory agent mCRP and LPS.



Antioxidants 2024, 13, 177 14 of 19

We showed molecular targets of resveratrol in activated microglia cells, although
pharmacodynamics was not further studied at the subcellular organelle level. Intracellular
trafficking of resveratrol to cellular targets in these cells is also unknown. Other authors
reported some advances in the analysis of the intracellular trafficking of resveratrol in
peripheral cell types [17,95,96]. It is proposed that resveratrol crosses the cell membrane
via passive diffusion, endocytosis via lipid rafts, or binding to receptors intro rafts [17,95].
Resveratrol may accumulate primarily in the endosomal−lysosomal system. It would then
be released into the cytoplasm to perform its actions on key targets. Early endosomes, late
endosomes, lysosome vesicles and other cell organelles can be identified with fluorescent
labels [97]. Colocalization studies of these organelles with labeled resveratrol or resveratrol
coupled to labeled nanocarriers [98,99] will show the time course and spatial distribution of
resveratrol in cellular compartments. We wish to develop new studies using fluorescently
tagged resveratrol to follow its entry into cultured cells or the mouse brain using confocal
microcopy technologies. Specifically, spinning disk confocal microscopy and infrared laser
multiphoton microscopy will be used for in vitro and in vivo studies, respectively. These
studies would reveal subcellular targets in microglia and other brain cells. Despite its low
bioavailability in vivo, resveratrol induces undoubted brain benefits, as demonstrated by
a large number of preclinical and clinical studies for AD [4,15,100]. Promising results in
enhancing stability, pharmacokinetics and pharmacodynamics of resveratrol in in vitro
and in vivo cancer studies were recently critically reviewed [96]. Likewise, improved
formulations of resveratrol to avoid its poor bioavailability and pharmacokinetics in brain
tissue will improve its neuroprotective potential.

Therefore, the analysis of resveratrol protection in both AD models of inflammation,
mCRP and LPS, strengthened the value of this nutriceutical agent. However, all the
experimentation is carried out in in vitro models. We can speculate on the validity of
the findings in humans, although further confirmation in in vivo preclinical models is
required. Furthermore, there are other inflammatory/oxidative stress mechanisms not
analyzed here that may play a role in the benefits of resveratrol on microglia. This is the
case of the modulation of nicotinamide adenine dinucleotide phosphate oxidase 2 [101,102]
and mitogen-activated protein kinases (ERK1/2, JNK, and p38) [45]. Recent insights into
the contributions of resveratrol against persistent neuroinflammation include improving
mitochondrial status and glucose metabolism in microglia [47,99,103].

5. Conclusions

Resveratrol protected against the polarization of BV2 microglia into an activated
phenotype induced by two critical proinflammatory agents, LPS and mCRP.

The characterization of mCRP proinflammatory and pro-oxidant mechanisms in BV2
microglia showed the activation of the inflammatory/oxidative cascades of nitric oxide,
NLRP3 inflammasome and COX-2 in this novel in vitro model.

Resveratrol protective mechanisms against mCRP required the modulation of SIRT1,
Nrf2, and NF-κB pathways that reduced downstream inflammatory mediators and, most
notably, induced antioxidant enzymes.

Resveratrol protective mechanisms against activation to proinflammatory phenotype
by mCRP was confirmed in primary mixed glial cultures.
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