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Abstract: Cardiometabolic disease (CMD), which encompasses metabolic-associated fatty liver dis-
ease (MAFLD), chronic kidney disease (CKD) and cardiovascular disease (CVD), has been increasing
considerably in the past 50 years. CMD is a complex disease that can be influenced by genetics
and environmental factors such as diet. With the increased reliance on processed foods containing
saturated fats, fructose and cholesterol, a mechanistic understanding of how these molecules cause
metabolic disease is required. A major pathway by which excessive nutrients contribute to CMD
is through oxidative stress. In this review, we discuss how oxidative stress can drive CMD and
the role of aberrant nutrient metabolism and genetic risk factors and how they potentially interact
to promote progression of MAFLD, CVD and CKD. This review will focus on genetic mutations
that are known to alter nutrient metabolism. We discuss the major genetic risk factors for MAFLD,
which include Patatin-like phospholipase domain-containing protein 3 (PNPLA3), Membrane Bound
O-Acyltransferase Domain Containing 7 (MBOAT7) and Transmembrane 6 Superfamily Member
2 (TM6SF2). In addition, mutations that prevent nutrient uptake cause hypercholesterolemia that
contributes to CVD. We also discuss the mechanisms by which MAFLD, CKD and CVD are mutually
associated with one another. In addition, some of the genetic risk factors which are associated with
MAFLD and CVD are also associated with CKD, while some genetic risk factors seem to dissociate
one disease from the other. Through a better understanding of the causative effect of genetic muta-
tions in CMD and how aberrant nutrient metabolism intersects with our genetics, novel therapies
and precision approaches can be developed for treating CMD.

Keywords: cardiometabolic disease (CMD); metabolic-associated fatty liver disease (MAFLD);
non-alcoholic fatty liver disease (NAFLD); chronic kidney disease (CKD) and cardiovascular
disease (CVD)

1. Introduction

Globally, the prevalence of obesity has nearly tripled over the past 50 years [1], reaching
epidemic levels in much of North America and Western Europe. Current epidemiological
data from the Center for Disease Control (CDC) reports that approximately 42% of Ameri-
can adults are obese, putting the US on track to reach the predicted 50% mark by 2030 [2,3].
The persistent rise in weight gain and obesity around the globe has brought about a parallel
rise in the prevalence of cardiometabolic disorders, such as metabolic-associated fatty liver
disease (MAFLD), chronic kidney disease (CKD) and cardiovascular disease (CVD). With
adverse cardiovascular events already being the leading cause of mortality worldwide, the
continued rise in obesity prevalence around the globe intensifies concerns surrounding
cardiovascular health.
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The fundamental cause of weight gain and ultimately obesity is an imbalance between
calorie consumption and energy expenditure. Average calorie consumption has increased
largely due to a rise in the production of highly processed foods, high in saturated fats,
refined carbohydrates and added sugars. Furthermore, calorie expenditure has decreased
due to reductions in manual labor and daily physical activity. This imbalance in calorie
consumption and expenditure ultimately results in a calorie surplus, which consequently
leads to weight gain. Excess calories often take the form of free fatty acids (FFAs), which
can be sequestered and stored within adipocytes for later use. The sequestration of excess
calories within adipose tissue ultimately causes adipocyte hypertrophy and the tissue to
expand. The storage of excess calories in adipocytes is not detrimental per se; however,
fat cells have limited ability to store energy as triacylglycerol (TAG). It is the spillover of
excess FAs from adipocytes and the ectopic accumulation of fat in key metabolic organs
such as the liver, pancreas, kidney and the cardiovascular system that is thought to lead
to cardiometabolic disease (CMD) [4–6]. Overall, the combination of reduced energy
expenditure and increased caloric intake have led to a rise in obesity, lipotoxicity and
obesity-related cardiometabolic disorders.

In obesity, enlarged stores of adipose tissue often result in greater FFA release, con-
tributing to a state of dyslipidemia [7]. High levels of plasma lipids are currently the
best known indicator of cardiovascular disease risk [8]. This is likely in part due to the
vicious positive feedback cycle that occurs with high levels of plasma FFA promoting the
release of more FFA through their inhibitory effect on insulin’s antilipolytic actions [9]. In
addition to increasing the release of FFAs, expanding adipocytes can release a range of
proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-6
(IL-6), interleukin 1β (IL-1β) and many others, contributing to a state of low-grade chronic
inflammation [10]. These cytokines are known to stimulate the secretion of C-reactive
protein, a marker of chronic low-grade inflammation [11]. Interestingly, C-reactive protein
levels, much like high levels of plasma lipids, has also been linked to increased risk of coro-
nary artery disease (CAD) [12]. Moreover, C-reactive protein has been suggested to play a
role in the pathogenesis of atherosclerosis, the underlying cause of most cardiovascular
diseases, though further work is needed to reaffirm this association [13].

Many of the nutrients that drive obesity can induce oxidative stress. Fatty acids (FAs)
can cause oxidative stress by protein carbonylation [14] and lipid peroxidation [15]. High
glucose can reduce antioxidant defense systems, leading to reactive oxygen species (ROS)
production and mitochondrial stress. Fructose can lead to oxidative stress through greater
production of superoxide anion [16] and uric acid, which increase ROS production [17].
Additionally, fructose can increase de novo lipogenesis (DNL) and lipid flux from the liver
creating greater circulating levels of VLDL and LDL, which promote lipid peroxidation [18].

In addition to dietary factors, genetics also play an important role in determining the
risk of MAFLD, CVD and CKD. Genome-wide association study (GWAS) and larger gene
exome-wide screens provide information on loci that associate with specific traits. While
such studies provide association, mechanistic investigation in cellular and animal models
are required to determine the direct cause of such polymorphisms in CMD and their interac-
tion with environmental factors. These polymorphisms can result in loss of function or gain
of function mutations, resulting in alterations of metabolic pathways thereby disrupting
homeostatic pathways and predisposing to CMD. Importantly, genetic factors and diet
can intersect to increase one’s predisposition to disease [19]. While some genetic factors
may predispose to certain cardiometabolic disorders, they can also be protective against
others. The mechanisms for these contrasting effects on cardiometabolic disorders will be
discussed below (see Section 3.3, last paragraph and Section 5.4). While prior reviews cover-
ing the topic have summarized and provided insights for how genetics and environmental
factors can influence cardiometabolic health [20,21], this review aims to highlight specific
gene variants and nutrients that are shown to alter risk of developing CMD, focusing
on genetic factors which are known to alter lipid and whole-body metabolism and their
underlying mechanisms. Moreover, the role of nutrient excess in driving type 2 diabetes,
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which also encompasses CMD, has been extensively covered in other reviews and will not
be covered [22,23].

In the current review, we examine the interaction of genetics and diet in the progres-
sion of MAFLD, CVD and CKD. We first summarize the role of oxidative stress in car-
diometabolic disease (Section 2). We then discuss the role of aberrant nutrient metabolism
and genetics in MAFLD, CVD and CKD. For MAFLD, we examine the role of fructose (3.1)
dietary fatty acids (3.2) and genetics (3.3). For CVD, we examine the role of fatty acids such
as saturated and polyunsaturated fatty acids (4.1), simple sugars (4.2) and genetics (4.3). In
the section on CKD, we examine the role of ectopic renal fat (5.1), simple sugars and uric
acid (5.2), protein-induced kidney damage (5.3) and genes associated with aberrant nutrient
metabolism in the progression of CKD (5.4). We also focus on understanding how genetic
mutations that cause MAFLD might be cardioprotective and provide insight into the impact
of some common genetic mutations that are known to be associated with MAFLD and CVD
and how they might impact CKD. Finally, we examine some of the pathways by which
MAFLD and CKD intersect, namely epidemiology (6.1), renin-angiotensin system (6.2) and
lipid dysregulation (6.3) and conclude with future perspectives (Section 7).

2. Oxidative Stress and Cardiometabolic Disease

Oxidative stress refers to an imbalance between the production of free radicals, which
include reactive oxygen (ROS) and nitrogen species (RNS; collectively, RONS), and the
body’s ability to neutralize them with antioxidants [24]. Examples of RONS include super-
oxide anion (O2

−), hydrogen peroxide (H2O2), and nitric oxide (NO) while antioxidants
include superoxide dismutase, catalase, peroxidases, and numerous vitamins and minerals
(e.g., vitamin E and selenium) [24]. Low concentrations of RONS are necessary for cell
signaling and homeostasis [25]. However, when present in excess, RONS contribute to
disease pathogenesis [25]. Indeed, oxidative stress is implicated as a major underlying
component of several disease pathophysiologies, including metabolic syndrome, type 2
diabetes, atherosclerosis, and MAFLD [26–29].

Oxidative stress can contribute to CMD pathophysiology via numerous mechanisms,
such as endothelial dysfunction, disrupted mitochondrial function, and systemic inflam-
mation [30]. Furthermore, excessive accumulation of RONS can damage DNA, proteins,
and lipids, which can then exacerbate the aforementioned mechanisms [25]. For instance,
low-density lipoproteins (LDL) oxidized by ROS are readily scavenged by macrophages,
resulting in the generation of foam cells that are a major component of atherosclerotic
plaques [31,32]. Through its primary receptor, lectin-like oxidized low-density lipoprotein
receptor-1, oxidized LDL can then initiate endothelial dysfunction [33]. Endothelial dys-
function is mediated by activated endothelial cells and reduced NO availability [34]. As
endothelial cells are activated by inflammatory cytokines, such as those that are induced by
ROS, oxidative stress contributes to a dysfunctional endothelium [35]. Additionally, NO
reacts with O2

−, forming another reactive molecule called peroxynitrite [34]. Peroxynitrite
promotes protein and cell damage, ultimately contributing to cell death [36,37]. Many
CMDs are associated with reduced NO, contributing to endothelial dysfunction that then
intensifies disease [34].

Mitochondria are one of the major sources of ROS in cells, and therefore can con-
tribute to oxidative stress when their function is disrupted or antioxidant defenses are
overwhelmed [38,39]. Importantly, as mitochondria are responsible for FA β-oxidation,
dysfunction can result in excessive circulating FFA and further promote the accumulation
of lipids within non-aditpose tissues [40–42]. Aberrant lipid deposition in non-adipose
tissues contributes to CMD and will be discussed in the context of specific diseases below.

Importantly, excessive nutrients can drive oxidative stress in various tissues, thereby
contributing to the development of CMD. For example, high glucose can promote oxidative
stress in proximal tubule cells, leading to impaired transport function [43]. Moreover,
hypertriglyceridemia can induce ectopic lipid accumulation in key insulin-sensitive tissues
and drive oxidative stress [44]. A lipid infusion in healthy patients increases plasma FFA
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concentration and is sufficient to promote systemic oxidative stress and inflammation [45].
A high fat diet can promote endothelial oxidative stress and inflammation that can progress
CVD [46]. Indeed, reversing the accumulation of oxidized phospholipids in the liver can
improve MAFLD [47], suggesting interventions that target oxidative stress could be of
therapeutic benefit. Furthermore, oxidative stress has been linked to insulin resistance and
impaired glucose metabolism exacerbating the development of CMD [48].

3. Metabolic-Associated Fatty Liver Disease

Prevalence of non-alcoholic fatty liver disease (NAFLD), recently renamed metabolic-
associated fatty liver disease (MAFLD) [49], is on the rise, affecting an estimated 30% of the
adult population worldwide [50,51]. It was concluded that the previous nomenclature of
“non-alcoholic fatty liver disease” did not reflect current knowledge of the disorder and that
“metabolic-associated fatty liver disease” is more informative of disease etiology [52,53].
MAFLD represents a spectrum of disorders, ranging from benign hepatic steatosis (>5%
liver fat) to more malignant forms, such as steatohepatitis (>5% liver fat with chronic
inflammation and potential fibrosis), liver cirrhosis (>5% liver fat with widespread chronic
inflammation and fibrosis), and hepatocellular carcinoma (>5% liver fat with the presence
of malignant tumors). MAFLD is most often thought to manifest as a result of sedentary
lifestyle and poor dietary eating habits, though genetics factors also play a crucial role in
determining patient risk. Lifestyle modifications in diet and exercise have proven sufficient
for slowing progression and, in some cases, even reversing MAFLD in the early stages
(i.e., hepatic steatosis and steatohepatitis), though not very effective in more advanced
fibrotic stages. Some of the benefits of diet and exercise on reducing liver fat may be
due to reductions in body mass, as a 10% weight reduction has been shown to improve
MAFLD by nearly a full stage in the vast majority of patients [54]. However, dietary
changes can also be beneficial independent of weight loss, as Mediterranean style diets
high in fish, fruit and olive oil have been shown to reduce liver fat independent of weight
reductions, likely due to reductions in refined carbs, saturated fats and added sugars [55].
Moreover, increasing physical activity has been shown to be highly beneficial for reducing
liver fat. Exercise, typically defined as planned or scheduled deliberate physical activity, is
one of the cornerstones of MAFLD management, as both aerobic and resistance training
have proven to yield similar benefits for reducing liver fat [56]. While diet and exercise
are largely understood to reduce risk of most all non-hereditary diseases, it is worth
noting that changes in physical activity and diet are most often difficult to implement
and maintain. Furthermore, some patients are simply unable to make the necessary
changes to their physical activity and diet due to a variety of medical, social or economic
factors. Importantly, there are still no effective FDA-approved pharmacological treatments
for MAFLD, primarily due to an incomplete understanding of the disease pathogenesis.
Although GLP-1 agonists which promote weight loss may provide some promise in treating
MAFLD, improvements in the resolution of metabolic associated steatohepatitis (MASH)
have not been observed [57,58]. Numerous studies have demonstrated a strong association
between MAFLD and CVD, though neither a causative relationship nor mechanistic link
has yet been proven. However, mounting evidence supports dysregulated metabolism of
nutrients, oxidative stress and genetics as major drivers of both conditions.

3.1. Fructose and Progression of MAFLD

Fructose is a highly lipogenic substrate for the liver. One of the first studies to show
the lipogenic potential of fructose was in diabetic rats where fructose, but not glucose,
provided acetate and lactate for de novo synthesis of FAs, demonstrating differential sub-
strate utilization for these sugar sources [59]. Mechanistically, dietary fructose promotes
greater lipogenesis through generation of hexose phosphate metabolites which can activate
chREBP (Carbohydrate response element binding protein), a master regulator of the DNL
transcriptional programs [60,61]. Secondly, the microbial metabolism of fructose generates
acetate to feed hepatic DNL, independent of ATP-citrate lyase (ACLY), the rate limiting
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enzyme for conversion of citrate to acetyl-CoA [62]. These data likely explain a dual
mechanism of substrate flux and upregulation of DNL transcriptional programs by which
fructose is highly lipogenic. When fed in combination, saturated fat and fructose have
been shown to drive a metabolic-associated steatohepatitis or MASH-like phenotype in
thermoneutral housed mice, mimicking more closely the pathological condition observed in
humans [63]. Interestingly, many of the cardiometabolic symptoms of MASH, liver fibrosis
and dyslipidemia can be improved in this model by inducible genetic or pharmacological
inhibition of ACLY, [63] demonstrating that targeting the DNL pathway can be of therapeu-
tic benefit. The discrepancy between the two studies may be due to the different dietary
models used where liver ACLY deletion occurred from birth and higher concentrations
of fructose were administered [62]. Furthermore, rodent and human studies indicate that
consumption of fructose reduces fatty acid oxidation through decreased expression of fatty
acid oxidation genes (i.e., PPARα) as well as direct effects on modifying the mitochondrial
proteome [64,65]. Thus, consumption of fructose has been shown to result in increased
synthesis and reduced the breakdown of fats, providing a double hit for lipid accumulation
within the liver (Figure 1).
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Figure 1. Dietary and genetic drivers in Metabolic Associated Fatty Liver Disease (MAFLD). MAFLD
includes a spectrum of liver diseases which can include simple steatosis which can be benign. More
advanced stages of disease are marked by inflammation and Metabolic Associated Steatohepatitis
(MASH) and cirrhosis of the liver. Fructose can promote de novo lipogenesis in the liver as well
as reduce fatty acid oxidation thereby increasing TAG accumulation. Fructose can also have direct
effect in promoting oxidative stress in the liver. Saturated fats such as palmitate can also promote
TAG accumulation as well as ROS and inflammation in the liver. Dietary fatty acids of Omega-6 and
Omega-3 fatty acids can have contrasting effects on MAFLD, although this is area of controversy
(see text for details). Genetic factors such as PNPLA3 I148M, MBOAT7 and TM6SF2 can increase
the risk for MAFLD. Importantly, diet can interact with genetic factors to further exacerbate the risk
for MAFLD.
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In addition to being a substrate for DNL, fructose has also been shown to directly
promote oxidative stress. High fructose intake is associated with increased protein nitration
of intestinal tight junction proteins, due to elevated oxidative stress, which results in
increased gut leakiness, endotoxemia and steatohepatitis with liver fibrosis, that was
partially dependent upon Cytochrome P450 Family 2 Subfamily E Member 1 (CYP2E1) [66].
Fructose consumption has previously been associated with increased fibrosis severity and
hepatic inflammation suggesting it might be involved in regulating inflammatory gene
expression [67].

3.2. Dietary Fatty Acids and MAFLD

Dietary FAs are rapidly shuttled to the liver, where they can undergo re-esterification
back into TAGs for either storage within lipid droplets or secretion as VLDL cholesterol.
Alternatively, once in the liver, FAs can also be shuttled into the mitochondria to be used as
a substrate for β-oxidation and the production of adenosine triphosphate (ATP). Excess
FA uptake can overwhelm the capacity of the mitochondrial β-oxidation, leading to the
uncoupling of mitochondrial respiration and the generation of ROS, a major mediator of
low-grade inflammation and progression of MAFLD [68,69] (Figure 1).

While there have been mixed reports regarding the role of dietary FA saturation on
MAFLD, the majority of studies report that a high intake of saturated FAs increases hepatic
lipids, while a high intake of unsaturated FAs (i.e., poly- or mono-unsaturated) is associated
with reduced hepatic steatosis. With that said, the total calories consumed still appears to
be the most important factor when considering diet and risk of MAFLD, as a hypocaloric
diet low in fat composition has the same beneficial effect on reducing liver fat as the inverse
low-carb hypocaloric diet [70]. However, when total calories consumed are accounted for,
simply increasing the percentage of calories from saturated fats results in increased hepatic
fat content [71]. On the other hand, consuming a diet rich in mono-unsaturated fatty acids
(MUFAs) was shown to reduce liver fat by ~30% in type 2 diabetics [72]. In a randomized
double-blind clinical trial, patients receiving MUFAs in the form of olive oil supplementa-
tion also displayed a marked reduction in liver fat content post-intervention [73]. Similarly,
there is interest in omega-3 (n-3) polyunsaturated fatty acids (PUFAs) for their potential
anti-inflammatory properties. The pathways by which n-3 PUFAs reduce oxidative stress
and protect against MAFLD have been detailed previously [74]. Briefly, n-3 PUFAs have
been shown to be ligands for G-protein coupled receptor 120 (GPR120) where they mediate
anti-inflammatory effects and improve insulin sensitivity [75,76]. Moreover, n-3 PUFAs
are precursors for an important class of bioactive anti-inflammatory and pro-resolving
lipid mediators [77,78]. However, by large, the majority of studies investigating the ther-
apeutic potential of n-3 PUFAs in the treatment of MAFLD report a reduction in liver
fat as well as other markers of MAFLD [79]. Though currently the usage of dietary n-3
PUFAs for treatment of MAFLD remains controversial, as not all investigations have been
able to reproduce the proposed beneficial effects on reducing liver steatosis [80,81]. In
contrast to the effects of n-3 FAs, omega-6 (n-6) FAs have been proposed to be precursors
for inflammatory lipid species (i.e., Arachidonic Acid) [82] and promote the progression
of MAFLD [83]. However, patients receiving an n-6 PUFA-enriched diet displayed down
regulation of Proprotein convertase subtilisin/kexin type 9 (PCSK9), which the authors
speculated could be a potential mechanism behind the cholesterol-lowering effects of n-6
PUFAs [84]. Overall, saturated fats are involved in the progression of MAFLD, while the
exact role of n-3 and n-6 FAs requires additional mechanistic investigation.

In general, patients with MAFLD seem to consume a diet high in saturated FAs and
cholesterol with lower consumption of PUFAs and antioxidants [85,86]. There have been
mixed reports regarding the effects of saturated fat content on liver steatosis. Two studies
which investigated the effects of saturated fat content on liver fat report that 4 weeks
of a diet high in saturated fat has no effect on increasing intrahepatic TAGs in older or
overweight patients; however, 4 weeks of a low saturated fat diet reduced intrahepatic TAG
levels [87,88]. In contrast, 4 weeks of a hypercaloric diet high in saturated fats (2923 kcal;
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~52% sat. fat) resulted in a nearly doubling of intrahepatic TAGs when compared to
those fed a calorically controlled diet (2248; ~34% sat. fat) [89]. Moreover, in another
hypercaloric model, overfeeding with saturated fat increased intrahepatic TAGs by ~55%,
considerably more than overfeeding with unsaturated fat or carbohydrate (5% and 33%
increase in hepatic TAGs, respectively), differences that were largely attributed to changes
in adipose tissue gene expression with greater upregulation of inflammatory genes in
the high saturated fat group [90]. Further evidence supporting that saturated fat is more
metabolically harmful for the liver found that rodents fed a diet high in saturated fats had
greater hepatic steatosis than did those fed a diet high in fructose [91]. However, when fed
in combination, the addition of fructose to a high-fat diet greatly exacerbated hepatic fat
accumulation, suggesting an additive effect of fructose on hepatic lipid dysregulation [91].
In conclusion, reducing dietary saturated fat content while increasing intake of unsaturated
fats appears to be beneficial for reducing intrahepatic lipids, though a thorough mechanistic
understanding is still lacking.

3.3. Genetics of MAFLD

While environmental factors, such as physical activity and dietary factors, play a major
role in determining risk of disease, genetics also play a pivotal role in determining suscep-
tibility to CMD. Numerous studies have indicated that genetic variants can significantly
influence an individual’s risk of developing these conditions. Understanding the molecu-
lar and metabolic pathways that these genetic factors alter will be crucial in elucidating
potential molecular targets for future therapeutics. Several genes have been identified that
influence the risk of MAFLD, including Patatin-like phospholipase domain-containing
protein 3 (PNPLA3), Transmembrane 6 superfamily 2 (TM6SF2), and Membrane Bound
O-Acyltransferase Domain Containing 7 (MBOAT7). The variants in these genes have been
linked to increased hepatosteatosis and progression of MAFLD (Figure 1).

A common genetic variant in the PNPLA3 gene (rs738409, I148M), first identified in
2008, is widely known as the greatest genetic determinant of fatty liver disease (mean allele
frequency, MAF = 0.2622) [92–94]. The association of PNPLA3 I148M with MAFLD was
independently confirmed a few years later [95] and in numerous studies which have gone
on to link the variant to important liver disease phenotypes, including elevated serum
transaminases [92,96], liver fibrosis [96–98], and hepatocellular carcinoma [99]. The exact
mechanism by which PNPLA3 I148M results in MAFLD is somewhat controversial. The
wild-type enzyme exhibits hydrolase [93,100,101] transacylase [102] and acyltransferase
activity [103]. Initial studies suggested a gain of function for the variant in acyltransferase
activity leading to increased lipid synthesis [103], although this could not be replicated in
subsequent studies [100,104]. Neither whole body deletion nor overexpression of wildtype
PNPLA3 in mice results in hepatic steatosis [105,106], suggesting that PNPLA3 I148M is not
a simple loss of function, but rather a gain of function mutation [100,107]. Genetic knockin
of the I148M mutation in mice results in hepatic steatosis, which is greatly exacerbated
upon feeding a high sucrose diet [108], supporting a role for the mutant as a potential
neomorph [109] that gains a new function. Moreover, knockdown of PNPLA3 in the rat
reduces hepatic TAG levels suggesting the WT enzyme has some activity as an acyltrans-
ferase to promote fatty acid esterification [110]. Thus, the consensus by which the PNPLA3
variant causes steatosis seems to suggest a mechanism of disruption in hepatic TAG hy-
drolysis [93,108]. Some studies have suggested that the mechanism by which the I148M
variant causes MAFLD is through a loss of lipase function [111,112]. However, this does not
explain the fact that deletion of PNPLA3 in mice does not cause hepatic steatosis [105,106]
and that expression of PNPLA3 I148M is sufficient to promote TAG accumulation [107].
Moreso, in a chimeric mouse model with engrafted human hepatocytes, PNPLA3 I148M
further increased hepatic steatosis in Western diet-challenged mice, providing further evi-
dence for PNPLA3 I148M as a neomorph in the retention of hepatic TAGs [109,113]. More
recently, our work demonstrated that PNPLA3 is a novel binding partner of α/β hydrolase
domain-containing protein 5 (ABHD5, also known as Comparative gene identification 58;
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CGI-58), a lipase co-activator enzyme of Patatin-like phospholipase domain-containing
protein (PNPLA2) (also known as adipose triglyceride lipase; ATGL), the rate limiting
TAG hydrolase in the liver. The PNPLA3 I148M mutation was a gain of function for the
interaction with ABHD5, functioning to sequester PNPLA2 away from ABHD5 through
a competitive interaction with the co-activator [104]. The interaction of ABHD5 with
PNPLA3 was independently confirmed [114]. Thus, it is thought that the reduction in
TAG hydrolysis through loss-of-function mechanisms as well as sequestration of ABHD5
function within the liver may lead to a decrease in hepatic production and secretion of very
low density lipoprotein particles.

TM6SF2 is another gene that when mutated is highly associated with the risk of
developing MAFLD. TM6SF2 is abundantly expressed in the small intestine, liver and
kidneys of both mice and humans. However, the rs58542926 variant in TM6SF2, greatly
reduces its expression [115,116] and appears to result in a loss of function as the phenotype
observed in KO mice and hepatocyte cell lines mimic that of human patients [116,117]. The
TM6SF2 gene encodes a protein harboring a predicted nine transmembrane domains [116].
Currently the enzymatic function of TM6SF2 is not well understood, though it is believed
to have a role in cholesterol metabolism via the mobilization of neutral lipids and lipidation
of VLDL particles. The TM6SF2 KO mice were shown to have smaller sized VLDL particles,
though the number of newly secreted APOB100, a surrogate marker for the number of VLDL
particles, in plasma remained unchanged [118]. Similarly, in vitro experiments in HepG2
and Huh7 cell lines demonstrate that silencing of TM6SF2 results in elevated intracellular
TAG content while overexpression resulted in a reduction in intracellular TAGs [117]. These
findings suggest that the variant in TM6SF2 (rs58542926, E167K) promotes hepatic steatosis
by way of reducing hepatic TAG mobilization and the bulk transfer of neutral lipids into
VLDL particles, thereby resulting in hypocholesterolemia and hepatic retention of neutral
lipids [119]. Therefore, in patients with the rs58542926 variant, a diet high in fat content is
likely to be retained within the liver, further promoting the development and progression
of MAFLD.

MBOAT7 is a ubiquitously expressed lysophosphatidylinositol acyltransferase 1 that
facilitates the esterification of arachidonoyl-CoA to lysophosphatidylinositol, generating
the major molecular species within cell membranes: phosphatidylinositol. The enzymatic
activity of MBOAT7, makes it a distinctive contributor to the Land’s Cycle, which through
a series of deacylation and reacylation reactions alters phospholipid FA composition, im-
portant for generating membrane diversity [120,121]. Alteration of FA saturation within
phosphatidylinositols is known to influence the rate of DNL [122,123]. Moreover, the major
substrate of MBOAT7, lysophosphatidylinositol, has been proposed to be a crucial mediator
for progression of obesity-linked liver disease, as MBOAT7 knockdown in mice treated
with lysophosphatidylinositol lipids worsened hepatic inflammatory and fibrotic gene
expression [124]. Evidence indicates that the rs641738 mutation promotes development of
fatty liver by abolishing MBOAT7’s enzymatic activity, as liver specific genetic knockdown
in mice causes spontaneous steatosis within the liver, similar to human patients which
express the rs641738 variant [122,125]. Furthermore, MBOAT7 overexpression resulted in
mild improvements in hepatic steatosis and markers of liver injury, but garnered no sig-
nificant improvements in MAFLD pathology overall. However, the lack of improvements
in MAFLD pathology could be due to insufficient arachidonoyl-CoA, which could not be
ruled out [126]. Mechanistically, the variant has been proven to reduce fatty acid oxida-
tion and increase de novo lipogenesis within the liver via activation of sterol regulatory
element binding protein-1 (SREBP1) [122,124,125,127]. Of further interest, MBOAT7 was
recently identified as a novel regulator of Toll-like receptor (TLR) signaling [128], and TLR
stimulation is known to alter macrophage lipid homeostasis, which in turn promotes the
generation of mitochondrial reactive oxygen species [129,130], thereby representing a novel
mechanism for how MBOAT7 drives progression of MAFLD.
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Recently, a large GWAS meta-analysis using liver imaging and diagnostic-code as-
sessed NAFLD identified 17 genetic loci associated with MAFLD. The above-mentioned
loci of PNPLA3, MBOAT7 and TM6SF2 were identified in addition to novel loci, such as
Torsin1B (TOR1B) and PNPLA2 (ATGL) [131]. The mechanism by which PNPLA3 I148M
promotes MAFLD is thought to be partly due to reductions in PNPLA2 activity [104,114],
while Torsins are nuclear membrane protein/ER resident proteins that function as ATPases,
and have previously shown to be involved in the initial lipidation of VLDL particles [120],
possibly explaining the GWAS associations with MAFLD.

Interestingly, adiposity augments the effects of PNPLA3 I148M and TM6SF2 E167K
mutations on fatty liver disease without affecting other adiposity-related parameters,
suggesting a diet–gene interaction [132]. Indeed, in our own work, the interaction between
PNPLA3 I148M and ABHD5 was shown to be augmented by FAs [104], suggesting a
mechanism by which diet can interact with this genetic mutation. Moreover, FAs can
increase PNPLA3 protein expression by preventing its degradation and carbohydrates
increase the transcriptional regulation of PNPLA3 through activation of SREBP1 [133].
With regard to omega FAs and their interaction with gene variants, arachidonic acid (n-6
PUFA) intake has been shown to be associated with increased liver fibrosis in carriers of
the PNPLA3 I148M variant [134]. Moreover, in a small randomized control trial, a low
n-6:n-3 PUFA ratio was shown to reduce hepatic fat fraction, an effect which was greater in
I148M variant carriers [135]. These data suggest that dietary PUFA modulation may be a
promising therapeutic treatment for I148M carriers; however, more randomized control
trials and mechanistic studies are required to understand how PUFAs affect PNPLA3 I148M
driven MAFLD. Overall, these studies suggest that excess consumption of dietary sugars
and FAs can further exacerbate the negative effects of fatty liver promoting variants. A
summary of the in vitro, in vivo and clinical finding on MAFLD are summarized in Table 1.

Table 1. Summary of studies of interest investigating MAFLD.

Model Subject (Gene/Nutrient) Major Findings Citation

In vitro

Fructose Activates chREBP and DNL [60]

PNPLA3 I148M promotes MAFLD through reducing hepatic
TAG hydrolysis; sequestration of ABHD5 [93,100]; [104,114]

TM6SF2 Involved in secretion of hepatic TAGs [117]

MBOAT7 depletion increases hepatic TAGs [123]

In vivo

Fructose Provides lactate and acetate for DNL [59]

Metabolites activate chREBP [33]

Increases lipogenesis independent of ACLY [62]

ATP-citrate Lyase (ACLY) Inhibition reduces liver fat and ballooning;
reduces blood glucose, TAGs and cholesterol [63]

High fat vs. high fructose diet Dietary fat and cholesterol are primary
drivers of MAFLD [91]

PNPLA3
PNPLA3 deficiency does not promote
hepatic steatosis; nor does overexpression,
I148M is gain of function

[105,106]; [107]

TM6SF2 TM6SF2 is required for VLDL assembly [118]

MBOAT7 Loss of MBOAT7 promotes MAFLD while
overexpression improves [122,124,125,127]; [126]
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Table 1. Cont.

Model Subject (Gene/Nutrient) Major Findings Citation

Clinical

Fructose High consumption of fructose associates
with greater fibrosis [67]

Mitochondrial activity MAFLD reduces mitochondrial activity [68]

Fatty Acids

Hypocaloric diet low in fat harbors same
benefits as hypocaloric diet low in carbs [70]

MUFA enriched diet reduces
hepatic steatosis [72]

n-3 PUFA supplementation
improves MAFLD
n-3 PUFA supplementation
improves MAFLD

[73,80,81,128]
[73,80,81,128]

HFD increases AA in phospholipid fraction
of liver [83]

N-6 supplementation reduced liver fat
relative to high saturated fat diet [84]

Amount of dietary fat influences liver
fat content [71]

Low fat diet reduced liver TAGs. No effect
of HFD [88]

Saturated fat is more metabolically harmful
for liver [90]

Dietary patterns in MAFLD patients

MAFLD patients consume diets rich in
saturated fat [86]

MAFLD patients consume a diet rich in sat.
fat and majority are deficient in PUFAs
and MUFAs

[85]

TM6SF2 rs58542926 promotes MAFLD progression [115]

PNPLA3
Association with MAFLD, MASH, cirrhosis [92–99]

PNPLA3 I148M affects VLDL secretion [136]

While MAFLD is typically associated with and thought to be involved in the etiology
of CVD, some genetic mutations that cause MAFLD are protective against coronary artery
disease and CVD. The mechanisms by which variants in PNPLA3 and TM6SF2 promote
FLD through potential reductions in VLDL secretion are thought to protect carriers from ad-
verse cardiovascular complications through a reduction in plasma lipids [116–118,136,137].
However, several studies report no effect of the MBOAT7 mutation on cardiovascular
outcomes [138,139] however, others report an association with increased plasma lipids in
carriers of the variant as well as greater risk of venous thrombosis. [140,141].

4. Cardiovascular Disease

Cardiovascular disease is an umbrella term encompassing any diseases of the heart
and/or blood vessels. The underlying cause of most cardiovascular diseases and mortality
is atherosclerosis, a condition which is characterized by the accumulation of lipids in the
intimal layer of the arterial wall. Atherosclerotic plaques most often develop at blood vessel
bifurcations and other sites of disturbed laminar flow which in turn experience greater
shear stress. Atherosclerosis commonly develops as a result of high levels of blood lipids
(i.e., dyslipidemia), in which LDL cholesterol passes through leaky gap junctions in the
endothelium and enters the subendothelial space. The LDL particles which are deposited
into the subendothelial layer can be oxidized by ROS into oxidized-LDL. The retention
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of ox-LDL in the subendothelial layer leads to expression of adhesion molecules such as
Vascular cell adhesion molecule 1 (VCAM-1), which allow for the recruitment of monocytes.
Once recruited, the monocytes can differentiate into macrophages, which recognize and
engulf the ox-LDL molecules and generate foam cells. Vascular smooth muscle cells are
then recruited to the subendothelial space to produce collagen and elastin forming a fibrous
cap around the foam cells and generating the formation of an atherosclerotic plaque [142].

4.1. Fatty Acids and Risk of Cardiovascular Disease

It has been well documented that high intakes of saturated fatty acids (SFA) negatively
impact cardiovascular health through several metabolic pathways, including the promotion
of dyslipidemia, atherosclerosis and inflammation [143] (Figure 2). Thus, the American
Heart Association along with the World Health Organization recommend for healthy adults
to consume a diet that provides <10% of calories from SFA. However, some controversy
surrounds the topic of FA modulation for prevention of cardiovascular disease.
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Figure 2. Dietary and other drivers in Cardiovascular Disease (CVD). CVD includes a spectrum
disease which can include coronary artery disease, atherosclerosis, stroke and heart failure. Fructose
can have direct effect on CVD by increasing oxidative stress. Fructose can also promote de novo
lipogenesis in the liver to increase VLDL secretion and delivery of TAGs and cholesterol and the
accumulation of ox-LDL in the vascular system. Saturated fats can have direct effect on CVD by
increasing inflammation and ROS thereby promoting dyslipidemia and atherosclerosis. Omega-6
fatty acids can act as precursors for proinflammatory lipids leukotrienes and prostaglandins, which
can increase inflammation and ROS and promote vasoconstriction and platelet aggregation. Omega-3
fatty acids are precursors for the proresolving lipid mediators that can have protective effects on the
vascular system by promoting the resolution of inflammation, decreasing atherosclerosis progression
and increasing vascular relaxation.

Several recent meta-analyses give mixed reports on the effect of reducing intake of satu-
rated FAs, with some finding no beneficial effects in reducing cardiovascular risk [144,145],
others report improvements in cardiovascular outcomes [146,147]. It is possible that much
of the variation in results found in the meta-analyses mentioned above could be due to
heterogeneity in the exclusion criteria of participants as well as duration of the dietary inter-
ventions used within the studies being reviewed. Thus, the role that dietary saturated fats
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have on adverse cardiovascular outcomes is still unclear; however, the majority of evidence
points to improved cardiovascular outcomes for those that reduce intake of saturated fats.
This is further supported by work in rodent models which demonstrates that diets high in
saturated fats induce systemic inflammation via the release of pro-inflammatory cytokines
TNFα, IL-1 and IL-6, in a response that appears to be driven by microbiota release of endo-
toxin [148]. Furthermore, high dietary consumption of saturated fats has also been shown
to induce hyperlipidemia via increasing the expression of Peroxisome proliferator-activated
receptor-gamma coactivator 1β (PGC-1β) and SREBP1 in the liver, leading to increased
hepatic secretion of lipoprotein particles [149]. While hyperlipidemia is widely recognized
as the main driver of atherosclerosis, further evidence from animal studies show that a diet
high in saturated fatty acids promotes atherosclerotic plaque buildup [150].

A retrospective re-analysis of the Sydney Diet Heart Study and the Minnesota Coro-
nary Survey suggest that high PUFA intake may increase risk of coronary heart disease
mortality [151,152]. Conversely, data from the Oslo Diet–Heart Study show that increasing
PUFA intake provides modest protection against recurrent myocardial infarction, angina or
sudden death in patients with pre-existing coronary heart disease [153]. Moreover, a recent
meta-analysis found that a 5% increase in PUFA intake was associated with an 9% lower
multivariate-adjusted risk of heart disease mortality, in those without a prior diagnosis
of myocardial infarction but not in patients with heart disease [154]. While several dated
randomized control trials demonstrate that replacing intake of SFAs with PUFAs signifi-
cantly reduces the risk of developing cardiovascular disease and mortality [153,155–158].
Mechanistically, a meta-analysis of 16-human randomized control trials concluded that
consumption of n-3 PUFA is associated with improvements in endothelial function in-
cluding flow mediated dilation [159]. Moreover, several studies have shown that n-3 FA
exhibit anti-inflammatory properties which likely contribute to their cardioprotective effect
through reducing systemic inflammation [160,161].

Humans require two essential FAs in their diets, as neither n-3 nor n-6 essential FAs
can be synthesized by mammals. It has been noted that the ratio of n-6 to n-3 essential
FAs plays an important role in the proposed benefits of PUFA supplementation and re-
ducing risk of cardiovascular disease [162]. An increase in the omega-6/omega-3 fatty
acid ratio, in favor of omega-6 PUFAs is prothrombotic and proinflammatory, increasing
risk for atherosclerosis, obesity and diabetes [162]. Several investigations into dietary fat
composition and LDL oxidation have determined that diets enriched in n-6 FAs lead to
greater n-6 FA incorporation into LDL, which promotes the susceptibility of LDL particles
to oxidation, thereby promoting the formation of atherosclerotic plaques and coronary
artery disease [163–166]. Additionally, while n-6 FAs (linoleic acid) are metabolized into
pro-inflammatory lipid species (i.e., arachidonic acid), n-3 FAs (α-linoleic acid) are me-
tabolized into anti-inflammatory mediators EPA and DHA (20:5 and 22:6, respectively).
Arachidonic acid can be further metabolized by cyclooxygenase or lipoxygenase enzymes
into prostaglandins and leukotrienes, both critical mediators of a pro-inflammatory re-
sponse (Figure 2). Both n-3 and n-6 FAs compete with one another for interaction with the
same set of metabolizing desaturation, elongation and oxygenase enzymes. Moreover, the
lipid mediators that result from the metabolism of n-3 and n-6 FAs serve opposing functions
in inflammation, vasoregulation, and platelet aggregation [167]. A class of metabolites de-
rived from n-3 FA metabolism, referred to as specialized pro-resolving mediators (resolvins
and maresins), are inflammation-resolving lipids, which have been shown to improve
vascular relaxation, reduce arterial inflammation and promote atherosclerotic plaque stabil-
ity [168–170] (Figure 2). Interestingly, DHA has been shown to inhibit NF-kβ activation
of cytokine-stimulated ROS production as well as attenuate endothelial cyclooxygenase-2
induction through NADP(H) oxidase and protein kinase Cε (PKCε) inhibition, [171] both
of which are thought to be a key mechanism for DHA’s beneficial effects on endothelial
function and cardiovascular health. However, when n-6 FAs out-compete n-3 FAs for inter-
action with their shared enzymes, it leads to the generation of primarily pro-inflammatory
mediators (leukotrienes and prostaglandins) as opposed to the anti-inflammatory products
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of n-3 metabolism (DHA and EPA) [172,173]. In contrast, evidence suggests that diets very
high in n-6 FA content may be atherogenic and potentially serve as a substrate to fuel lipid
peroxidation and the generation of free-radicals [174]. Similarly, another study which iden-
tified individuals that were genetically predicted to have elevated plasma lipid arachidonic
acid were positively correlated with incidence of atherosclerosis [175]. Though, other lines
of evidence support a cardioprotective role of n-6 FAs [176]. Thus, more work is needed to
decipher the role of dietary n-6 FAs on cardiovascular health, specifically those that further
investigate the effects of n-6 supplementation on levels of chronic cardiac inflammation,
pro-resolving mediator levels, whole-body insulin resistance and plasma lipids as these are
potential mechanistic pathways for how n-6 FAs may impact cardiovascular health.

4.2. Simple Sugars and Cardiovascular Disease

Current evidence suggests that high consumption of fructose (>30% kcals/day) con-
tributes to risk of CVD, through a variety of mechanisms including a gain in body mass, dyslipi-
demia and endothelial dysfunction [177]. A meta-analysis of more than 300,000 individuals,
investigators found that those with the highest intake of fructose, through sugar sweetened
beverages (most often 1–2 drinks/day), were at ~26% increased risk of CVD [178]. As stated
above, fructose is a lipogenic substrate for the liver and many of the negative cardiometabolic
effects of fructose are likely due in part by the increased lipid flux from the liver through
greater secretion of TAGs within VLDL and LDL cholesterol (Figure 2). Both dietary sucrose
and fructose increase hyperlipidemia in baboons [179]. Moreover, fructose restriction in obese
children with metabolic syndrome improved lipid profiles and insulin sensitivity [180]. Mech-
anistically, fructose has been shown to induce advanced glycation end-products in rabbits fed
a diet high in cholesterol [181]. Moreover, ceramides have been suggested to be intermediary
signaling molecules that drive insulin resistance by promoting lipid uptake and impairing
glucose utilization [182] and dietary fructose restriction in obese children was shown to reduce
ceramide levels and improve insulin sensitivity index over nine days [183].

Several other mechanisms, ranging from inflammation to autonomic overactivity
have linked fructose consumption to cardiovascular dysfunction (Figure 2). A diet high in
fructose is known to induce cardiac fibrosis and hypertrophy, likely due in part to fructose
inhibiting nod-like receptor family pyrin domain containing 4 (NLRP4) a potential negative
regulator of pro-inflammatory cytokine secretion [184]. On the other hand, fructose stimu-
lates cardiac inflammation via the recruitment of macrophages to cardiomyocytes, resulting
in cardiac remodeling and dysfunction [185]. In terms of sympathetic nervous system
activity, a diet high in fructose elevated autonomic outflow to the heart and vasculature,
which preceded any alterations in arterial pressure or blood lipids [186]. Finally, a diet high
in fructose in mice increased the expression of VCAM-1 independent of plasma choles-
terol, suggesting that fructose may cause an increase in expression of vascular adhesion
molecules, which may play a role in the generation of atherosclerosis and CVD [187].

In addition to fructose, significant evidence suggests that glycolytic flux is also im-
portant in determining the risk of CVD. TP53-inducible glycolysis and apoptosis regulator
(TIGAR), a fructose-2,6-bisphosphatase, inhibits glycolysis and directs cellular glucose to
the pentose phosphate pathway (PPP). Consequently, diverting carbon sources to PPP
results in the production of NADPH which can function as an antioxidant [188]. Thereby,
TIGAR is protective against atherosclerosis by limiting ROS and promoting cholesterol
efflux from macrophages, suggesting that redirecting glucose away from glycolysis may be
beneficial for cardiovascular health [175].

4.3. Genetic Risk Factor of Cardiovascular Disease

Several collaborative large scale GWAS have successfully identified numerous genes
that are significantly associated with occurrence of CVD [189] (Figure 2). While it is beyond
the scope of this review to discuss all of them, it is important to note that genetic predis-
position to CVD often requires secondary insult from environmental factors. For instance,
single nucleotide polymorphism (SNPs) in apolipoprotein E (APOE) can cause hypercholes-
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terolemia with strong associations for development of coronary artery disease [189]. APOE,
a ligand for remnant lipoproteins that functions in the clearance of pro-atherogenic particles,
is defective in patients with hypercholesterolemia, resulting in elevated triglyceride-rich
remnant lipoproteins in the blood, which promotes development of atherosclerosis and car-
diovascular disease [190]. However, disease outcome can be determined by environmental
factors such as sedentary lifestyle, high alcohol intake and/or poor dieting in addition to
genetic risk [191]. APOE bind the low-density lipoprotein receptor (LDLr) which mediates
the uptake of cholesterol from lipoproteins in circulation to the liver, a crucial process in
lipoprotein metabolism. Mutations in LDLR can vary in the extent to which they affect
post-translational modification, though they all inevitably result in familial hypercholes-
terolemia and increased risk of developing atherosclerotic cardiovascular disease [192].
In addition, PCSK9 is another gene related to familial hypercholesterolemia and cardio-
vascular health that is attracting growing attention as a potential target to treat patients
at high risk of CVD. PCSK9 impedes hepatic uptake of LDL cholesterol by targeting the
LDLr for internalization and degradation, thereby reducing LDL cholesterol lysosomal
degradation [193]. Gain of function mutations in PCSK9 results in reduced LDLr levels
and subsequently hypercholesterolemia [194], while loss of function mutations increase
LDLr levels, thereby lowering circulating LDL cholesterol and providing protection from
coronary artery disease. Thus, PCSK9 antibodies (alirocumab and evolocumab) as well
as small interfering mRNAs that inhibit intracellular synthesis of PCSK9 (inclisiran) are
FDA approved drugs for adults with hypercholesterolemia and established or high risk
of CVD [195]. Overall, these studies support the causal link for hypercholesterolemia in
disease pathology of CVD. A summary of the in vitro, in vivo and clinical findings on CVD
are summarized in Table 2.

Table 2. Summary of studies investigating CVD.

Model Subject (Gene/Nutrient) Major Findings Citation

In vivo
PUFAs and CVD PUFAs protect against CAD

(non-human primates) [150]

Fructose and CVD Fructose consumption exerts negative
effects on CV health [177,179–181,184–187]

Human studies Dietary Fat and CAD in women Saturated and trans fats increase risk
of CAD [143]

Clinical PUFAs and CVD

Replacement of sat. fat with veg oil reduces
risk of CHD [153,155,156]

n-3 PUFAs negate adverse LV remodeling
after MI [161]

Meta-analysis

Dietary fat modulation and risk
of CVD

No effect observed [144,145,151]

Replacing Sat. fat with PUFAs lowers risk
of CVD [146,147,157,158]

Replace sat. fat with n-6 PUFA increases
CVD death [152]

n-3 PUFAs and
endothelial function

n-3 supplementation improves
endothelial function [159]

n-3/n-6 ratio and CVD risk n-3/n-6 ratio important for CVD risk [162,167,173,174,176]

APOE; LDLr;
PCSK9 LDL promotes atherosclerosis and CVD [189]; [192]; [194,195]

GWAS Lipid metabolism genes Genetic variants influence risk of CVD [141,189]
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5. Chronic Kidney Disease

Diabetes and hypertension are the leading causes of CKD, which is defined as de-
creased glomerular filtration rate (GFR; less than 60 mL/min per 1.73 m2), presence of
kidney damage biomarkers, or both, for at least 3 months duration [196]. In turn, CKD
can exacerbate CMD [197]. While it is widely accepted that these conditions are closely
interrelated, the exact mechanisms and links between them remain unclear. As with other
CMD, however, increasing evidence supports dysregulated nutrient metabolism, oxidative
stress, and genetics as underlying factors influencing CKD [198,199].

5.1. Ectopic Renal Fat Accumulation

Although associations between dysregulated lipid metabolism and CMD have been
well-described, the specific links between fatty kidney, CKD, and CMD remain poorly
characterized. For instance, do accumulated lipids directly cause cellular damage, or are
indirect pathways (e.g., oxidative stress and inflammation) activated by lipids to promote
disease? In any case, increasing evidence suggests that ectopic renal fat accumulation
contributes to CKD [200] (Figure 3).
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Figure 3. Nutrients and genetic factors contribute to chronic kidney disease (CKD). CKD is marked by
proximal tubule and podocyte and glomerular damage and can also be associated with mitochondrial
dysfunction and driven by ROS production. Lipids in the form of TAGs can accumulate to promote
lipotoxicity in the kidney which can lead to increased inflammatory mediator production. The
exact mechanistic pathways by which ectopic lipid accumulation causes CKD are not currently
understood but may involve ROS and mitochondrial dysfunction. Carbohydrates such as fructose
can be metabolized to uric acid, which can cause oxidative stress and mitochondrial dysfunction in
the kidney. Proteins that are not filtered properly can cause proteinuria, which can lead to greater
decline in renal function. Moreover, accumulation of heme proteins in the kidney can cause greater
injury. Genetic risk factor that affect lipid metabolism can also increase the risk of CKD (PNPLA3
I148M, ABHD5, MBOAT7, APOE) while other seems to be protective (TM6SF2), although the tissue
and kidney specific mechanism are not yet understood. Finally, genetic risk factors can interact with
lipid pathways to further drive CKD.
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For decades, studies have supported direct toxic effects of excessive lipid deposition
in non-adipose tissues [201,202]. Indeed, the first reports of nephron lipotoxicity came from
Moorhead and colleagues in 1982 [203]. They posited that following an inciting glomerular
injury that caused albuminuria, the liver would produce compensatory lipoproteins leading
to hyperlipidemia. These changes could then perpetuate glomerular or tubulointerstitial
disease [203]. Sustained or progressive damage can lead to CKD. On the other hand, FAs
might indirectly influence CKD outcomes via the production of numerous lipid media-
tors [204]. Arachidonic acid-derived products, such as leukotrienes, can promote kidney
damage through leukocyte recruitment [205]. In contrast, 8,9-epoxyeicosatrienoic acid
and 20-hydroxyeicosatetraenoic acid have been described as protective for the glomerular
filtration barrier [206,207]. Although the exact mechanisms underlying ectopic renal lipid
accumulation and CKD remain poorly defined, dyslipidemia has potential to disrupt the
kidney’s function as a major regulator of metabolism.

Intrarenal lipid accumulation is most commonly documented in renal proximal tubule
epithelial cells (RPTEC), podocytes, and mesangial cells [208]. Systemic inflammation, such
as that commonly encountered with CMD, promotes renal lipid accumulation that can
further exacerbate kidney fibrosis [209]. Furthermore, RPTEC constantly reabsorb and
secrete solutes to maintain homeostasis, and thus, have intense energy demands [210,211].
Unsurprisingly then, FA oxidation is a critical energy production pathway for RPTEC
as it is for other highly metabolic tissues, including the heart [212]. However, too much
FA exposure or dysregulated FA oxidation can negatively impact mitochondrial function,
as is known to happen in skeletal muscle [213]. While there is substantial support for
these types of detrimental effects in non-renal tissues, less is available for the kidney itself.
In a study investigating the role of the antioxidant sirtuin 3 in preventing lipotoxicity,
palmitic acid (PA) caused increased mitochondrial ROS and decreased oxidative capacity of
proximal tubules when sirtuin 3 was knocked out [214]. Although this study investigated
lipotoxicity in the context of overexpressing or knocking out a specific antioxidant, one
may be able to speculate that the same mitochondrial dysfunction would occur if excess PA
was overwhelming the cell. However, without more studies that specifically investigate
questions related to how excess FA affect kidney function, it will be difficult to understand
its impact in CKD. Indeed, a major limitation to currently available studies regarding
the relationship between and mechanisms underlying fatty kidney, CKD, and disrupted
renal nutrient metabolism is the lack of available models. To address this constraint,
kidney-specific knockout or overexpression models of altered lipid metabolism should be
developed, paying particular attention that they are not confounded by other whole-body
metabolic alterations, such as impaired glucose handling. An excellent example comes
from the work of Onodera et al., who successfully developed tubule-specific adiponectin
knockout and overexpression mouse models. In doing so, the authors were able to better
understand the importance of renal adiponectin to gluconeogenesis and implicated the
accumulation of ceramides in kidney dysfunction [215].

Unlike RPTEC, podocytes rely primarily on glucose utilization as opposed to fatty acid
metabolism [216]. Regardless, lipids may exert toxic effects in this cell type as well. In cul-
tured podocytes, PA induced mitochondrial superoxide and hydrogen peroxide formation,
which was implicated in the progression of diabetic nephropathy [217]. Xu et al. found
that PA induced mitochondrial and cytosolic ROS, ER stress, and apoptosis while altering
mitochondrial morphology and metabolism [218]. Furthermore, podocytes became insulin
resistant when treated with PA for 24 hr, although the mechanism in which it did so was not
elucidated [219]. Although studies demonstrate correlations between PA and dysfunctional
podocytes, clear mechanistic evidence remains scarce. Therefore, it will be important to
directly interrogate these mechanisms to gain a better understanding of overly abundant
fatty acids and CKD.

One possible explanation in how overabundant FA may cause dysfunction is that kid-
ney cells need to enhance metabolism via increased mitochondrial abundance and activity
to handle them [47,220]. As mitochondria are the most significant source of ROS in aerobic
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organisms, increased mitochondrial content or activity can contribute to heightened ROS
burden [220,221]. However, decreased β-oxidation can also result in mitochondrial dys-
function that contributes to disease [222]. Indeed, decreased FA oxidation was implicated
as the primary driver of fibrosis in a study by Kang et al. They found that kidney samples
from humans with decreased GFR and histological evidence of fibrosis had markedly
downregulated genes associated with FA oxidation [212]. Moreover, mice were more pro-
tected from renal fibrosis when FA oxidation was enhanced via Ppargc1a overexpression
or fenofibrate administration [212]. The detrimental effects did not seem to stem from
increased lipid content, as overexpression of the long-chain FA transporter, CD36, did not
cause increased susceptibility to renal damage compared to control mice, despite differ-
ences in fat accumulation. Thus, a sophisticated balance of mitochondrial activity and ROS
production is necessary for maintaining physiological processes.

5.2. Simple Sugars and Uric Acid

Besides lipids, simple sugars such as fructose have been implicated in kidney dysfunc-
tion. Endogenous fructose production in the kidney is limited to the proximal tubule [223].
In a fructokinase knockout model of diabetic mice (rendering them incapable of producing
endogenous fructose), renal damage was reduced and function was improved compared
to wild-type diabetic mice, despite similar levels of hyperglycemia [223]. As no fructose
was provided in the diet, this suggests that endogenous tubular production of fructose can
contribute to diabetic nephropathy [223]. The authors suggested that fructose may cause
tubular damage via the production of oxidants and uric acid [223]. Fructose also causes an
increase in proinflammatory cytokine production, which can further exacerbate oxidative
stress [224,225].

As mentioned above, the metabolism of fructose utilizes ATP in which the generated
AMP is metabolized to uric acid. Uric acid affects many physiologic processes that con-
tribute to CKD. For instance, mild hyperuricemia causes proximal tubule dysfunction and
further elevations will cause deposition of urate crystals into the kidney [226,227]. Many
other proposed mechanisms involve oxidative stress [226]. Indeed, metabolism of xanthine
to uric acid results in the formation of H2O2 and intracellular uric acid itself acts as a
prooxidant [228,229]. Uric acid additionally decreases nitric oxide and therefore supports
endothelial dysfunction [230]. Thus, fructose and its metabolite uric acid can contribute to
oxidative stress that further exacerbates disease.

Similar to increased lipid loading in the kidney which leads to heightened mito-
chondrial activity, excessive carbohydrates can also cause mitochondrial dysfunction. An
example exists in cases of type II diabetes, where hyperglycemia promotes increased mito-
chondrial activity to metabolize the excess glucose, resulting in enhanced ROS formation.
The increased oxidative state can then cause mitochondrial dysfunction [231]. Likewise,
uric acid also alters mitochondrial activity [232]. In this case, uric acid uncouples fructose
metabolism from mitochondrial respiration. However, other metabolic pathways such as
lipid synthesis are still supported [232–234]. This is one mechanism in which fructose and
uric acid contribute to fatty liver disease, and it could be possible that it contributes to
fatty kidney as well [234]. Further investigation into the fructose and uric acid metabolic
pathways would be beneficial to better understanding kidney health and disease (Figure 3).

5.3. Protein-Induced Kidney Damage

Finally, proteins are another class of nutrients that can contribute to CKD. Glomerular
diseases that result in proteinuria lead to declines in renal function [235,236]. This effect
largely seems to be mediated through tubule damage. For instance, treating human
proximal tubular HK-2 cells with excessive urinary protein led to apoptosis [237]. Primary
mouse RPTEC or HK-2 cells treated with albumin demonstrated decreased numbers of
autophagosomes, suggesting impaired autophagy [238]. Urine proteins may promote CKD
through the activation of the unfolded protein response [239]. Plasma proteins may also
promote inflammation in RPTEC, contributing to CKD [240]. Heme proteins additionally
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contribute to kidney disease via several mechanisms reviewed elsewhere [241–243]. As
with lipids and simple sugars, ROS production is a significant contributing factor to cellular
damage [244]. Hence, protein-induced renal damage is likely mediated through numerous
interrelated factors, such as inflammation and oxidative stress (Figure 3). A summary of
the influence of nutrient metabolism on CKD is presented in Figure 3 and a summary of
the in vitro, in vivo and clinical findings on CKD are summarized in Table 3.

Table 3. Summary of studies investigating aberrant nutrient metabolism and CKD.

Model Subject (Gene/Nutrient) Major Findings Citation

In vitro

Lipid-derived mediators Exaggerates or protects against CKD depending
on mediator and context [204]; [205]; [207]

Palmitic acid

Increased mitochondrial ROS and decreased
oxidative capacity in RPTEC; decreased cytosolic
and mitochondrial ROS, ER stress, apoptosis,
and insulin resistance in podocytes

[214]; [217]; [218]; [219]

Albumin Tubule apoptosis; decreased
autophagosome number [237]; [238]; [244]

Urinary protein Increases ROS-mediated activation of ERK,
leading to tubule damage and apoptosis

In vivo

Lipid Increased renal fibrosis [209]

Lipid-derived mediators Exaggerates or protects against CKD depending
on mediator and context [204]; [205]; [206];

Fructose Increased renal damage [223]

Uric acid Exacerbates tubule injury [227]

Meta-analyses Albumin Higher risk of CKD when increased in urine [235]; [236]

5.4. Genes Associated with Aberrant Nutrient Metabolism and CKD

While various SNPs have been associated with CKD and renal end stage
failure [245–247] we will focus on genetic factors related to nutrient metabolism that
influence CKD. Certain genetic mutations of PNPLA3 have been recently associated with
impaired kidney function. Obese children homozygous for the I148M mutation of PN-
PLA3 had decreased GFR compared to children with other genotypes and this effect was
exacerbated in children with NAFLD [248]. Similarly, Di Sessa and colleagues assessed
1036 pediatric patients, some of which were clinically normal, some were prediabetic, and
finally, some carried the I148M polymorphism of PNPLA3. Patients with prediabetes had
lower GFR compared to those with normal glucose tolerance and this effect was further
exaggerated in those with the I148M mutation [249]. Other regulators of lipid homeostasis,
such as ABHD5, can also result in kidney disturbances if mutated. One case report details a
male with a homozygous mutation in ABHD5, resulting in Chanarin–Dorfman syndrome,
otherwise known as neutral lipid storage disease with ichthyosis [250]. This condition
is characterized by congenital ichthyosiform erythroderma and accumulation of neutral
lipid vacuoles in leukocytes, liver, eyes, kidneys, and other tissues. Rarely, as in this case,
patients with Chanarin–Dorfman syndrome present with proteinuria [250]. Currently, little
is known about the mechanisms for how the PNPLA3 I148M might contribute to CKD.
One idea is that the variant might lead to an accumulation of lipids within the podocytes
leading to a subsequent increase in inflammation [251], as the PNPLA3 gene has been
shown to be highly expressed in kidney podocytes and lipid accumulation in these cells
has been linked to obesity-related glomerulopathy [252]. Alternatively, PNPLA3 I148M
may disrupt the function of ABHD5 as had been proposed for the liver [104]. A mutation
in MBOAT7, which is another genetic risk factor for NAFLD, is also associated with greater
CKD [253]. The rs626283 variant of MBOAT7, which seems to result in a loss of function
mutation in phosphatidylinositol metabolism [254] was associated with a greater CKD



Antioxidants 2024, 13, 87 19 of 33

disease stage [253]. Further large-scale analysis studies are required to determine the
association between rs626283 and CKD.

In contrast, patients with a particular mutation in transmembrane member 6 superfam-
ily 2 (TM6SF2) seem to be protected from renal disease. Musso et al. found that nondiabetic,
nonobese adults with the TM6SF2 E167K polymorphism had increased GFR with less albu-
minuria and CKD compared to individuals without the mutation [255]. Later, Marzuillo
et al. recapitulated the increased GFR trend in obese children with the mutation. The
significant positive correlation was seen in patients with and without NAFLD, although it
was stronger in the former group [256]. It is interesting to note that mutations in PNPLA3,
MBOAT7, and TM6SF2 are associated with fatty liver disease; however, TM6SF2 has a
contrasting effect on CKD compared to mutations in PNPLA3 and MBOAT7. As the links
between diet, genes associated with lipid metabolism, and CKD are still poorly understood,
further studies will be necessary to understand the mechanisms underlying the effects
of these mutations on kidney function and would be benefitted by kidney-specific mod-
els of aberrant nutrient metabolism. Nevertheless, the effect of PNPLA3 mutations are
well-understood in the liver so one may be able to speculate that similar interactions (see
Section 3.3 above) may occur in the kidney.

GWAS loci that have been associated with CVD, also have been implicated in CKD.
Among polymorphisms in PKCS9 and Apolipoprotein B-100 (ApoB), mutations in ApoB
were identified as being associated with greater risk of developing kidney disease among di-
abetic patients [257]. Indeed, ApoB levels have been correlated with a decline in eGFR [258].
Moreover, patients with familial hypercholesterolemia have reduced eGFR and are at
greater risk of CKD [259,260]. Overall, these studies further support a role for dyslipidemia
as a driving factor in CKD; however, further mechanistic studies are required to understand
the direct relationship between these two diseases. A more in depth analysis of lipid abnor-
malities in CKD is provided elsewhere [261]. Conversely, CKD can also exacerbate CVD as a
mouse model of kidney impairment has been shown to increase atherosclerotic progression,
effects which were dependent on IL-17a [262] Gene mutations and their reported effects on
various CMD are reported in Table 4.

Table 4. Gene mutations and their effect on risk of developing MAFLD, CVD and CKD.

Gene Mutation MAFLD CVD CKD Result of Mutation
on Function

PNPLA3
rs738409 Increase Decrease Increase Gain of function

/Neomorph

TM6SF2 Increase Decrease Decrease Loss of function

MBOAT7 Increase No effect Increase Loss of function

APOB Increase Increase Loss of function

LDLr Increase Increase Unknown Loss of function

PCSK9 GOF = increase
LOF = no effect

GOF = increase
LOF = decrease Unknown Both GOF and LOF

identified

6. Intersection of MAFLD and CKD

While significant evidence links CVD with MAFLD, with the two typically going
hand-in-hand, the links between MAFLD and CKD is less understood. As discussed above,
some common genetic mutations that increase risk for MAFLD also increase the risk to
CKD, but others seem to dissociate the two from one another. Below we discuss some of
the evidence linking MAFLD to CKD.

6.1. Epidemiology of MAFLD and CKD

Due to parallels in traditional risk factors and comorbidities, as well as a lack of
prospective studies, it has been difficult to determine a causational relationship between
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MAFLD and CKD [263]. Nevertheless, increasing evidence links the presence of MAFLD
with increased incidence of CKD. A meta-analysis of 11 cross-sectional and 9 longitudinal
human studies (29,282 participants) shows that the presence of MAFLD is associated
with a 2-fold greater risk of CKD development (increased prevalence odds ratio of 2.12),
which remained significant after adjusting for the covariates age, BMI, metabolic syndrome,
diabetes, smoking status, ethnicity, cirrhosis, waist circumference, (Homeostatic Model
Assessment -index, and duration of follow-up [264]. In terms of steatosis and fibrosis, it was
strongly correlated with increases in prevalence and severity of CKD [264]. Another meta-
analysis study reported that prevalence of CKD increased in individuals with MAFLD, in
both diabetic and non-diabetic populations [263]. It was found that among patients with
MAFLD incidence of CKD increased to 20–55% compared with 5–35% in those without
MAFLD [263].

To date, there is a growing number of prospective longitudinal cohort studies which
consistently show that MAFLD, diagnosed by either biopsy, ultrasonography, or liver
enzyme levels, is significantly associated with an increased incidence of CKD [263,265–269].
Worth mentioning is that most of these studies retained a significant association between
MAFLD and CKD even after controlling for numerous confounding factors. For example, a
systematic review of nine observational studies found that over a median follow-up dura-
tion of 5.2 years, MAFLD was associated with a nearly 40% increased risk of development
for CKD, even after adjusting for common risk factors and potential confounding variables,
such as age, sex, BMI, hypertension, smoking, diabetes, baseline GFR, and the use of certain
medications [270]. While data from cross-sectional and retrospective studies are robust,
analysis of prospective randomized control trials is needed to determine a causal effect of
MAFLD on driving CKD.

6.2. Renin-Angiotensin System Activation

While there are numerous factors that link the two conditions, it has been sug-
gested that altered renin-angiotensin system (RAS) activation and dysregulation of lipid
metabolism leading to impaired antioxidant defense are key points of focus for researchers
investigating the association between MAFLD and CKD [271]. Interestingly, adipocytes
have been shown to produce up to 30% of the total circulating angiotensinogen as well
as other components of the RAS system at lower levels [272]. Moreover, the expression
of RAS components within adipocytes seems to be nutritionally regulated, as it has been
shown that fasting can produce increases in angiotensinogen mRNA expression within
white adipose stores [273]. Similarly, in rodent models, hyperglycemia has been shown to
induce angiotensinogen expression in white adipose tissue [274]. Thus, it can be suggested
that in states of excess adiposity and metabolic dysregulation, such is commonly seen in
MAFLD, constituents of the RAS system may be overexpressed subsequently leading to a
state of chronically increased RAS activation.

Within MAFLD, RAS activation is known to promote hepatic fibrosis while RAS block-
ade using angiotensin II receptor blockers, such as losartan and olmesartan, or angiotensin-
converting enzyme inhibitors, such as perindopril and lisinopril, have been shown to
mitigate the advancement of fibrosis in patients with MASH [275]. More specifically, an-
giotensin II is reported to have a detrimental impact on the liver, as it promotes hepatic
insulin resistance, DNL and production of IL-6 and tumor growth factor-β proinflammatory
cytokines [255]. Whereas, RAS activation in the kidney is implicated in renal ectopic fat
deposition, which is a known factor contributing to oxidative stress and inflammation
via its impact on glomerular hemodynamics, particularly through its effects on efferent
arteriole vasoconstriction [276].

6.3. Lipid Dysregulation

As previously mentioned, substantial epidemiological evidence suggests that MAFLD
is an independent risk factor for CKD. However, there is also research which states that
metabolic syndrome is also involved in the progression of CKD, at least in part, through
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activation of hepatic macrophages. Mechanistically, metabolic syndrome has been said to
induce a state of chronically increased levels of FFA in the plasma, mainly due to an inabil-
ity to suppress FA release from adipocytes by way of insulin insensitivity [277]. This can
result in an abundance of FAs which circulate to the liver, leading to hepatic macrophage
activation creating a proinflammatory cytokine response, which further perpetuates insulin
resistance [278]. Additionally, the activation of hepatic macrophages has been shown to
increase activity of the renin-angiotensin-aldosterone system and oxidative stress, thereby
promoting vascular and renal damage [279]. Thus, altered nutrient metabolism, inflamma-
tion, and oxidative stress likely bridge MAFLD and CKD.

7. Conclusions and Future Perspectives

The incidence of CMD, which includes MAFLD, NAFLD and CKD, has reached epi-
demic proportions due to increased consumption of diets high in saturated fats and fructose
and modified lifestyles. Further understanding the mechanisms by which these nutrients
mediate their detrimental effects and how they interact with our genes will be of utmost
importance to identify the targets of therapeutic interest. In addition, understanding the
tissue-specific mechanisms by which some genetic mutations increase susceptibility to cer-
tain aspects of CMD but are protective against others will be another area of continued focus.
Moreover, GWAS continues to identify risk factors that promote [131] or protect [280,281]
from cardiometabolic disorders such as MAFLD. Identifying the mechanisms of these
protective variants should provide additional therapeutic targets. The current review is
not without its limitations, as many of the studies cited herein were conducted in either
isolated cell cultures or animal models and thus further investigations are required for
translation of the findings to human health. Moreover, some of the topics covered, such as
the effects of n-6 fatty acids on inflammation and cardiovascular health, remain contentious
in the field. All sources of information used in the generation of this review were retrieved
from PubMed.gov or the Centers for Disease Control and Prevention and the World Health
Organization’s public websites.
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