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Abstract: Heavy metals are often found in soil and can contaminate drinking water, posing a serious
threat to human health. Molecular pathways and curation therapies for mitigating heavy metal
toxicity have been studied for a long time. Recent studies on oxidative stress and aging have
shown that the molecular foundation of cellular damage caused by heavy metals, namely, apoptosis,
endoplasmic reticulum stress, and mitochondrial stress, share the same pathways as those involved
in cellular senescence and aging. In recent aging studies, many types of heavy metal exposures have
been used in both cellular and animal aging models. Chelation therapy is a traditional treatment
for heavy metal toxicity. However, recently, various antioxidants have been found to be effective
in treating heavy metal-induced damage, shifting the research focus to investigating the interplay
between antioxidants and heavy metals. In this review, we introduce the molecular basis of heavy
metal-induced cellular damage and its relationship with aging, summarize its clinical implications,
and discuss antioxidants and other agents with protective effects against heavy metal damage.
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1. Introduction

Heavy metals are those with a density >4.5 g/cm3 and include lead, chromium, cad-
mium, mercury, and arsenic [1]. Heavy metals are often found in soil and can contaminate
drinking water, posing a serious threat to human health [2,3]. Heavy metals exist in natural
sources such as volcanic eruption, natural deposits, or sea salt spray (lead), tectonic and
hydrothermal events (chromium), dust storm or wildfire (cadmium), degassing or weather-
ing of rock (mercury), and weathering of rock or microbial colonization (arsenic). People
are exposed to heavy metals from mining, tanning, and textile dyeing (chromium), battery
manufacturing (cadmium), pesticides and fertilizers (mercury), and smelting (arsenic) [4].
Heavy metal exposure damages many organs [5,6], and its effect in the prenatal stage is
critical, especially during neural development [7]. Heavy metal toxicity depends on the
absorbed dose, route of exposure, and duration of exposure—acute or chronic. Heavy metal
toxicity can lead to various disorders and can result in excessive damage due to oxidative
stress induced by free radical formation [8]. In this review, the molecular mechanisms un-
derlying heavy metal-induced toxicity are discussed from the perspective of mitochondrial
dysfunction related to oxidative stress and endoplasmic reticulum (ER) stress, including
their interaction, as well as protective agents against heavy metal exposure.

2. Molecular Pathways in Heavy Metal-Induced Cytotoxicity and Relation with Aging

Heavy metals induce cytotoxicity by molecular mechanisms, including oxidative
stress associated with mitochondrial dysfunction, apoptosis, necrosis, and ER stress, which
are interconnected. Recent advances in systems biology and in vitro label-free proteomic
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approaches have revealed that metal exposure induces significant changes in protein expres-
sion during mitochondrial dysfunction, oxidative stress, ubiquitin proteome dysfunction,
and mRNA splicing [9].

2.1. Oxidative Stress, Mitochondrial Stress, and Mitochondrial Dysfunction

Mitochondrial dysfunction is one of the main phenomena in heavy metal-induced
cytotoxicity. Heavy metals can damage mitochondria both inside the organelle and on the
organelle surface, and these mechanisms interact with each other.

2.1.1. Heavy Metals Affect Cellular Redox Homeostasis (Figures 1 and 2)

Normal cellular metabolism forms reactive oxygen species (ROS) and is controlled by
antioxidant enzymes. An imbalance between ROS production and defense causes oxidative
stress. Excessive ROS damages cells through three basic pathways: lipid peroxidation of
membranes, oxidative modification of proteins, and DNA damage [10]. Lipids are abun-
dant in cellular membranes, and lipid peroxidation by ROS causes membrane dysfunction,
such as a decrease in membrane fluidity and an increase in membrane leakiness, leading
to mutilation of membrane proteins, enzymes, and receptors. Proteins are also a target
of ROS. ROS cause various post-translational protein modifications such as oxidation of
sulfur-containing side chains, chlorination of side chain amines, oxidation of histidines and
tryptophans, formation of dityrosine leading to oligomerization, fragmentation, destabi-
lization, aggregation, and/or increased degradation of proteins [11]. DNA is susceptible
to ROS attack, particularly guanine, which is easily oxidized to 8-hydroxyguanine and
8-hydroxy-2-deoxyguanosine. Such abnormalities lead to inappropriate protein formation
and cell damage.
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Figure 1. Overview of heavy metal toxicity. Heavy metal exposure causes a disruption of cellular
redox homeostasis.

Antioxidants, including superoxide dismutase (SOD) and glutathione peroxidase,
scavenge excessive ROS, such as superoxide anions, hydroxyl radicals, and hydrogen
peroxide, produced in the mitochondria and protect against cellular damage from highly re-
active ROS, preventing cellular damage caused by ROS. Heavy metals impair mitochondrial
function by increasing ROS production and decreasing antioxidant activity.
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Figure 2. An effect of excessive reactive oxygen species on membrane lipid peroxidation, oxidative
modification of proteins and DNA damage.

ROS production is associated with heavy metal-induced mitochondrial damage. In-
creases in the expression of SOD1 and p62/Sequestosome 1 (SQSTM1) and an increase of
cleaved caspase 3 are induced in the spleen following lead exposure, which corresponds to
an increase in oxidative stress, apoptosis induction, and dysregulated autophagy [12]. In
addition, lead increases ROS levels in the liver [13,14] and induces mitophagy via the phos-
phatase and tensin homolog (PTEN)-induced kinase 1 (PINK1)/Parkin pathway [15]. Lead
damages the intracellular antioxidant system in hepatocytes [16] and blood [17], and an
increase in ROS promotes DNA damage and inflammation [18–20] in hepatocytes [21,22],
lungs [23], and plasma [24]. The increase in MDA levels upon Cd exposure suggests
the promotion of lipid peroxidation by ROS in rat kidneys [25]. Mercury increases ROS
production in erythrocytes [26] and neutrophils [27].

Heavy metals disturb the redox balance by decreasing antioxidant activity. Lead has
the propensity to inhibit glutathione reductase, which converts oxidized glutathione (GSSG)
to reduced glutathione (GSH) [28]. Cadmium damages mitochondrial function by reducing
the activity of antioxidant enzymes. GSSG reductase activity is significantly decreased in
the livers of cadmium-injected rats [29]. Cadmium also decreases SOD activity and GSH
concentration in rat kidneys [25]. Mercury exposure dysregulates the oxidant detoxification
system, thioredoxin1, and thioredoxin reductase1 redox system in neutrophils [27]. In
summary, heavy metals disrupt the balance of antioxidants, increase harmful ROS, and
impair mitochondrial function, disturbing cellular redox homeostasis.

Heavy metals affect the balance of the redox system through another pathway, fer-
roptosis. Ferroptosis was proposed as an iron-dependent form of non-apoptotic cell death
in 2012 [30]. Ferroptosis is dependent on an intracellular level of free catalytically active
iron [31]. Iron overload leads to the Fenton reaction, leading to overproduction of ROS as
well as causing mitochondrial dysfunction by increased mitochondrial ROS production.
ROS produced by iron overload results in cell death. The glutathione system plays a critical
role in the regulation of ferroptosis. A key component is the Xc system, composed of
SLC7A11 and SLC3A2, which facilitates the uptake of cystine while exporting cellular
glutamate. Cystine is then converted to cysteine, an essential precursor for GSH synthe-
sis, through the actions of GCL and GSS. The Xc system is a primary target of erastin,
a ferroptosis inducer. Erastin not only interacts with the Xc system, but also binds to
voltage-dependent anion channels 2 and 3 (VDAC2/3), leading to an increase in mito-
chondrial ROS generation [32]. GSH serves as a cofactor for the selenoprotein glutathione
peroxidase 4 (GPX4), which plays a critical role in reducing lipid hydroperoxides to their
corresponding alcohols [33]. These processes effectively prevent the harmful accumulation
of lipoperoxidation products.
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Arsenic increases cytoplasmic and mitochondrial iron accumulation through VDAC3
expression and down-regulation of SLC7A11 and GPX4 mRNA and protein expression
in mouse brain and PC-12 cells [34]. It also induces ferroptosis in testicular cells, de-
creases GPX4, SLC7A11, Iron-Responsive Element-Binding Protein 2 (IREB2), and increases
VDAC3 protein expression [35]. Cadmium induces ferroptosis in PC12 cells by increasing
cellular iron content, repressing GPX4 expression [36]. This also happens in mouse sem-
iniferous tubules and Leydig cells accompanying a significant decrease in GPX4 and an
upregulation of SLC7A11 protein expression [37]. Mercury intoxication causes damage to
rat astrocytes and rat liver cells through ferroptosis, with an increase in cytoplasmic ROS,
lipid peroxidation, and decreased GPX4 activity [38]. Mercury also causes iron homeostasis.
Hg exposure causes an increase free iron levels through heme degradation [39] or alteration
of hypoxia-inducible factor-1α signaling [40], leading to ferroptosis. Lead exposure in-
creases free iron levels in PC12 cells and causes ferroptosis [41]. Lead also affects SLC7A11
expression in neural stem cells [42] and inhibits GPX4 mRNA expression in chicken nerve
tissue [43], all of which indicate ferroptosis.

2.1.2. Heavy Metal Toxicity Affects the Mitochondrial Surface

The mitochondrial electron transport chain (mtETC) is located in the inner mitochon-
drial membrane and maintains mitochondrial respiratory functions. This is inhibited by the
blockade of enzyme activity upon heavy metal exposure [44], which promotes the opening
of mitochondrial permeability transition pores (mPTP). Mitochondrial dysfunction induces
the apoptotic pathway, and mPTP regulates apoptosis and necrosis. This means that the
maintenance of the mitochondrial membrane potential (mMP) and ROS by mPTP plays
an important role in a molecular pathway of heavy metal-induced cytotoxicity. Mutations
in mitochondrial DNA (mtDNA) induce various phenotypes related to aging and cancer,
which can also be induced by heavy metal exposure [45,46]. Histologically, mitochondrial
dysfunction is characterized by mitochondrial edema. Lead promotes mPTP opening and
harms the mMP, leading to a decrease in ATP production in rat proximal tubular cells [47].
Chronic lead exposure leads to mitochondrial edema in mice hepatocytes [48]. Mercury
induces the release of cytochrome c from mitochondria, followed by mPTP opening [49].
Cadmium and mercury induce neurotoxicity via mETC dysfunction, intracellular ROS
formation, mMP decrease, and mPTP opening mediated by mPTP assembly in the rat neu-
ronal cell line PC12 [50]. Mercury and cadmium inhibit the mitochondrial respiratory chain
and rapidly dissipate mMP, promoting both necrosis and apoptosis, which cause cell death
in rat hepatoma cells [51]. Cadmium leads to mPTP opening and causes mitochondrial dys-
function in the rat liver [52]. Chromium induces mitochondrial dysfunction and mitophagy
mediated by ATF4 via ER stress [53]. In conclusion, heavy metal exposure adversely affects
various components of the mitochondrial surface, disrupting the mtETC, promoting mPTP
opening, and influencing the mMP, all of which contribute to mitochondrial dysfunction.

2.2. Heavy Metal Exposure Induces ER Stress and Mitophagy (Figure 3)

Heavy metal exposure triggers ER stress by accumulating unfolded proteins in the
endoplasmic reticulum (ER) damaged by heavy metal binding; this is called the unfolded
protein response (UPR). In the ER stress pathway, the misfolded proteins induced by
toxic agents are detected by binding immunoglobulin protein (BiP)/glucose-regulating
protein 78 (GRP78) and multiple signaling pathways [54]. Pathways, including the protein
kinase R (PKR)-like endoplasmic reticulum kinase (PERK)-eukaryotic initiation factor 2α
(eIF2α)-activating transcription factor 4 (ATF4) pathway, inositol-requiring enzyme 1α
(IRE1α)-X-box binding protein 1 (XBP1) pathway [55] and activating transcription factor
6 (ATF6) pathway, are subsequently activated, leading to autophagy or mitophagy [56].
Mitophagy controls mitochondrial function by processing damaged mitochondria for
digestion and maintenance of mitochondrial health. Lead specifically binds to GPR78, the
major downstream target of the UPR induced by ER stress [57,58]. Cadmium also induces
ER stress and ferroptosis [59]. Cadmium activates the PERK-eIF2α-ATF4 pathway and
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triggers autophagy activation [60,61]. Mercury induces GRP78 overexpression in rat glioma
cells, and the effect of mercury on ER stress is dose-dependent [62]. Chromium induces
GPR78 overexpression, inducing ER stress. Chromium activates the PERK-eIF2α-ATF6
pathway, fostering crosstalk between ER stress and mitochondrial dysfunction [53].
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Figure 3. Effect of heavy metals on the endoplasmic reticulum.

2.3. Heavy Metal Exposure Induces Apoptosis, Necrosis, and Necroptosis

Heavy metal exposure induces cell toxicity and death via apoptosis, necrosis, and
necroptosis, all of which are part of a molecular cascade of heavy metal cytotoxicity. Dur-
ing necroptosis, two members of the receptor-interacting protein kinase (RIPK) family,
RIPK1 and RIPK3, are activated to phosphorylate mixed lineage kinase domain-like protein
(MLKL), which compromises the cell membrane to execute cell death. Apoptosis and necro-
sis can occur simultaneously because the signaling pathways are interconnected [63,64].
ER stress activates apoptosis of cells [65,66], and ER stress pathways are also activated
by necroptosis [67]. The difference between these pathways, apoptosis or necroptosis,
depends on the cell type and is an important therapeutic target [68]. Lead acetate induces
the overexpression of interleukin 6 (IL-6) in the brain and excessive activation of nerve
cells, leading to necrosis [69,70]. High doses of lead acetate elevate the levels of caspase
8, caspase 9, and Bax in the brain, kidney, and liver [4], whereas a low dose of lead in-
duces the apoptotic pathway in the brain [71]. Lead also activates necroptosis induced
cell death in an olfactory cell line, elevating PIPK3 and MLKL [72]. Mercury induces the
release of cytochrome c from mitochondria into the cytosol, which activates caspase 3 and
induces apoptosis in the human leukemia cell line HL-60 [49]. Cadmium intake increases
the expression of RIPK1, RIPK3, and MLKL to activate the RIPK3-dependent necroptotic
pathway [73]. Cadmium exposure increases the levels of proapoptotic proteins (Bax, B-cell
lymphoma 2 (Bcl-2), caspase 3, and caspase 9) and pronecropotic proteins (RIP, RIP3, and
MLKL) [74,75]. Cadmium induces apoptosis at low concentrations in a dose-dependent
manner and necrosis at high concentrations [76]. The effects of cadmium on apoptosis and
necrosis differ during the cell cycle. Cadmium induces apoptosis in the G0 and S phases
and necrosis in the S and M phases but hardly induces apoptosis in the G1 phase [77].
Chromium induces apoptosis via two major pathways: p53-dependent and independent
pathways. Chromium leads to an increase in p53 protein levels in human lung epithelium
and fibroblasts, leading to apoptosis [78,79]. Chromium induces apoptosis independently
of p53 activation by causing mitochondrial instability, leading to capase-3 activation and
subsequent damage to the mitochondria [80].
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2.4. Heavy Metal Exposure Affects MicroRNAs (Figure 4)

Heavy metals induce alterations in microRNAs (miRNAs) that regulate the expression
of various genes and signaling pathways [81]. miRNAs are non-coding, short, single-
stranded RNAs (21–23 nucleotide-long); they regulate gene expression through RNA
silencing and mitochondrial function and homeostasis, as well as modulate cell metabolism
by targeting known oncogenes and tumor suppressor genes of metabolism-related sig-
naling pathways [82]. Several human cancers are caused by the dysregulation of miRNA
function. Recent studies have confirmed that miRNA dysregulation plays a role in carcino-
genesis in many tissues [83]. The mRNA expression codons differ between the nucleus and
mitochondria [84], and research on the cross-interaction of expression with miRNA found a
new axis, including the regulation of mitochondrial function by miRNA [85,86]. Cadmium
exposure causes miRNA overexpression and has negative effects on the kidneys and other
organs [87]. Cadmium alters miRNA expression in the renal cortex. Cadmium induces the
overexpression of 44 and suppresses the expression of 54 miRNAs [88]. Cadmium over-
load positively and negatively affected several miRNAs (185 miRNAs) in renal epithelial
cells [89]. Of the miRNAs suppressed by cadmium induction, miR-125a and miR-125b
function as anti-apoptotic elements by increasing the expression of Bcl2 and decreasing
that of Bax, Bak, caspase-9, and caspase-3 [90]. Cadmium also alters miRNA expression
in other organs. Cadmium decreases the expression of 12 miRNAs in liver cells (HepG2
cells) and impairs liver functions, such as lipid and fatty acid transportation, cholesterol
metabolism, and fatty acid oxidation [91]. In the spleen, cadmium decreases miR-33-5p
and increases AMPK, leading to AMPK-mediated autophagy [92]. Cadmium upregulated
miR-101 and miR-144 in human bronchial epithelial cells and targeted cystic fibrosis trans-
membrane conductance regulator (CFTR), leading to respiratory damage [93]. miR-193,
mi-R221, and miR-222 are upregulated in ovarian tissues exposed to cadmium [94], leading
to apoptosis [95].
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Other heavy metals also affect miRNAs and damage various organs. Lead promotes
inflammation and apoptosis in mammary glands via the circRNA-05280/miR-146a/IRAK1
pathway [96]. Lead also increases miR-155 and activates inflammation in the MAPK
pathway or production of inflammatory cytokines, such as TNF-α, IL-1β, and IL-6 [97].

2.5. Heavy Metal Exposure Affects Tumor and Senescence Pathways Involving p16/p21/p53

Heavy metal exposure impairs the p16/p21/p53 transcription pathway, which plays a
critical role in cellular stress responses [98]. Heavy metal exposure alters the activation or
inactivation of p53 both directly and indirectly through ROS [99]. Cadmium disrupts native
p53 conformation, inhibits DNA binding, and downregulates the transcriptional activation
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of p21 in human breast cancer MCF7 cells [100]. Cadmium regulates p21/p53/p16 protein
expression and mitochondrial dysfunction, leading to cellular senescence in bone marrow-
derived mesenchymal stromal cells [101]. Long-term exposure to cadmium downregulates
p16 via FNA hypermethylation in lymphocytes [102]. Lead exposure alters the promoter
methylation rates of p16 in children [103]. Chromium exposure induces p16 methylation,
decreases its expression, and damages lung cells [104]. Chromium increases CpG1 methy-
lation levels of p16 and epigenetic modifications that damage human bronchial epithelial
cells [105].

2.6. Relation with Aging

Aging is the process by which cells and organs cease to work properly or lose their
function. Aging can be caused by similar mitochondrial dysfunction as occurs in heavy
metal toxicity. ROS overproduction causes irregular signaling in mitochondria [106], accel-
eration of membrane instability by lipid peroxidation [107], and dysfunction of the DNA
repair system [108], leading to malfunction of biological molecules and accumulation of
irregular proteins and lipids. All this leads to cellular senescence [109].

Aging is also associated with ER stress. Accumulation of UPR plays a vital role in
the cellular dysfunction which occurs in aging [110] These UPRs alter solubility, function
inappropriately, and accumulate as plaques in various organs [111]

3. Pathophysiology of Heavy Metal-Induced Clinical Disorders

Considering the various pathways involved in heavy metal cytotoxicity, the patho-
physiology of clinical disorders caused by heavy metal exposure involves several organs,
exhibiting acute and chronic toxicity. In addition, complex interactions occur between each
heavy metal, and their detrimental effects vary in different organisms. The new Bayesian
network approach can be extended to incorporate information about metal–organism inter-
actions [112]. A mixture of heavy metals results in an increased toxic effect compared with
individual components at the same concentration [113].

3.1. Manifestation of Acute Heavy Metal Toxicity

The acute toxicity of heavy metal exposure induces various diseases and symptoms,
including abdominal pain, anorexia, dyspepsia, diarrhea, fatigue, anxiety, numbness,
memory and concentration difficulties, leukopenia, and thrombocytopenia.

Acute exposure to cadmium damages the respiratory system. Cadmium-containing
nanoparticles accumulate in the lungs and penetrate the membranes of organelles, including
mitochondria, damaging not only the lungs but also other organs [114]. One case report
suggested that a patient with acute cadmium inhalation developed severe pneumonitis
and died within 25 days [115].

Acute toxicity of arsenic causes gastrointestinal damage. Symptoms begin with a
garlic-like taste, followed by dysphagia and severe vomiting. Acute paralytic syndrome
occurs after the first symptom and ends with death within a few hours [116].

High-dose lead exposure causes acute hemolytic anemia. Lead inhibits the enzymes
aminolevulinic acid synthetase (ALAS), aminolevulinic acid dehydratase (ALAD), and
ferrochelatase, which are essential for heme synthesis, and their absence can cause ane-
mia [117].

The acute toxicity of nickel originates from its combination with thiols, which results
in the formation of Ni-thiol complexes [118]. These complexes generate free radicals that
damage the body [119]. The clinical symptoms can be divided into two stages: immediate
and delayed. Immediate effects include vomiting, irritation, headaches, and insomnia.
Delayed effects include vertigo, palpitations, coughing, cyanosis, chest tightness, and
lassitude [120].

Acute cadmium exposure can cause liver damage. Acute hepatotoxicity involves two
pathways: the first, caused by the direct effects of cadmium, leads to initial injury, and
the second causes subsequent injury due to inflammation. Primary injury appears to be
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caused by the binding of cadmium to sulfhydryl groups on critical mitochondrial molecules,
causing oxidative stress, mitochondrial permeability transition, and mitochondrial dysfunc-
tion. Secondary injury is caused by the activation of Kupffer cells by triggering a cascade
of events involving several types of liver cells and a large number of inflammatory and
cytotoxic mediators [121].

3.2. Manifestation of Chronic Heavy Metal Toxicity (Figure 5)

Chronic toxicity due to heavy metal exposure affects a broad range of organs and
manifests as neurological deterioration, cardiovascular diseases, reproductive problems,
nephropathy, respiratory dysfunction, bronchitis, pulmonary edema, asthma, emphysema,
hepatitis, anemia, hyperpigmentation, and cancer. In the following sections, we delve into
each manifestation of chronic heavy metal toxicity.
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Figure 5. Effect of heavy metals on clinical disease.

3.2.1. Neurological Symptoms

Heavy metals induce neurodegeneration through dyshomeostasis, ROS formation, and
mitochondrial dysfunction [122]. Heavy metal exposure deteriorates mitochondrial quality.
Calcium transporters in the mitochondrial membrane stabilize the mMP, and the disruption
of calcium homeostasis triggers apoptosis in cells, which causes neurogenerative damage.
Recent system biology analyses revealed that changes in protein expression associated
with heavy metal exposure are related to neurodegenerative diseases, such as Parkinson’s
disease and Alzheimer’s disease [9,123]. For example, PINK1/Parkin has a regulatory
role in cleaning damaged mitochondria and underscores the importance of maintaining
mitochondrial function in neural tissues, especially concerning Parkinson’s disease.

Among heavy metals, lead easily crosses the blood–brain barrier and acts as an
alternative to calcium ions, which leads to interference with the normal action of calcium
ions in the brain [124], affecting the uptake, release, and binding of GABA in the rat
brain [125], calcium release through ryanodine receptors, and calcium signaling, thereby
causing neurotoxicity in the rat brain [126].

Cadmium-induced oxidative stress has severe implications for neurological damage.
ROS levels are increased in neuronal cell types, and mTOR and MAPK pathways are
activated and are one of the causes of cytotoxicity in these cells [127]. Cadmium may be a
risk factor for Alzheimer’s disease [128].

Mercury also damages neural cells. Methyl mercury is lipid-soluble and, therefore,
easily crosses the blood-brain barrier. Mercury induces neurogenerative damage through
oxidative stress and mitochondrial dysfunction, which can cause neurodegenerative dis-
eases, such as Alzheimer’s disease [129,130] and amyotrophic lateral sclerosis [131]. Mer-
cury is also considered a cause of Minamata disease, a neurodegenerative disease that
occurs in Japan [132].
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Heavy metals cause neuronal damage as individual metals, but mixtures of heavy
metals also are harmful. Simultaneous exposure to lead, mercury, and cadmium causes
greater brain damage in mice with reduced motor coordination and impaired learning and
memory abilities than exposure to individual metals [133].

3.2.2. Cardiovascular Symptoms

Heavy metal exposure induces hypertension through oxidative stress, impaired ni-
tric oxide signaling, modified vascular response to neurotransmitters, disturbed vascular
muscle Ca2+ signaling, renal damage, and interference with the renin-angiotensin system,
whose mechanism involves multiple axes owing to the complexity of the vascular sys-
tem [134]. Blood pressure regulation is related to calcium signaling and renal function.
Mitochondrial dysfunction in the myocardial tissue triggers cardiovascular dysfunction.

Lead increases the levels of endothelin, norepinephrine, angiotensin-converting en-
zyme, and thromboxane [135], leading to increased blood pressure and organ hypoperfu-
sion. An animal study suggested that lead intoxication results in hypertension, dyslipi-
demia, atherosclerosis, and cardiac complications [136]. In humans, chronic lead exposure
is associated with hypertension [137]. A meta-analysis suggested that a two-fold increase
in blood lead levels was associated with a rise of 1–1.25 mmHg in systolic blood pressure
and 0.6 mmHg in diastolic blood pressure [138]. A human autopsy study revealed that
lead exposure was associated with aortic atherosclerosis [139]. Elevated blood or bone lead
levels are correlated with increased cardiovascular mortality [140].

Cadmium induces endothelial dysfunction and accelerates the formation of atheroscle-
rotic plaques, which cause cardiovascular damage [141]. Cadmium exposure can also cause
hypertension [142]. Cadmium exposure increases the risk of coronary heart disease, stroke,
and peripheral arterial diseases [143].

3.2.3. Chronic Kidney Disease

Heavy metal exposure leads to chronic kidney disease [144]. Lead accumulates in the
kidney, and lead exposure inhibits glomerular development, resulting in renal dysfunc-
tion [145]. Chronic exposure to lead causes histopathological changes in the kidneys, such
as progressive tubulointerstitial nephritis, characterized by the infiltration of leukocytes,
interstitial fibrosis, and tubular atrophy [146]. Epidemiological studies have suggested that
high serum levels of lead are associated with a higher risk of renal injury [147]. Furthermore,
a high level of serum creatinine has been correlated with serum levels of lead [148].

Cadmium has a long half-life and tends to accumulate in the renal cortex for a long
time [149]. Chronic exposure to cadmium has been associated with end-stage renal dis-
ease [150]. Cadmium also accumulates in the proximal tubules, causing Fanconi syndrome.
Workers who work in cadmium-exposed areas tend to have kidney stones and tubulointer-
stitial nephritis [151].

Mercury induces neurological and nephrological damage. Mercury induces H2O2
formation and oxidative stress in rat kidney mitochondria [152] and causes glomerular and
tubular dysfunction [153]. Arsenic also causes nephrological toxicity. Arsenic exposure
induces ROS production in the kidneys and causes cellular damage and death [154]. An
epidemiological study suggested that arsenic exposure is associated with albuminuria and
proteinuria [155]. Arsenic in urine is associated with the prevalence of chronic kidney
disease [156].

3.2.4. Hepatitis

Heavy metals cause long-term damage to the liver. Cadmium accumulates in the liver
and causes various metabolic disturbances [157], such as increases in hepatic, mitochondrial,
and microsomal lipid peroxidation, as well as the depletion of glutathione [158].

Although its exact mechanism of action remains unknown, lead induces hepatotoxic-
ity [48]. Lead accumulates in the liver and elevates aspartate aminotransferase (AST) and
alanine aminotransferase (ALT) levels, leading to inflammation and hepatocyte death [20].



Antioxidants 2024, 13, 76 10 of 31

In India, lead-exposed individuals tend to have higher serum ASL, ALT, and bilirubin
levels than healthy individuals [159], reflecting hepatotoxicity [160]. High-dose chromium
exposure causes liver damage [161].

Arsenic destroys DNA, lipids, and proteins, damaging membranes, cells, and tissues
in the liver [162]. Arsenic-intoxicated rat showed increased levels in thiobarbituric acid
reactive substances, lipid hydroperoxides, protein carbonyl content and conjugated di-
enes, reduced DNA, decreased levels of the activities of membrane-bound ATPases, and
increased levels of AST and ALT in the liver. Histological damage such as the extensive
inflammation, dilated sinusoids, degeneration of hepatocytes with necrosis, vacuoliza-
tion, and inflammatory cell infiltration also occurred. One study suggested that people
who drink water containing more than 0.05 mg/L of arsenic show significantly more
hepatomegaly than those who drink water containing less than 0.05 mg/L of arsenic [163].

3.2.5. Reproductive Problems

Heavy metals can damage the reproductive system. They affect the male [164] and
female reproductive systems [165] through various mechanisms.

Lead can bind to histidine in protamine and change the molecule’s conformation [166],
resulting in sperm destabilization [167] and fertility issues. Lead can decrease testosterone
levels [168], and the ROS produced by lead can cause severe damage to sperm quality and
quantity [169,170]. Lead decreases the levels of several hormones, such as estradiol and
LH, that are vital for reproduction [171]. Lead also elevates metallo-matrix proteins, which
causes abnormalities in the placenta [172]; lead-exposed females have a high percentage of
miscarriages [173].

Arsenic can damage the reproductive system. Arsenic decreases sperm number
and mobility and affect sperm DNA [174,175]. Women exposed to arsenic experience
disturbances in sex hormones and infertility [175].

Cadmium blocks calcium channels that play an important role in sperm fertiliza-
tion [176]. Cadmium affects the transcription of a sperm protein (CatSper) [177] and
damages sperm function [178]. It also decreases sperm mobility, causing infertility [179].

Mercury produces ROS, which causes infertility. Mercury decreases the number of
sperms and alters their shape [179]. Mercury induces an imbalance in sex hormones [180],
and low-dose mercury exposure causes stillbirth, spontaneous abortion, and infertil-
ity [181].

3.2.6. Cancer

Heavy metals promote the production of ROS and chronic oxidative stress through
various pathways including ferroptosis, which lay the groundwork conducive to carcino-
genesis [182,183]. Three main mechanisms have been proposed to drive carcinogenesis:
(1) disruption of cellular redox control, resulting in DNA damage, (2) suppression of es-
sential DNA repair systems, resulting in genomic instability and accumulation of critical
mutations; and (3) activation of oncogenic pathways and inactivation of tumor suppressors,
disrupting the balance between cell proliferation and death [184].

Arsenic is a carcinogenic agent that induces oxidative DNA damage. It causes ROS
production and breaks single-stranded and double-stranded DNA, forming 8-hydroxy-2′-
deoxyguanosine (8-OHdG), which causes nucleotide conversion and tumor formation [185].
Bowen’s carcinoma is caused by arsenic exposure [186]; some lung tumors have also been
reported to be associated with arsenic toxicity [187].

Cadmium has been implicated as a carcinogen and manifests its effects through
several pathways. Cadmium produces ROS and increases the expression of c-Fos and c-Jun,
which promote cancer [188]. Cadmium inhibits vital DNA mismatch repair systems and
increases genomic instability, resulting in oncogenesis [189]. Cadmium can cause prostate
cancer [190] and its inhalation can cause renal cancer [191].

Transcriptome analysis revealed that arsenic and cadmium exposure altered 167 genes
which correlate with tumorigenesis, cell cycle, apoptosis, and oxidative stress in human
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lymphoblastoid cells [192]. Another study revealed that low-dose cadmium altered several
gene expressions associated with maintaining cellular redox homeostasis such as increasing
glutathione synthesis and antioxidant capacity, facilitating the survival or death response,
and repairing damage or stimulating degradation [193].

4. Drugs for Protection against Heavy Metal-Induced Injury and Their
Molecular Mechanisms

Chelating therapy is traditionally used to treat heavy metal toxicity. Moreover, while
antioxidants are not generally used clinically, recent advances in molecular pathways have
revealed that new compounds targeting oxidative stress effectively protect cells from heavy
metal-induced cell damage (Table 1).

There are two types of protective drugs in terms of timing of use. Post-treatment drugs
are used after exposure to heavy metals, whereas pretreatment intake is considered before
exposure. Chelating agents and stoichiometric antioxidants are used for post-treatment
strategies, and some antioxidants are used for pretreatment.

4.1. Posttreatment Drugs
4.1.1. Chelating Agents

Chelation therapy is the primary treatment used to reduce the toxic effects of heavy
metals. Chelating agents bind toxic metal ions and form complex structures that are easily
excreted from the body, removing them from intracellular and extracellular spaces [194].
Chelators mobilize metals in tissues that mediate their excretion through the kidneys
in the urine or the liver in bile. Concerns regarding enterohepatic recirculation and re-
nal reabsorption of heavy metals are overcome by the use of lipophilic chelators, which
can excrete larger amounts of heavy metals than aqueous chelators via bile; this is be-
cause aqueous chelators facilitate transport within the blood and excretion via the kidney,
whereas lipophilic chelators exhibit greater penetration of cellular membranes, includ-
ing those within the central nervous system, to chelate intracellular elements [195]. The
major chelating agents reported to be effective against heavy metal toxicity are British anti-
Lewisite (BAL), dimercaptopropane-l-sulphonate (DMPS), meso-2,3-dimercaptosuccinic
acid (DMSA), sodium 2,3, monoisoamyl DMSA (MiADMSA), monomethyl DMSA
(MmDMSA), monocyclohexyl DMSA (MchDMSA), calcium disodium ethylenediamine
tetraacetic acid (CaNa2EDTA), calcium trisodium diethylenetriaminepentaacetate,
D-penicillamine, tetraethylenetetraamine (TETA) or trientine, nitrilotriacetic acid (NTA),
deferoxamine (DFO), and deferiprone (L1). BAL was the first reported antidote with two
sulfhydryl and hydroxyl groups to arsenical nerve gas [175]; the heavy metal binds to
a thiol group, resulting in the formation of a stable complex and excretion from the kid-
ney [196]. DMPS is a water-soluble analog of dimercaprol with fewer side effects than
dimercaprol [197] and is mainly used to alleviate arsenic and mercury poisoning [198].
DMSA is an analog of dimercaprol with a sulfhydryl group and is a water-soluble, non-
toxic, orally administered metal chelator that has been used as an antidote for heavy metal
toxicity since the 1950s [199]. Other DMSA analogs have been developed to increase the
excretion efficacy [200]. CaNa2EDTA is a water-soluble chelator in which the calcium
atom is replaced by lead ions to form a water-soluble complex that is excreted from the
kidney and is mainly used for treating lead toxicity [194]. Penicillamine is often used to
chelate copper [201]. TETA and NTA are major chelators of copper [202]. DFO is an organic
substance that binds tightly to trivalent ions and is used to treat aluminum toxicity [203].
Deferiprone is a major chelator of iron [196].

4.1.2. Stoichiometric Antioxidants

Oxidative stress is one of the primary contributing mechanisms in metal toxicity,
offering a strong rationale for the exploration of antioxidant therapy as a treatment for
heavy metal toxicity. Free radical scavenging (chain-terminating) antioxidants, such as
vitamins E and C, are chemicals with large resonance-stabilized electron clouds that work as
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electron donors [204] and vitamin C works through the activation of biological antioxidant
defenses, such as GSH-linked enzymes [205,206]. Astaxanthin also prevents oxidative stress
induced by cadmium [207], copper [208], and cobalt [209] and alleviates cell damage caused
by these metals. Selenium [210], and lycopene [211] have been reported as antioxidants
against the toxicity of heavy metals, such as cadmium, lead, and chromium.

Other agents have also been reported to be effective in protecting against exposure
to heavy metals. The use of probiotic yogurt may be an effective and affordable approach
for combating toxic metal exposure through the protection of indigenous gut microbiota
in humans, resulting in a faster decrease in copper (34.45%) and nickel (38.34%) levels in
the blood [212]. Gossypin, a flavonoid glycoside originally isolated from Hibiscus vitifolius,
has antioxidant and anti-inflammatory activities and has shown considerable promise for
improving recovery in animal models [213].

4.2. Pretreatment Drugs
4.2.1. Antioxidants

Pretreatment with several antioxidants is effective in preventing heavy metal overload
through direct detoxification of ROS and introduction of some antioxidant enzymes. Mela-
tonin acts as an antioxidant and prevents cadmium and lead overload [214,215]. Coenzyme
Q10 works as a NF-E2-related factor 2 (Nrf2) activator and antioxidant [213] Quercetin is a
free radical scavenger that can alleviate oxidative stress and protect against lead-induced
ER stress by modulating the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (PKB,
AKT) and inositol requiring 1 (IRE1)/c-Jun amino-terminal kinase (JNK) pathways in rat
liver [216].

Curcumin, a bioactive substance found in turmeric, is widely used as a dietary supple-
ment and has promising metal toxicity-ameliorating effects related to its intrinsic antioxi-
dant activity [217]. Sinapic acid ameliorates cadmium-induced nephrotoxicity involving
oxidative stress, apoptosis, and inflammation via NF-κB downregulation [218].

Mitochondrial protection is another target for protection against heavy metal toxicity.
Melatonin reduces mitochondrial fission and prevents cadmium-induced cell damage [219].
Metformin also functions as a mitochondrial protection agent by reducing mitochondrial
fission and fragmentation and suppressing lead-induced [220] and cadmium-induced
toxicity [221].

4.2.2. Senolytic Drugs

Senolytic drugs that induce apoptosis in senescent cells effectively protect against
heavy metal toxicity [222]. Senolytic drugs are classified as BCL family inhibitors, PI3K/AKT
inhibitors, or FOXO regulators [223,224]. Heavy metals induce phosphorylation of Bcl-2
through activation of the JNK pathway, which is not associated with G2/M cell cycle arrest;
hyperphosphorylated Bcl-2 protein can inhibit zinc-induced cell death compared to the
hypo-phosphorylated mutant form, indicating that the regulation of Bcl-2 by phosphoryla-
tion is an important part of the cell response to heavy metal-induced stress [225]. ROS and
heavy metal exposure activate AKT via the PI3K-dependent pathway [226].

Multiple molecules investigated in anti-aging research have been identified as senolytic
drugs. Resveratrol prevents cadmium, lead, and manganese toxicity via the JNK or AKT
pathways [227–229]. Fisetin is a natural flavonoid found in fruits and vegetables [230] and
elicits senolytic activity through the AMPK/SIRT1, autophagy, mitochondrial apoptosis,
and Rho GTPase signaling pathways, alleviating lead- and mercury-induced toxicity [231].
Mitoquinone (MitoQ) is an antioxidant molecule that targets mitochondrial ATP production
and restores mMP, inhibiting lead-induced toxicity [232].
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Table 1. List of Compounds alleviating heavy metal toxicity.

Compound Dose Model Mechanism Other Information References

Vitamin C 500 mg/L drinking water
20–40 mg/kg Cadmium-treated rat Oxidative stress

Increases SOD and glutathione
peroxidase, and regulates StAR

gene expression

Gupta et al. [233],
El-Neweshy et al. [234],

Ayinde et al. [235]

Vitamin E 100–300 mg/kg, 100 IU/kg Cadmium-treated
rat or rabbit

Oxidative stress
Nrf-2 pathway

Increases SOD and glutathione
peroxidase and regulates StAR

gene expression.
Decreases Bax and caspase-9

genes and increase Mfn1, Mfn2,
and Bcl-2

Activates the Nrf-2 pathway.

Gupta et al. [233], Amanpour
et al. [236], Fang et al. [237],
El-Boshy et al. [238], Chen

et al. [239], Beytut et al. [240],
Ayinde et al. [235]

80 µg/mL Lead-treated PC12 cells Oxidative stress Decreases ROS levels. Yang et al. [241]

L-carnitine 100 mg/kg Lead-treated rats Oxidative stress Reduces MDA and elevates
TAC levels. Abdel-Emam et al. [242]

10–100 mg/kg Cadmium-treated rats or mice Oxidative stress Increases SOD, GSH, and
CAT levels.

Iftikhar et al. [211],
Abu-El-Zahab et al. [210]

1 mM Nickel-treated
Neuro-2a cells Mitochondrial function

Decreases ROS and MDA levels,
maintains the mitochondrial

membrane potential, and
increases mitochondrial DNA

copy numbers and
transcript levels.

He et al. [243]

Folic acid 0.4 mg/kg Lead-treated rat Oxidative stress Downregulates Bc1-2 and
upregulates Bax levels. Quan et al. [244]

Astaxanthin 10 mg/kg Cadmium-treated mice Oxidative stress Increases CatSper1 and decreases
DNA fragmentation. Saberi et al. [207]

100 mg/kg Copper-treated rat Oxidative stress Increases G6PD, GR, and
GST levels. Bayramoglu et al. [208,245]

0.001–10 µM Copper-treated RWPE-1 cells Oxidative stress
Decreases MDA and increases

MMP, SOD, GSH, and
CAT levels.

Meng et al. [246]

1–20 µM Cobalt-treated MG-63 cells Oxidative stress Regulates Bcl-2 and JNK. Li et al. [209]
Selenium 0.87 mg/kg Cadmium-treated mice Oxidative stress Increases SOD and CAT levels. Abu-El-Zahab et al. [210]

Lycopene 4 mg/kg Cadmium-treated rats Oxidative stress Increases SOD, GSH, and
CAT levels. Iftikhar et al. [211]
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Table 1. Cont.

Compound Dose Model Mechanism Other Information References

Fisetin 25 mg/kg or 50 mg/kg Lead-treated mice AMPK/SIRT or autophagy
pathway

Inhibits apoptosis, decreases Aβ,
and increases Aβ removal

through neprilysin in the brains
of mice.

Yang et al. [247].

30 mg/kg Mercury-treated mice Mitochondrial apoptosis
Rho GTPase signaling

Prevents cytochrome c release,
reduces ERK 1/2 and caspase

3 levels, and increases
RhoA/Rac1/Cdc42 levels in

the hippocampus.

Jacob et al. [248]

Quercetin 25–50 mg/kg Lead-treated rat IRE1/JNK and PI3K/Akt
pathway

Decreases ROS and increases
PI3K and PKB/Akt activity. Liu et al. [249]

Curcumin 15–400 mg/kg Cadmium-treated mice or rats Oxidative stress Increases GSH, CAT, SOD and
decrease MDA level.

Eybl et al. [250], Deevika et al.
[251], Tarasub et al. [252],

Akinyemi et al. [253], Kim
et al. [254], Aktas et al. [255],
Oguzturk et al. [256], Zoheb
et al. [257], Algasham et al.
[258], Sharm a et al. [259],

Kukongviriyapan et al. [260]

30–200 mg/kg Lead-treated mice or rats Oxidative stress
Erk1/2 and JNK pathway

Increases GSH, CAT, and SOD
and decreases MDA level.

Abubakar et al. [261,262],
Changlek et al. [263], Zahid
et al. [264], Alhusaini et al.
[265], Soliman et al. [266],

Dairam et al. [267]

5 µM Copper-treated SH-SY5Y cells, Oxidative stress

Increases SOD and decrease
MDA level. Upregulates

pro-caspase 3, pro-caspase 9, and
PARP1 expression.

Xiang et al. [268],

30 mg/kg Copper-treated rat Oxidative stress
Increases SOD and GSH levels.

Deceases NF-κB and activates the
BCl-2/Bax pathway.

Abbaoui et al. [269,270], Yan
et al. [271]

Coenzyme Q10 20 mg/kg Cadmium-treated rats Oxidative stress Increases SOD, GSH, and
CAT levels.

Iftikhar et al. [211], Paunovic
et al. [272]

10 mg/kg Lead-treated rats Oxidative stress
Nrf2/HO-1 pathway

Reduces Bax and caspase-3 and
increases Bcl-2 levels.

Al-Megrin et al. [273], Yousef
et al. [274], Mazandaran

et al. [275]
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Table 1. Cont.

Compound Dose Model Mechanism Other Information References

10 mg/kg Chromium-treated mice Nrf2/HO-1/NQO1 pathway
Reduces LPO, GSH, TT, CAT, and

PCC and increase SOD and
GST levels.

Tripathi et al. [276]

xanthophylls 2.5–20 µM Cobalt-treated
Muller cells

Apoptosis and
autophagy pathway

Increases Bcl-2 and decreases Bax,
cleaved caspase-3, and

LC3II levels.
Fung et al. [277]

Resveratrol 20 mg/kg Cadmium- and lead-treated
albino mice Akt cascade pathway Reduces p-Akt and

increases GSH. Mitra et al. [227,278]

400 mg/kg Cadmium-treated birds

Nuclear xenobiotic receptor
response and

PINK1/Parkin-mediated
Mitophagy

Restores VDAC1, Cyt C, and
Sirt3 upregulation and Sirt1,

PGC-1α, Nrf1, and TFAM
transcription restrictions.

Zhang et al. [279]

1–100 µM
Cadmium-treated PC12 cells,

TCMK-1 cells, MC3T3-E1 cells,
ovine oocyte

PP2A/PP5-mediated Erk1/2
and JNK pathway and

mTORC1-mediated
S6K1/4E-BP1 pathway.

ROS decrease and F actin
assembly.

Inhibits phosphorylation of
S6K1/4E-BP1, Akt, Erk1/2

and/or
JNK/c-Jun and cleavage of

caspase-3.
Increases SIRT1, SOD1, GPX1.

Liu et al. [280,281], Fu et al.
[282], Mei et al. [283], Piras

et al. [284]

50 mg/kg Lead-treated mice or rats Autophagy pathway
Neuroprotective pathway

Inhibits LC3 and Beclin-1
expression and promotes the Aβ

degradation and Tau
phosphorylation.

Increases BDNF and SIRT1.

Bai et al. [228]. Wang et al.
[285], Feng et al. [286]

5 and 10 µM Copper-treated fibroblast Autophagy pathway Reduces carbonylated and
polyubiquitinated proteins. Matos et al. [287]

10–40 µM Nickel-treated BEAS-2B cells P38 MAPK, NLRP3, and
NF-κB pathway.

Suppresses p38 MAPK, NF-κB
signaling, and NLRP3. Cao et al. [288]

10–30 µM Manganese-treated PC12 cells or
rat primary astrocytes

SIRT1 FOXO3a pathway
ERK-MMP-9 pathway

Activates SIRT and FOXO3
decreases Bax.

Suppresses ERK activity and
decreases MMP-9.

Zhao et al. [229], Sun et al.
[289], Latronico et al. [290]

30 mg/kg Manganese-treated mice Mitochondrial fragmentation
Activates the deacetylase activity

of SIRT1, reduces PGC1α, and
regulates DRP1.

Lei et al. [291],
Lang et al. [292]

50 µM Cobalt-treated cochlear hair cell Sirtuin1 and NF-κB
deacetylation

Activates sirtuin1 and
deacetylates NF-κB. Wang et al. [293]
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Table 1. Cont.

Compound Dose Model Mechanism Other Information References

Lycium barbarum 200, 400, and 600 mg/kg Lead-treated mice Oxidative stress
and apoptosis Decreases Nrf2 levels. Xie et al. [294]

10, 33.3, and 100 mg/kg or
300 mg/kg Cadmium-induced mice Oxidative stress Increases SOD and

GSH-Px levels.
Zhang et al. [295], Varoni

et al. [296,297].

MitoQ 500 µM Lead-treated rats

Mitochondrial ATP
production and

mitochondrial membrane
potential

Decreases caspase 3 and 9
activities, synaptosomal lipid

peroxidation, and
protein oxidation.

Maiti et al. [249]

Melatonin 1 µM Cadmium-treated HepG2 cells Autophagy pathway,
mitochondrial fission

Inhibits SIRT2-SOD activity and
suppresses autophagy.

Suppresses the
SIRT1-PGC-1α pathway.

Pi et al. [219],
Dong et al. [298]

5–15 mg/kg Cadmium-treated rats, hamsters,
or mice

Oxidative stress, lipid
peroxidation

Increases SOD, GSH, decrease
MDA levels.

Kim et al. [28], Karbownik
et al. [214], Eybl et al. [250],
El-Sokkary et al. [25,299], Ji

et al. [300],

10 µM Lead-treated SH-SY5Y cells Oxidative stress Increases GSH levels and inhibits
caspase3 activation Suresh et al. [215]

10 mg/kg Lead-treated rat Oxidative stress, lipid
peroxidation Increases SOD and GSH levels. El-Sokkary et al. [301]

Rapamycin 0.2 µg/mL, 100 nM–5 µM

Cadmium-treated rat
pheochromocytoma (PC12) cells,
human neuroblastoma SH-SY5Y

cells, human placental
trophoblasts, renal tubular cells.

mTORC1 and mTORC2
pathway, mitochondrial

ROS-dependent neuronal
apoptosis.

Downregulates Akt, S6K1,
4E-BP1. Reduces PP2A and

suppresses the activation of JNK
and Erk1/2 pathways.

Xu et al. [302,303], Yuan et al.
[304], Zhu et al. [305], Kato
et al. [306], Chen et al. [307],

Fujiki et al. [308],
Lee et al. [309]

5 µM Lead-treated rat proximal tubular
(rPT) cells. Autophagy pathway Decreases LC3-II protein levels Chu et al. [49]

1.5 mg/kg Zinc-treated rats mTOR pathway Decreases mTOR/p70S6K and
increases Nrf2/HO-1. Lai et al. [310]

10–100 nM Copper-treated chicken
hepatocytes or RAW264.7 cells

Mitophagy through the
PINK1/Parkin pathway,

Akt/AMPK/mTOR pathway

Decreases p53, Bak1, Bax, Cyt C,
and caspase3/cleaved-caspase3

mRNA and protein levels;
increase Bcl2 mRNA.

Yang et al. [311,312], Luo
et al. [313]

0.25 mg/kg Iron-treated rats Autophagy pathway
Decreases the ratio

phospho-mTOR/total mTOR and
restores LC3 II levels.

Uberti et al. [314]
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Table 1. Cont.

Compound Dose Model Mechanism Other Information References

500 nM

Cobalt-treated HT22 cells or A
transformed cell line (RGC-5
cells) with some ganglion cell

characteristics

Autophagy pathway

Promotes Beclin-1 expression,
increases the conversion of LC3-I

into LC3-II, and decreases
Bax expression.

Zimmerman et al. [315],
Olmo-Aguado et al. [316]

5 mg/kg Manganese-treated mice Autophagy pathway Activates autophagy and
decreased a-Syn oligomers. Liu et al. [317]

Metformin 2 mM or 250 mg/kg Lead-treated SH-SY cells or lead
-induced rats

Mitochondrial fragmentation,
methylglyoxal scavenger.

Increases AMPK/Nrf2 activation.
Decreases methylglyoxal and

D-lactate.

Yang et al. [220],
Huang et al. [318]

5 mM Nickel-treated BESA-2B cells AMPK pathway Suppresses hexokinase 2 and
activates lipocalin 2. Kang et al. [319,320]

1 mM Cadmium-treated spiral ganglion
neuron

Autophagy pathway,
ROS-dependent
PP5/AMPK-JNK

signaling pathway

Suppresses LC3-II and p62.
Suppresses JNK, and inactive

PP5 and AMP.

Li et al. [221],
Chen et al. [321]

100 mg/kg Cadmium-treated mice Mitochondrial fission Decreases Drp1and RB. Zhang et al. [322]

N-acetyl cysteine 5 mM Copper-treated
GC-1 spg cells AMPK-mTOR pathway Reverses mTOR suppression

induced by copper. Guo et al. [323]

Ganoderma lucidum 0.1, 0.5, or 1.0 g/kg Cadmium-treated mice Metallothionein
Increases metallothionein protein

levels and inhibits
oxidative stress.

Jin et al. [324]

0.25 g/kg Cadmium-treated rats Oxidative stress and
proinflammatory cytokines

Increases SOD, CAT, and GSH
levels. Reduces TNF-α, and

IL-1β.
Bin-Jumah et al. [325]

Aβ; Amyloid β, AMPK; Adenosine monophosphate (AMP)-activated protein kinase, a-Syn; α-Synuclein, Bax; B-cell/CLL lymphoma 2 (Bcl-2)-associated X protein, Bcl; B-cell/CLL
lymphoma, BDNF; Brain-derived neurotrophic factor, CAT; Catalase, Cyt C; Cytochrome c, DRP; Dynamin-related proteins, ERK; Extracellular signal-regulated kinase, FOXO; Forkhead
box O, G6PD; Glucose-6-phosphate dehydrogenase, GPX; Glutathione peroxidase, GR; Gutathione reductase, GSH; Reduced glutathione, GST; Glutathione S-transferase, HO; Heme
oxygenase, IL; Interleukin, JNK; Jun amino terminal kinase, LPO; Lipid peroxide, MAPK; Mitogen-activated protein kinase, MDA; Malondialdehyde, Mfn; Mitofusin, MMP; Matrix
metalloproteinase, NF-κB; Nuclear factor kappa-light-chain-enhancer of activated B cells, NLRP; Nucleotide-binding oligomerization domain-like receptor pyrin-domain-containing
protein, NQO1; Nicotinamide adenine dinucleotide phosphate (NAD(P)H) quinone oxidoreductase, Nrf; Nuclear factor, erythroid 2 (NF-E2)-related factor, PCC; protein carbonyl
content, PGC; Peroxisome proliferator-activated receptor gamma (PPARγ) coactivator, PINK; Phosphatase and tensin homolog (PTEN) induced putative kinase, PP; Protein phosphatase,
SIRT; Silent information regulator, SOD; Superoxide dismutase, StAR; Steroidogenic acute regulatory protein, TAC; Total Antioxidant Capacity, TFAM; Mitochondrial transcription factor
A, TNF; Tumor necrosis factor, TOR; Target of Rapamycin, TT; Total thiols, VDAC; Voltage-dependent anion-selective channel.
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5. Conclusions and Perspectives

Exposure to heavy metals induces various diseases through multiple molecular path-
ways, including apoptosis, endoplasmic reticulum stress, and mitochondrial stress, re-
sulting in cell damage. These pathways are also implicated in cellular senescence and
aging. Many types of heavy metal exposure have been used in aging models in both cell
lines and animals. In addition to traditional chelation therapy for heavy metal toxicity,
various antioxidants have been found to be effective in treating damage by heavy metal
exposure. Advances in research on heavy metals can provide insights into the development
of anti-aging and anti-cancer agents.
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