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Abstract: In this study, we examined the metabolic and gut microbiome responses to paraquat
(PQ) in male Wistar rats, focusing on oxidative stress effects. Rats received a single intraperitoneal
injection of PQ at 15 and 30 mg/kg, and various oxidative stress parameters (i.e., MDA, SOD, ROS,
8-isoprostanes) were assessed after three days. To explore the omic profile, GC-qTOF and UHPLC-
qTOF were performed to assess the plasma metabolome; 1H-NMR was used to assess the urine
metabolome; and shotgun metagenomics sequencing was performed to study the gut microbiome.
Our results revealed reductions in body weight and tissue changes, particularly in the liver, were
observed, suggesting a systemic effect of PQ. Elevated lipid peroxidation and reactive oxygen species
levels in the liver and plasma indicated the induction of oxidative stress. Metabolic profiling revealed
changes in the tricarboxylic acid cycle, accumulation of ketone body, and altered levels of key
metabolites, such as 3-hydroxybutyric acid and serine, suggesting intricate links between energy
metabolism and redox reactions. Plasma metabolomic analysis revealed alterations in mitochondrial
metabolism, nicotinamide metabolism, and tryptophan degradation. The gut microbiome showed
shifts, with higher PQ doses influencing microbial populations (e.g., Escherichia coli and Akkermansia
muciniphila) and metagenomic functions (pyruvate metabolism, fermentation, nucleotide and amino
acid biosynthesis). Overall, this study provides comprehensive insights into the complex interplay
between PQ exposure, metabolic responses, and gut microbiome dynamics. These findings enhance
our understanding of the mechanisms behind oxidative stress-induced metabolic alterations and
underscore the connections between xenobiotic exposure, gut microbiota, and host metabolism.

Keywords: paraquat; oxidative stress; metabolism; gut microbiome; 3-hydroxibutiric acid;
sphingomyelins; lysophospholipids; Akkermansia muciniphila; Escherichia coli
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1. Introduction

Paraquat (PQ) is a superoxide-generating chemical that has historically been used as
an herbicide. However, since its commercialization in 1961, numerous cases of fatal PQ
poisonings have been reported because of accidental or deliberate ingestion of concentrated
PQ formulations [1]. PQ poisoning is one of the preferred methods of suicide in developing
countries, marked by a significant global mortality rate of 20 deaths per million people [2].
While some regions, such as Europe, have implemented bans resulting in reduced suicide
rates, some countries persist in using this herbicide [3]. Even sublethal doses or skin
exposure can lead to serious lung and kidney damage [1]. During application, inhalation
may result in pulmonary edema and impaired lung function [4], while skin contact can
cause dermatitis [5]. Notably, paraquat use has been linked to chronic health issues, with
recent studies confirming its association with Parkinson’s disease [6]. Clinically managing
PQ poisoning presents a complex challenge due to high morbidity, mortality, and the lack
of effective treatments in humans [1]. Much remains to be understood about the toxicology
of PQ at both preclinical and clinical levels.

In addition to its use as an herbicide and as an intentional suicide poison, PQ is
often used experimentally as an environmental inducer of oxidative stress [7]. At the
toxicodynamic level, the main molecular mechanism of PQ toxicity is based on redox
cycling and the generation of intracellular oxidative stress [8]. PQ undergoes reduction,
mainly by NADPH-cytochrome P-450 reductase, NADPH-cytochrome c reductase and
mitochondrial complex I, resulting in the formation of a monocation free radical of PQ
(PQ•+). Subsequently, PQ•+ is rapidly re-oxidized in the presence of oxygen to form
O2

•−, which is physiologically generated during cellular respiration and arachidonic acid
metabolism by the activity of LOX and COX, respectively [9]. This initiates the well-
documented cascade leading to the generation of other ROS, such as H2O2 and HO•,
which disrupt cellular homeostasis. This increased ROS production induces non-selective
oxidation of essential biomolecules, including lipids, proteins, and nucleic acids, ultimately
leading to cellular damage and cell death [7].

In this context, metabolic profiling emerges as a valuable tool for investigating toxic-
ity, providing a unique mechanistic insight into toxicological responses. In recent years,
metabolomics has found widespread application in the discovery of biomarkers and
metabolic fingerprints, playing a crucial role in drug discovery and clinical toxicology [10].
This approach has been instrumental in exploring systematic metabolic responses to toxins
and unravelling the mechanisms involved such as the case of PQ [11]. However, there
are few studies targeting gut microbiome effects on PQ poisoning and none of them are
in rats [12,13]. Moreover, the integration of metagenomics into this framework further
enhances our understanding of the complex interactions within microbial communities
and their influence on host metabolism [13], opening new avenues for comprehensive
toxicity studies.

Hence, we aimed to explore the metabolic and gut microbiome responses in male Wis-
tar rats following PQ administration, with a specific focus on the implications of oxidative
stress. To achieve this, rats were treated with a single intraperitoneal administration of
two different doses of PQ 15 (PQ-15) and 30 mg/kg (PQ-30), known to induce oxidative
stress damage [14]. This study offers a holistic perspective on the intricate relationship
between PQ, oxidative stress, and their impact on both the host metabolism and gut micro-
biome in male Wistar rats. These findings contribute to the knowledge of the molecular
consequences of PQ intoxication at the metabolome and microbiome level, which could
help to discover novel strategies for PQ-intoxication treatment.

2. Materials and Methods
2.1. PQ Administration in Male Wistar Rats

Thirty 8-week-old male Wistar rats (Harlan Laboratories, Barcelona, Spain) were
housed individually under a fully controlled condition including temperature (22 ± 2 ◦C),
humidity (55 ± 5%) and light (12 h light–dark cycle and lights on at 7:30 a.m.). All the
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procedures were approved by the Animal Ethics Committee of the University Rovira i
Virgili (Tarragona, Spain) and the Generalitat de Catalunya (protocol code 10061). The
study followed the ‘Principles of Laboratory Animal Care’, complied with the ARRIVE
guidelines and was carried out in accordance with the EU Directive 2010/63/EU for
animal experiments.

Following an acclimation period, rodents were randomly assigned to three groups
(n = 10 animals per group). The experiment was conducted during the light-phase
(8:30–10:00 am) and was carried out for 3 days (Figure 1). On the initial day, each ani-
mal received a single intraperitoneal injection specific to its assigned group. The experi-
mental groups were administered PQ (1,1′-dimethyl-4,4′-bipyridinium dichloride hydrate,
Sigma-Aldrich, Madrid, Spain) doses of 15 mg/kg (PQ-15) and 30 mg/kg (PQ-30), adjusted
according to body weight. The control group (CON) received the vehicle/saline solution
(0.9% NaCl), also adjusted based on individual body weight.
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Figure 1. Schematic representation of the PQ-induced oxidative stress model. The experimental
model consisted of three groups that received a single intraperitoneal injection of 15 and 30 mg/kg of
PQ and vehicle/saline solution (NaCl 0.9%) indicated with a black arrow. Before the end of study,
urine and blood were collected as well as tissue samples. Abbreviations: IP, intraperitoneal injection;
CON, control group; PQ-15, paraquat 15 mg/kq; PQ-30, paraquat 30 mg/kg.

2.2. Sample Collection

On the second day after the PQ administration, urine was collected using the hy-
drophobic sand method [15]. For each rat, 300 g of hydrophobic sand (LabSand, Coastline
Global, Palo Alto, CA, USA) was spread on the bottom of a plastic mouse cage. Urine was
collected every half hour for 6 h. For preservation urine was mixed with sodium azide
(Sigma, St. Louis, MO, USA) at the end of the session.

On the third day after the PQ administration, rats were euthanized by guillotine under
anesthesia (pentobarbital sodium, 50 mg/kg per body weight) after 7 h of fasting. Blood
was collected and centrifuged at 3000× g at 4 ◦C for 15 min to recover plasma. Tissues
were rapidly removed, weighed and snap-frozen in liquid nitrogen (i.e., retroperitoneal
white adipose tissue (RWAT), mesenteric white adipose tissue (MWAT), muscle, liver, and
cecum). Samples were stored at −80 ◦C until further analysis.

2.3. General Measurements for the Characterization of the Experimental Approach
2.3.1. Determinations in Plasma

Enzymatic colorimetric kits were used for the general determination of plasma total
cholesterol (TC), triglycerides (TG), glucose (QCA, Barcelona, Spain) and non-esterified
free fatty acids (NEFAs, WAKO, Neuss, Germany).



Antioxidants 2024, 13, 67 4 of 28

To evaluate oxidative stress, we measured the markers of lipid oxidative damage by
measuring malondialdehyde (MDA, TBARS assay kit, Cayman Chemical Company, Ann
Arbor, MI, USA) and 8-isoprostane (8-isoprostane ELISA kit, Cayman Chemical Company,
Ann Arbor, MI, USA). To know the antioxidant capacity of the subjects, we quantified the
activity of the main antioxidant enzyme, superoxide dismutase (SOD, SOD Colorimetric
Activity Kit, Thermo Fisher Scientific, Waltham, MA, USA). The overall inflammatory
response was measured with the level of the monocyte chemoattractant protein-1 (MCP-1,
MCP-1 Rat Instant ELISA™ Kit, Thermo Fisher Scientific, Waltham, MA, USA) one of
the main pro-inflammatory cytokines. The manufacturer’s protocol was followed for all
the determinations.

2.3.2. Measurement of ROS in Liver Homogenates

ROS levels were quantified in liver homogenate using dihydrodichlorofluorescein di-
acetate prove (DCF-DA, Sigma-Aldrich, Madrid, Spain). Approximately 50 mg of liver was
homogenized with Tyssuelyser LT (Qiagen, Hilden, Germany) for 1 min at 50 oscillations/s
in 500 µL of RIPA lysis buffer (0.5 M Tris-HCl, pH 7.4, 1.5 M NaCl, 2.5% deoxycholic acid,
10% NP-40, 10 mM EDTA). The liver homogenates were centrifuged at 1600× g for 10 min
and the supernatant obtained was known as total liver homogenated and was stored at
−80 ◦C for the assessment of protein levels and ROS. The liver homogenates were quanti-
fied by the standardized BCA method (Bio-RadProtein Assay; BioRad, Hercules, CA, USA).
Briefly, 90 µL of liver homogenate (1:10) was dispensed into a 96 well black plate to which
10 mL of DCFDA was added to a final concentration of 10 µM and incubated for 30 min at
room temperature to allow the cleavage of DCFDA by esterases and further conversion
into the fluorescent product dichloro- fluorescein. The fluorescence was measured using a
multimode plate reader (FLUOstar Omega, BMG LABTECH, Ortenberg, Germany) with
excitation at 480 nm and emission at 530 nm. Results were normalized using total protein
concentration (BCA protein assay, Thermo Fisher Scientific, Madrid, Spain) in each sample.

2.3.3. RNA Extraction and qPCR

Total RNA was obtained from liver samples using TriPure reagent (Roche Diagnostic,
Barcelona, Spain) and RNeasy Mini Kit (QIAgen, Madrid, Spain) as described in sup-
plier’s protocol. RNA concentration and purity were measured by the determination of
the absorbance at 260 and 280 nm with a nanophotometer (Implen, Munich, Germany).
RNA was converted to cDNA using a High-Capacity cDNA Reverse Transcription Kit
(Applied Biosystems, Wilmington, DE, USA) with a RNase Inhibitor (Applied Biosystems,
Wilmington, DE, USA) as described in manufacturer’s protocol.

The gene expression related to oxidative stress (i.e., Cu/Zn SOD, Mn SOD, CAT, GPx1)
were evaluated by quantitative polymerase chain reaction (qPCR). For this purpose, cDNAs
samples were diluted 1:10 before being incubated with commercial LightCycler® 480 SYBR
Green I Master on a LightCycler® 480 II (Roche Diagnostics, Manheim, Germany). Table 1
shows a list of primers used and the selected housekeeping gene was PPIA. The primers
were synthetized by Biomers.net (ULM, Germany). Thermal cycling comprised an initial
step at 95 ◦C for 5 min and a cycling step with the following conditions: 45 cycles of
denaturation at 90 ◦C for 10 s, annealing at 60 ◦C for 10 s and extension at 72 ◦C for 10 s.
Fluorescence data were acquired at 72 ◦C of cycling step.

Table 1. Detailed sequences of the oligonucleotides used in q-PCR.

Gene Forward Primer (5′-3′) Reverse Primer (5′-3′) Accession Number Size (bp)

Cu/Zn SOD GGTGGTCCACGAGAAACAAG CAATCACACCACAAGCCAAG NM_017050.1 98
Mn SOD AAGGAGCAAGGTCGCTTACA ACACATCAATCCCCAGCAGT NM_017051.2 94
Catalase GAATGGCTATGGCTCACACA CAAGTTTTTGATGCCCTGGT NM_012520.2 100

GPx1 TGCAATCAGTTCGGACATC CACCTCGCACTTCTCAAACA NM_030826.4 120
PPIA CCTCGAGCTGTTTGCAGACAA AAGTCACCACCCTGGCACATG NM_017101.1 138
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2.3.4. Protein Extraction and Western Blot Analysis

Liver samples were homogenated in RIPA buffer (50 mM Tris-HCL, 150 mM NaCl;
pH 7.4, 1% Tween 20, 0.25% Na-deoxycholate) containing phenylmethylsulfonyl fluoride
(PMSF, Sigma-Aldrich, Madrid, Spain), phosphatase cocktails 2 and 3 (Sigma-Aldrich,
Madrid, Spain) and protease inhibitor cocktail (PIC, Sigma-Aldrich, Madrid, Spain) with
TissueLyser LT (QIAgen, Madrid, Spain) for 50 s. After shaking samples for 30 min at 4 ◦C,
the lysates were centrifuged at 16,300× g for 15 min at 4 ◦C. Finally, protein concentration
was measured by bicinchoninic acid (BCA) protein assay kit (Thermo Fisher Scientific,
Madrid, Spain).

Briefly, 50 µg of protein per sample were electrophoretically separated on 10% SDS-
polyacrylamide gels (TGX FastCast Acrylamide Kit, Bio-Rad, Madrid, Spain) and trans-
ferred to PVDF membranes (Trans-Blot Turbo System, Bio-Rad, Barcelona, Spain). Protein
transfer efficiency was evaluated by Pounceau-S stain. Then, membranes were blocked
with 5% non-fat milk in TBS-Tween (0.2%) for one hour at room temperature. After block-
ing, membranes were blotted overnight at 4 ◦C with rabbit antibodies (dilution 1:1000):
Monoclonal antibody for Glutathione Reductase (Abcam, Cambridge, UK) and Monoclonal
antibody for β-Actine (Abcam, Cambridge, UK) were used. After 3 washings with TBS-
Tween, membranes were hybridized with anti-rabbit secondary antibody (Cell signaling,
Amersham, Cytiva, Barcelona, Spain) (dilution 1:10,000) conjugated with horseradish per-
oxidase for 1 h at room temperature. After 3 more washings, immunoreactive proteins
were visualized using a chemiluminescence substrate kit (Amersham ECL Select, Cytiva,
Barcelona, Spain) following the supplier’s protocol. Digital images were obtained with a
G:BOX Chemi XL1.4 (Syngene, Cambridge, UK) and densitometry analysis were evaluated
using ImageJ Software 1.54g (NIH, Bethesda, MD, USA).

2.4. Plasma Metabolomics (GC-qTOF and UHPLC-qTOF)

Plasma metabolites were determined by gas Chromatography coupled with Quadrupole
Time-of-Flight (GC-qTOF). To extract the metabolites, a protein precipitation method was
used in which a solution of methanol:water (8:2) containing internal standards (succinic
acid-d4, myristic acid-d27, glycerol-13C3 and D-glucose-13C6) was added to plasma samples.
The samples were then mixed, incubated at 4 ◦C for 10 min, centrifuged at 21.420× g and
the resulting supernatant was evaporated before compound derivatization (metoximation
and silylation). GC-qTOF (Agilent, USA) was used to analyze the derivatized compounds,
using the Fiehn Method for chromatographic separation with a J&W Scientific HP5-MS
column (30 m × 0.25 mm i.d.). Electronic impact (EI) at 70 eV was used for ionization,
operating in full scan mode. Metabolite identification was based on comparison of EI mass
spectrum and retention time with the Fiehn metabolomics library (Agilent, Santa Clara,
CA, USA). After putative identification, metabolites were semi-quantified using internal
standard response ratio.

Ultra High-Performance Liquid Chromatography coupled with Quadrupole Time-
of-Flight (UHPLC-qTOF) was used for the analysis of plasma lipids. Hydrophobic lipids
were extracted by the Folch method. A mixture of chloroform: methanol (2:1) containing
an internal standard mixture (Lipidomic SPLASH®, Avanti Polar Lipids, Inc., Alabaster,
AL, USA) was added to the plasma. Followed by incubation at −20 ◦C for 30 min. Water
with NaCl (0.8%) was then added and the resulting mixture was centrifuged at 21.420× g.
The lower phase was collected, evaporated to dryness and reconstituted with methanol:
methyl-tert-butyl ether (9:1) for analysis by UHPLC-qTOF (Agilent, USA) in positive elec-
trospray ionization mode. The chromatography was performed using a quaternary mobile
phase of water (A), methanol (B), 2-propanol (C) and water with 200 mM ammonium
formate and 2% formic acid (D). The gradient was as follows: 0–0.5 min, 40% A, 10% B,
45% C; 0.5–1.5 min, 37.8% A, 9.5% B, 47.7% C; 1.5–1.6 min, 28.7% A, 7.5% B, 58.8% C;
1.6–5 min, 26.8% A, 7% B, 61.2% C; 5–5.1 min, 13.6% A, 4% B, 77.4% C; 5.1–7.5 min, 11.4% A,
3.5% B, 80.1% C; 7.5–9 min, 11.4% A, 3.5% B, 80.1% C; 9–9.5 min, 95% C; 9.5–11.5 min,
95% C; 11.5–11.6 min, 40% A, 10% B, 45%C. The separation process was performed on
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a C18 column (Kinetex EVO C18 Column, 2.6 µm, 2.1 mm × 100 mm) at 60 ◦C. This
temperature facilitates the sequential elution of highly hydrophobic lipids, including
triglycerides (TGs), diacylglycerols (DGs), phosphatidylcholines (PCs), cholesterol esters
(ChoEs), lysophospholipids (LPCs) and sphingomyelins (SMs). Lipid species were iden-
tified by comparison of their accurate mass and, where available, tandem mass spectra
with Agilent’s Metlin-PCDL. In addition, putative identification was ensured by consid-
ering the chromatographic behavior of pure standards from each lipid family and the
relevant literature information. These standards included 1-stearoyl-rac-glycerol (Sigma-
Aldrich, Madrid, Spain), 1-steraroyl-2-hydroxy-sn-glycero-3-phosphocholine (Avanti Polar
Lipids, Inc., Alabaster, AL, USA), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (Avanti
Polar Lipids, Inc., Alabaster, AL, USA), sphingomyelin (Avanti Polar Lipids, Inc., Alabaster,
AL, USA), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (Avanti Polar Lipids, Inc.,
Alabaster, AL, USA), 1,2-dioctadecanoyl-sn-glycerol (Avanti Polar Lipids, Inc., Alabaster,
AL, USA), 1-palmitoyl-2-oleoyl-3-linoleoyl-rac-glycerol (Sigma-Aldrich, Madrid, Spain)
and cholesteryl palmitate (Sigma-Aldrich, Madrid, Spain). Following putative lipid identi-
fication, semi-quantification of lipids was performed in terms of internal standard response
ratio, using one internal standard for each lipid family.

A pooled matrix of samples, acting as a technical replicate of the entire dataset, was
generated by extracting a small volume from each experimental sample. As the study
spanned several days, a data normalization step was performed to correct for variation due
to instrumental differences.

2.5. Urine Metabolome (1H-NMR)

Proton Nuclear Magnetic Resonance (1H-NMR) was used to evaluate urinary metabo-
lites. The urine sample was mixed (1:1) with phosphate buffered saline containing with
3-(trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt (TSP) (Sigma Aldrich, Madrid, Spain)
and placed in a 5 mm NMR tube for direct analysis by 1H-NMR. The 1H-NMR spectra
were recorded at 300 K on an Avance III 600 spectrometer (Bruker®, Bremen, Germany)
operating at a proton frequency of 600.20 MHz using a 5 mm Broad Band Observe Probe
(PBBO). Diluted urine samples were measured and spectral information was acquired
in procno 11 by One-dimensional 1H pulse experiments using nuclear Overhauser effect
spectroscopy (NOESY). The NOESY presaturation sequence (RD–90◦-t1-90◦-tm-90◦ ACQ)
was used to suppress the residual water peak with a mixing time of 100 ms. Solvent
presaturation with an irradiation power of 150 µW was applied during the recycling delay
(RD = 5 s) and mixing time using noesypr1d pulse program (Bruker®, Bremen, Germany) to
eliminate residual water. The 90◦ pulse length was calibrated individually for each sample
at approximately 11 microsec. The spectral width was 9.6 kHz (16 ppm) with 128 transients
collected into 64 k data points for each 1H spectrum. Prior to Fourier transformation, an
exponential line broadening of 0.3 Hz was applied. The spectra in the frequency domain
were subjected to manual phasing and baseline correction using TopSpin software (v.3.2,
Bruker, Bremen, Germany). Normalization was performed using probabilistic methods to
mitigate differences between samples due to varying urine concentrations and ERETIC. The
resulting 1H-NMR data were compared with pure compound references from the AMIX
metabolic profiling spectra database (Bruker®, Bremen, Germany), HMDB and Chenomx
databases for metabolite identification. In addition, metabolites were assigned by 1H-1H
homonuclear (COSY and TOCSY) and 1H-13C heteronuclear (HSQC) 2D NMR experiments
and by correlation with in-house pure compounds. After preprocessing, specific 1H-NMR
regions identified in the spectra were integrated using in-house MATLAB scripts.

2.6. Shotgun Metagenomics Sequencing

DNA was extracted from cecal content using the PowerSoil DNA extraction kit (MO
BIO Laboratories, Carlsbad, CA, USA) following the manufacturer’s protocol. Between
400 and 500 ng of total DNA was used for library preparation for Illumina sequencing
employing Illumina DNA Prep kit (Illumina, San Diego, CA, USA). All libraries were
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assessed using a TapeStation High Sensitivity DNA kit (Agilent Technologies, Santa Clara,
CA, USA) and were quantified by Qubit (Invitrogen, Waltham, MA, USA).

Validated libraries were pooled in equimolar quantities and sequenced as a paired-
end 150-cycle run on an Illumina NextSeq2000 (Illumina, San Diego, CA, USA). A total
of 1548 million reads were generated, and raw reads were filtered for QV > 30 using
an in-house phyton script. Filtered reads were aligned to unique clade-specific marker
genes using MetaPhlAn 3 [16] to assess the taxonomic profile. Alignment was performed
indicating the closest name of species to the sequence (the best hit). The relative proportions
calculated from MetaPhlAn were used to calculate relative abundances, alpha diversity
measure (chao1 index) and beta diversity measures (Aitchison distance).

2.7. Statistical Analysis
2.7.1. General Statistical Analysis

The results were expressed as the mean ± SEM with statistical comparisons carried
out using one-way ANOVA, followed by the study of the normality and Tukey’s multi-
ple comparison test. In all the statistical comparisons, a two-tailed p-value < 0.05 was
considered. Across the different statistical analysis, the magnitude of difference between
populations is presented as fold change (FC). The statistical analysis was performed using
different software: (1) the R statistical software v4.0.2 (R Core Team 2021) and different
libraries, included in Bioconductor v3.11 (Bioconductor project) as rolps and mixOmics;
(2) SPSS v25.0 (SPSS Inc., Chicago, IL, USA); (3) GraphPad Prism v8.0.0 (GraphPad Software,
San Diego, CA, USA).

2.7.2. Metabolomic Data Analysis

Individual comparisons between metabolites were determined by the Kruskal–Wallis
H-test, a non-parametric version of ANOVA. The p-value adjustment for multiple compar-
isons was carried out according to the Benjamin–Hochberg (BH) correction method with a
false discovery rate (FDR) of 5%, and a post hoc Dunn. In parallel, a predictive analysis was
run to evaluate the prediction power of the oxidative stress model. On the one hand, princi-
pal component analysis (PCA), an unsupervised multivariate data projection method, was
performed to explore the native variance of the samples. On the other hand, partial least
squares discriminant analysis (PLS-DA) was performed to determine the prediction power
that supervised multivariate data projection method explores, relationships between the
observable variables (X) and the predicted variables or target (Y) by regression extensions.
The predictive performance of the test set was estimated by the Q2Y parameter calculated
through cross-validation. The values of Q2 < 0 suggests a model with no predictive ability,
0 < Q2 < 0.5 suggests some predictive character and Q2 > 0.5 indicates good predictive
ability [17]. The feature importance was calculated through the variable importance in
projection (VIP), which reflects both the loading weights for each component and the
variability of the response explained by the component.

2.7.3. Metagenomic Data Analysis

Centered log-ratio (CLR) normalization was performed before any statistical test. The
beta diversity was calculated from the Aitchison distance and PERMANOVA test was
performed with 100 permutations to assess the differences between groups. The alpha
diversity was calculated by Chao1 index. Taxonomic abundances, which are presented
by relative abundance (%), were compared between experimental groups using the Holm-
Šídák (HS) post hoc adjustment on Kruskal–Wallis test. The relative abundance was filtered
to only include variables that were present above 0.01% in at least 3 samples [18].

2.7.4. Multi-Omics Data Association with Isoprostanes (Gold Standard Biomarker)

To find significant associations between isoprostanes and specific features of the multi-
omics data generated, the multi-omics data were input to the MaAslin2 comprehensive R
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package (Multivariate Association with Linear Models 2, v.1.8.0—Bioconductor) alongside
isoprostanes levels. Results with a q-value of <0.25 were considered significant [19].

2.7.5. Integration Data Analysis

Multiblock sPLS-DA, which is also known as Data Integration Analysis for Biomarker
discovery using Latent cOmponents (DIABLO), is a holistic approach with the potential
to find new biological insights not revealed by any single-data omics analysis, as some
pathways are common to all data types, while other pathways may be specific to data.
DIABLO is built on the Generalized Canonical Correlation Analysis (GCCA) [20] in the
mixOmics R package [21] (v.6.18.1, mixOmics project) and in our case it was used to
integrate the plasma and urine metabolome and the microbiome.

To summarize, the first step is the parameter choice of the design matrix, the number
of components and the number of variables to select: (1) To improve accuracy, a design
matrix based on pairwise correlations was performed; (2) the perf function was used to
estimate the performance of the model and the balanced error rate (BER) and overall error
rates per component were displayed to select the optimal number of components; (3) the
number of variables were chosen using the tune.block.splsda function that was run with
10-fold cross validation and repeated 10 times. Thereafter, the final model was computed,
and different sample and variable plots performed. The circosPlot function represents the
correlations between variables of diverse types, represented on the side quadrants that are
built based on a similarity matrix [22].

The final performance of the model was evaluated by the perf function using 10-fold
cross-validation repeated 10 times. The receiver operating characteristic (ROC) curve
analysis was conducted to determine the optimal metabolite combination patterns that
could correctly dichotomize the stressed and healthy groups at acceptable sensitivity and
specificity (defined as greater than 80% for both). The area under the ROC curve (AUC)
value was used as a measure of the prognostic accuracy.

2.7.6. Pathway Analysis

The resulting significant differential features were analyzed through different data
bases to identify related pathways and elucidate the global effect in the metabolome of the
LPS-induced inflammation model. The main data base consulted was the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG). To visualize results and incorporate information
regarding pathway analysis, a mapping tool (XMind 2020, v.XMind 2020, XMind Ltd.,
Virginia, ON, Canada) was used.

3. Results
3.1. Impact of PQ Administration on Physiological and Biochemical Responses
3.1.1. Body Changes and General Parameters in Rats

The administration of PQ influenced the animals in terms of body weight and general
biochemical changes, which are summarized in Table S1. The final body weight was
significantly decreased in the PQ groups compared to the CON group. In particular, a
substantial reduction in the final body weight was observed in PQ-30 compared to CON.
In this context, PQ administration resulted in a significant reduction in food intake. Both
the PQ-15 and PQ-30 groups have shown significant reductions to approximately a half of
its weight in PQ-15 and almost to a fasting levels in PQ-30, compared to the CON group.
Tissue weights indicated changes in adipose tissue and muscle, with a consistent decrease
in liver and cecum weights. Other general parameters of interest, such as plasma TG,
tended to decrease in both PQ groups compared to CON, whereas TC was significantly
increased. Despite these changes, no significant differences in plasma glucose and NEFA
levels were observed between the groups.
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3.1.2. Oxidative and Inflammatory Profiling in Liver, Plasma and Urine

In the PQ-30 group, a significant elevation of MDA and SOD was observed in liver
tissue, underscoring heightened oxidative stress (Figure 2a,b). Additionally, ROS was
elevated in both doses confirming the induction of oxidative stress (Figure 2c). Plasma
MDA increased in both doses while only SOD decreased in PQ-30 (Figure 2d,e). After the
PQ exposure, the proinflammatory cytokine MCP-1 increased in contrast to the control
group (Figure 2f). Furthermore, the urine 8-isoprostane level, being classified as the “gold
standard” in estimating oxidative injury, was increased in the PQ-30 group (Figure 2g).
Hepatic gene expression involved in inflammatory pathway was investigated (Figure 2h).
On the one hand, the cytoplasmatic SOD (SOD1 or Cu/Zn SOD), shows a significant increase
at both doses of PQ, being statistically significant at the higher dose. Moreover, a similar
result is presented by mitochondrial SOD (SOD2 or Mn SOD), which shows statistically
significant differences at the highest dosage. On the other hand, the expression of the
CAT gene, decreased statistically in both doses regarding with control group (Figure 2c).
Moreover, we assessed a Western blotting analysis of glutathione reductase (GR), determi-
nant enzyme for the GSSG/GSH ratio (defense against ROS). The results obtained showed
treatment with PQ significantly increased the total amount of GR enzyme, obtaining a
similar response after both doses of treatment (Figure 2i,j and Figure S1). Collectively,
these results indicated that PQ induced changes in oxidative stress and inflammation at
different levels.

3.2. Exploring Plasma Metabolomic Alterations in Response to PQ Administration

Our study employed a comprehensive plasma metabolomics approach that is based
on a multiplatform global analysis (GC-qTOF and UHPLC-qTOF), evaluating the relative
abundance of 128 metabolites with highest impact on metabolome (Table S2). We obtained
109 metabolites with a different mean between groups by Kruskal–Wallis H-test. Following
false discovery rate correction, 107 metabolites had at least two groups with different
means. After the post hoc test to check which of the 3 relations was causing the difference
in the mean, 74 metabolites were different between CON and PQ-15; 70 metabolites were
different between CON and PQ-30; and 58 metabolites were different between PQ-15 and
PQ-30 (Figure S2).

As shown in Figure 3, 12 metabolites—aconitic acid, fructose, cholesterol, citric acid,
3-hydroxybutiric acid, serine, LPCs (LPC 18:1 and LPC 15:0) and SMs (SM 34:1, SM 34:2,
SM 36:2 and SM 36:1)—significantly varied across all groups. When visualized using
box plots (Figure 3), the distribution patterns of these metabolites showed intriguing
deviations from the expected dose–response trend. In particular, aconitic acid, citric acid,
serine, cholesterol and fructose deviated from this pattern, warranting further extensive
comparisons to unravel the metabolic implications.

When comparing the control group with PQ-15, prominent alterations encompassed
ten high-impact lipid metabolites, primarily including diverse TGs such as TG 48:3, TG 48:1,
TG 48:2, TG 46:1, TG 46:0, TG 52:6 and TG 50:4, as well as specific lipids as DG 34:3, PC 38:3
and SM 35:1. In the case of control versus PQ-30, the 10 metabolites altered with high impact
were two groups of lipids, which are LPCs (LPC 18:1, LPC 18:2 and LPC 15:0) and SMs
(SM 34:1, SM 34:2, SM 36:1, SM 36:2 and SM 38:1), and a ketone body (i.e., 3-hydroxybutiric
acid). Comparing PQ-15 and PQ-30 groups, variations emerged in intermediate metabolites
of the TCA cycle (i.e., aconitic acid, citric acid and fumaric acid), cholesterol, serine, fructose,
glycolytic acid and ChoE (22:5), among others.
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CAT and GPx1 (h), Western blotting of GR from hepatic proteins including image (i) and densito-
metric analysis normalized to β-Actin (j). The results are presented as the mean ± SEM (n = 4–10 
animals per group). The statistical comparisons among groups were conducted using one-way 
ANOVA and post hoc (Tukey) test. * Denotes p < 0.1 (tendency), ** p < 0.05 (significantly different) 
and *** p < 0.01 (high significantly different) compared with control. Abbreviations: CON, control; 
PQ-15, paraquat 15 mg/kg; PQ-30, paraquat 30 mg/kg; MDA, malondialdehyde; SOD, superoxide 
dismutase; ROS, reactive oxygen species; MCP-1, monocyte chemoattractant protein-1; CAT, cata-
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Figure 2. Advanced insights into PQ-induced oxidative stress and inflammatory responses. Liver
concentrations of MDA, SOD and ROS levels (a–c), plasma concentrations of MDA, SOD and MCP-1
levels (d–f), urine concentrations of 8-isoprostanes (g), hepatic mRNA expression of SOD1, SOD2,
CAT and GPx1 (h), Western blotting of GR from hepatic proteins including image (i) and densitometric
analysis normalized to β-Actin (j). The results are presented as the mean ± SEM (n = 4–10 animals
per group). The statistical comparisons among groups were conducted using one-way ANOVA
and post hoc (Tukey) test. * Denotes p < 0.1 (tendency), ** p < 0.05 (significantly different) and
*** p < 0.01 (high significantly different) compared with control. Abbreviations: CON, control; PQ-
15, paraquat 15 mg/kg; PQ-30, paraquat 30 mg/kg; MDA, malondialdehyde; SOD, superoxide
dismutase; ROS, reactive oxygen species; MCP-1, monocyte chemoattractant protein-1; CAT, catalase;
GPx1, glutathione peroxidase 1; GR, glutathione reductase.
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Figure 3. Boxplots of the 12 plasma metabolites significantly different between CON, PQ-15 and PQ-
30. Box denotes 25th and 75th percentiles; line within box denotes 50th percentile (median); whisker 
denotes standard deviation. Groups (n = 10 animals per group): CON, blue; PQ-15, orange; PQ30, 
green. Abbreviations: SM, sphingomyelin; LPC, lysophospholipid. 

Figure 3. Boxplots of the 12 plasma metabolites significantly different between CON, PQ-15 and
PQ-30. Box denotes 25th and 75th percentiles; line within box denotes 50th percentile (median);
whisker denotes standard deviation. Groups (n = 10 animals per group): CON, blue; PQ-15, orange;
PQ30, green. Abbreviations: SM, sphingomyelin; LPC, lysophospholipid.



Antioxidants 2024, 13, 67 12 of 28

PCA explains the variance in the plasma metabolome, showing that the data tend
to be segregated in the three different groups (Figure S3a). Additionally, PLS-DA was
performed to assess the discriminative power of the different groups (Figure S3b). The
proportion of variance explained by the model (R2X) was 47% in the plasma data. The
percentage of Y variability explained by the model (R2Y) was 65,5% and, the estimation of
the predictive performance of the models (Q2) was 57,8%. A model is considered to have
good predictability when the Q2 is greater than 50%, thus the predictive power of the model
in plasma was good. The metabolites with the highest VIP values, which reflects both the
loading weights for each component and the variability of the response explained by this
component, coincide with the 12 differential metabolites between groups and presented
values near to 2 (Table S2).

3.3. Exploring Urine Metabolomic Alterations in Response to PQ Administration

Our urine metabolomics approach is based on H1-NMR that method determined
the relative abundance (AU) of 21 metabolites (Table S3). We identified 15 metabolites
having at least two groups with different means by Kruskal–Wallis H-test and corrected by
Benjamin/Hochberg method. After the post hoc test to check from which of the 3 relations
was causing the difference in the mean, 4 metabolites were different between CON and
PQ-15; 13 metabolites were different between CON and PQ-30; and 10 metabolites were
different between PQ-15 and PQ-30 (Figure S4).

The common metabolites between the pair-wise comparisons are shown in Figure 4.
The differences between CON and PQ-15 groups were attributed to the levels of creatinine,
pseudouridine, 1-methylmicotinamide and N-acetylglycoproteins. Differences between
CON and PQ-30 groups mirrored those previously detected in CON vs. PQ-15 (creatinine
and N-acetylglycoproteins), TCA intermediates (fumaric acid, citric acid, and succinic
acid), nicotinamide intermediates (1-methylnicotinamide and trigonelline), amino acids
(tryptophan, glycine, alanine and hippurate) and lactate. Finally, the differences associated
to the different doses (PQ-15 and 30 mg/kg) were similar to the differences of CON
against PQ-30 group including the TCA intermediates, nicotinamide intermediates, some
previously described amino acids (tryptophan, glycine and hippurate) including a derivate
of glycine (N,N-dimethylglycine) and pseudouridine.

PCA shows that the variance if the data was able to discriminate the PQ-30 group in
front the others (Figure S5a). Furthermore, PLS-DA was performed to assess the discrimi-
native power of the different groups (Figure S5b). The proportion of variance in the urine
data explained by the model (R2X) is 52.6%. The percentage of Y variability explained by
the model (R2Y) is 66.1%, and the estimation of the predictive performance of the models
(Q2) is 58.1%. However, we observed the same tendency as the PCA showing that PQ-30
segregates, and PQ-15 and CON are close. The main metabolites with the highest VIP
values, which reflects both the loading weights for each component and the variability of
the response are explained by this component (Table S3).
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Figure 4. Boxplots of the 12 urine metabolites significantly different in pair-wise comparisons between
CON, PQ-15 and PQ-30. Box denotes 25th and 75th percentiles; line within box denotes 50th percentile
(median); whisker denotes standard deviation. Groups (n = 10 animals per group): CON, blue; PQ-15,
orange; PQ-30, green.
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3.4. Impact of PQ-Administration on Gut Microbiome
3.4.1. Taxonomic Impact of PQ-Administration

The metagenomic analysis characterized the effect of PQ-induced oxidative stress on
the microbiome of the cecum section to evaluate the highest variability and diversity of the
gut tract. The taxonomic assignment makes it possible to detect the presence of bacteria
and viruses. In the control group, most of the generated readings (76%) were attributed to
bacteria, with the remainder attributed to viruses. This trend persisted in the PQ-15 group,
wherein 73% of readings were assigned to bacteria. in contrast, the PQ-30 group exhibited
a shift, with 95% of readings associated to bacteria. The differences between the PQ-30
group and the others proved statistically significant (p-value < 0.02).

The representation of the bacterial communities through the PCA (beta diversity)
showed distinct differences in the PQ-30 group compared to the other groups (Figure 5a).
Additionally, the PERMANOVA supports these observations, revealing significant statis-
tical differences (F = 13.51, p-value < 0.01). The contrasting bacterial composition/beta
diversity within this group were evident. The comparison of alpha diversity values (index
that measures the richness of the sample) showed a clear decrease in chao 1 index in the
PQ-30 group (Figure 5b), as it has been already observed in the beta diversity (Figure 5a).
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Figure 5. Summary of the bacteria statistical analysis in the PQ-induced oxidative stress model.
(a) Beta diversity: PCA plot calculated by Aitchison distance. (b) Alpha diversity (AU): Chao1 index.
(c) Relative distribution of bacterial phylum. (d) Relative distribution of bacterial species. Groups
(n = 8 animals per group): CON, blue; PQ-15, orange; PQ-30, green.

In terms of bacterial diversity, the communities of the CON and PQ-15 groups are
formed by the phylum Bacteroidetes (CON: 58% and PQ-15: 70%) and Firmicutes (CON:
27% and PQ-15: 19%) while the PQ-30 group is dominated by Proteobacteria (76%) and
Verrucomicrobes (19%) (Figure 5c). The relative proportions of all phyla reported by the
PQ-30 group are statistically different from those reported in the other groups (Table S4).
Focusing on species, 27 species were found with a relative abundance above 0.01% at least
in one group (Figure 5d, Table S5). In the CON and PQ-15 groups the species Muribac-
ulum intestinale and Murobaculaceae bacterium predominate above the others. In contrast,
Escherichia coli and Akkermansia muciniphila predominate in the PQ-30 group, possibly due
to a decline in all of the other species. Overall, the PQ-30 group is statistically different
from the other two groups and the main differences are outlined in Table 2.
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Table 2. Taxonomic statistical analysis of bacterial species between the CON, PQ-15 and PQ-30
groups. Taxonomic data are presented as the mean of relative abundance (%). The summary of the
analysis is shown including results of Kruskal–Wallis corrected by HS. * Denotes p < 0.1 (tendency),
** p < 0.05 (significantly different) and *** p < 0.01 (high significantly different).

Corrected p-Value Relative Abundance (%)

Specie CON vs. PQ-15
vs. PQ-30

PQ-15 vs.
PQ-30

CON vs.
PQ-30

CON vs.
PQ-15 CON PQ-15 PQ-30

Muribaculaceae bacterium
DSM 103720 <0.01 *** 0.02 ** <0.01 *** 1.00 30.40% 34.43% 0.03%

Akkermansia muciniphila <0.01 *** 0.02 ** <0.01 *** 1.00 2.30% 2.75% 19.31%

Muribaculum intestinale <0.01 *** 0.02 ** <0.01 *** 1.00 18.49% 18.51% -

Bifidobacterium pseudolongum 0.01 ** 0.02 ** <0.01 *** 1.00 - - 0.15%

Anaerotruncus sp. G3 2012 0.01 ** 0.02 ** <0.01 *** 1.00 1.87% 1.44% 0.04%

Escherichia coli 0.01 ** 0.02 ** <0.01 *** 1.00 10.79% 6.09% 76.00%

Oscillibacter sp. 1 3 0.01 ** 0.02 ** 0.08 * 0.55 1.90% 3.80% 0.09%

Lactobacillus johnsonii 0.02 ** 0.03 ** 0.01 ** 1.00 0.07% 0.01% 0.16%

Bacteroides uniformis 0.03 ** 0.28 0.01 ** 0.92 4.55% 2.18% 0.10%

Ruthenibacterium
lactatiformans 0.03 ** 0.02 ** 0.04 ** 1.00 0.23% 0.03% 0.69%

Faecalibaculum rodentium 0.04 ** 0.05 * 0.04 ** 1.00 - - 0.04%

The representation of the virus communities in the PCA (beta diversity) shows that
the communities of the different groups were similar (Figure S6a). In this line, the PER-
MANOVA test (F = 0.80, p-value > 0.05) indicates that there were no differences in bacteria
composition/beta diversity. The comparison of Chao1 (index that measures the rich-
ness of the sample) indicated that the different groups presented similar alpha diversity
(Figure S6b) following the same tendency as beta-diversity (Figure S6a). In terms of virus di-
versity, the communities of virus are mainly formed by the order of Herpesvirales, Ortevirales
and Caudovirales (Figure S6c) without reporting differences between groups. Focusing on
species, 18 species were found with a relative abundance above 0.01% in at least one group
(Table S6). We observed that some residual viruses tend to differ between group; however,
these differences were not considered due to no differences in beta diversity being found,
and those residual differences could be associated to technical variability. In this case,
Cyprinid hespervirus 3 was the highest represented virus in all groups.

3.4.2. Functional Impact of PQ-Administration

We identified 37 metagenomic functions with a representation higher than 1% at least
in one of the experimental groups, as detailed in Figure S7 and Table S7. These findings
highlight significant differences in the metabolic pathways among the CON, PQ-15, and
PQ-30 groups. The alterations observed in metabolic functions appeared to exhibit dose-
dependent effects, with greater changes in PQ-30 compared to PQ-15.

The most relevant metagenomic functions were categorized based on their involve-
ment in metabolic processes:

Pyruvate metabolism and fermentation: The function PWY-7111, related to pyruvate
fermentation to isobutanol, showed a significant decrease in PQ-30 compared to CON
and PQ-15. This suggests that a high dose paraquat exposure may impact microbial
fermentation pathways.

Nucleotide Biosynthesis: Functions related to nucleotide biosynthesis (e.g., PWY-7219,
PWY-6122, PWY-6277) displayed significant alterations in response to PQ exposure. These
pathways may influence the availability of nucleotides for DNA and RNA synthesis.
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Amino Acid Biosynthesis: Several pathways involved in amino acid biosynthesis,
including L-valine (VALSYN-PWY) and L-isoleucine (ILEUSYN-PWY) biosynthesis, were
affected by paraquat exposure. These pathways contribute to the synthesis of essential
amino acids and may impact host metabolism.

In summary, the metagenomic functional alterations in response to paraquat exposure
indicate significant shifts in metabolic pathways related to energy metabolism, nucleotide
biosynthesis, amino acid biosynthesis, and salvage pathways. These alterations may reflect
adaptive responses of the gut microbiota to oxidative stress induced by paraquat exposure
at different doses.

3.5. Correlation of Isoprostane Levels with Multi-Omics Data Reveals Oxidative Injury Induced by
PQ Administration

We identified significant associations between isoprostane levels and various features
within the multi-omics dataset. These associations are summarized in Table S8, which includes
information about the feature type, specific feature, coefficient (Coef), standard error (stderr),
p-value, and q-value. This gold standard biomarkers of oxidative injury were correlated with
67 plasma metabolites (24 positive and 43 negative correlated), 12 urine metabolites (3 positive
and 9 negative correlated), and 16 microorganisms (5 positive and 11 negative correlated)
(Table S8). The top 10 features in each dataset are represented in Figure 6.

In the plasma metabolome, metabolites such as glutamic acid, hydroxyproline, citric
acid, LPC species, serine, and ornithine exhibited negative coefficients, indicating a negative
correlation with isoprostane levels. In contrast, several metabolites, including valine,
isoleucine, SMs species, and ChoE species, displayed positive coefficients, suggesting a
positive correlation with isoprostanes.

In the urine metabolome, fumarate, trigonelline, succinate, hippurate, citrate, and
tryptophan displayed negative coefficients, indicating an inverse relationship with iso-
prostane levels. In contrast, glycine, dimethylsulfone, 1-methylnicotinamide, and N,N-
dimethylglycine exhibited positive coefficients, implying a positive correlation
with isoprostanes.

Our analysis also revealed significant associations with various microorganisms.
Bifidobacterium pseudolongum, Lactobacillus johnsonii, Akkermansia muciniphila, and Escherichia
coli showed positive coefficients, suggesting a positive correlation with isoprostane levels.
Conversely, Muribaculaceae bacterium DSM 103720, Muribaculum intestinale, Anaerotruncus
sp. G3.2012, Lachnospiraceae bacterium 10.1, and Bacteroides uniformis displayed negative
coefficients, indicating an inverse relationship with isoprostanes.

3.6. Multi-Omics Data Integration

Previously, regression analyses were performed with PLS to deeper understand the
cross-correlation between different omics datasets. The pairwise correlations among
datasets proved remarkable correlations: plasma and urine metabolome (r = 0.93); plasma
metabolome and microbiome (r = 0.97); urine metabolome and microbiome (r = 0.91).
These correlations are used to tune the final DIABLO model that is constructed with two
components with a low error rate. Optimal variable selection based on these components
revealed 6 and 9 plasma metabolites, 20 and 5 urine metabolites, and 5 and 30 microbes for
the first and second component, respectively.
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Figure 6. Top 10 plotting associations from most to least significant correlations between isoprostanes
(isoPs) and multi-omics data. The multi-omics data were given as input to MaAslin2 comprehensive R
package (Multivariate Association with Linear Models 2, v.1.8.0-Bioconductor) alongside isoprostanes
levels. Results were considered significant if they had a q-value smaller than 0.25. Legend: Purple,
plasma metabolites; red, urine metabolites; yellow, microorganisms.

The final model was able to discriminate between the different omics in Figure S8a,b,
as it is observed there are some dissimilarities between animals across datasets (Figure S8b).
The variables with higher impact were represented in Figure S8c. In general, the corre-
lation structure in component 1 shows correlation between specific variables at different
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omics, while some plasma and urine metabolites seem to highly contribute to component
2. Focusing on component 1, the most important variables are LPC 18:2 (plasma metabo-
lite), succinic acid (urine metabolite) and Escherichia coli (microbes) (Figure 7a). Focusing
on the multi-omics signature selected on component 2, the most important variables are
a group of TGs plasma metabolites and a group of urine metabolites known as pseu-
douridine, 1-methylnicotinamide and N,N-dimethylglycine (Figure 7a). Additionally, the
cross-correlations between omics, and the nature of these correlations are represented in
Figure 7b, thus we can observe that correlations are between plasma metabolites and some
urine metabolites and microbes. The majority negative correlations are observed between
pseudouridine and plasma metabolites. Additionally in plasma, LPCs and two amino acids
(proline and hydroxyproline) are positively correlated with other’s omics as succinic acid
and fumaric acid in urine. Escherichia coli and Muribaculaceae bacterium DSM 103,720 targets
the negative and positive correlations between the other omics.
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Figure 7. Multi-omics data integration of plasma metabolome, urine metabolome and microbiome using
DIABLO in the oxidative stress model. (a) Loading plot for the variables selected in each dataset and the
2 components. The most important variables are ordered from bottom to top. Colors indicate the group
for which the median expression value is the highest for each feature: CON, blue; PQ-15, orange; PQ-30,
green. (b) Circos plot. The plot represents the correlations greater than 0.7 between variables of different
omics. Each quadrant indicates the type of features: plasma metabolites (purple), urine metabolites (red),
microbes (yellow). The lines show the positive (red) and negative (blue) correlations. Abbreviations:
LPC, lysophospholipid; PC, phosphatidylcholine; SM, sphingomyelin; TG, triglyceride.
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Finally, the performance of the model was assessed indicating a BER of 0.12. This rate
is almost null in the PQ-30 group, while CON presents the highest error. To complement
the analysis, ROC and AUC shows that PQ-15 is the most difficult group to classify with
DIABLO compared to the other groups (Figure S9). Thus, multi-omics data integrations
present a high prediction power highlighting the discrimination of PQ-30 versus CON and
PQ-15.

4. Discussion

In this study, we explored the metabolic and gut microbiome responses to PQ ad-
ministration in male Wistar rats, with a particular focus on the context of oxidative stress.
We accomplished this by treating the rats with a single intraperitoneal injection of 15 and
30 mg/kg PQ, inducing oxidative stress damage [14,23].

Interestingly, as the PQ dosage increased, the animals showed a decrease in body
weight, thus suggesting that a higher dose of PQ is related to a greater impact at a metabolic
level. These results are in agreement with the existing literature about the potential detri-
mental effects of PQ on metabolic processes and body weight regulation [24]. The pro-
nounced reduction in food intake in both PQ-15 and PQ-30 groups, further emphasizes
the disruptive influence of PQ on dietary patterns. Such alterations in feeding behav-
ior and body weight may be indicative of underlying systemic disturbances, potentially
affecting nutrient absorption, metabolism, or energy utilization. However, it is crucial
to acknowledge that while these findings provide valuable insights into the immediate
impact of PQ administration, they also introduce a limitation in the current experimental
model. This trend was also extended to specific tissues like the liver which is a metabolic
hub and a central player under oxidative stress conditions. The observed relationship in
body weight and tissue alterations justified to further study the metabolic and microbiome
PQ-responses.

Due to the model validation as well as to the characterization of the oxidative stress
response to PQ administration, alterations in lipid peroxidation were evident in both the
liver and plasma, as observed by elevated levels of MDA, consistent with prior findings in
PQ animal models [25,26]. Concurrently, ROS levels were increased in PQ-treated groups.
Furthermore, the urinary levels of 8-isoprostanes, widely recognized as a gold standard
for assessing oxidative damage, exhibited a substantial increase at the highest PQ dose
(PQ-30), consistent with findings reported in previous research [27]. Elevated expression
of mitochondrial (SOD1) and cytoplasmic (SOD2) SOD and CAT in the liver suggested
the increment of dismutation of O2

•− to H2O2. Those results were in agreement with
previous studies that indicate an increased SOD activity as a main characteristic of the
oxidative model with PQ administration. To further confirm our results, SOD activity was
also measured; being increased in liver, while SOD activity was not altered in plasma.

It seems that one of the major antioxidant elements against PQ poisoning is GSH,
which plays a pivotal role in the defense against oxidative stress damage. This could be
suggested due to the observed effect on liver GR (increased by PQ) which catalyzes the
reduction of GSSG to obtain GSH. Its major antioxidant properties are further manifested in
direct scavenging of hydroxyl radicals and singlet oxygen, while it can also detoxify H2O2
and lipid peroxides simultaneously to the enzymatic action of GPx and glutathione trans-
ferases [28]. Furthermore, it could be also speculated that H2O2 decomposition is not greatly
increased because GPx1 expression is not changed along with the decrease in CAT expres-
sion. These findings are in line with similar experiments with PQ administration [29,30],
where the protective effect of GR was enhanced and GPx1 remained unaffected.

Although the mechanism of toxicity of PQ has not been fully described, it seems
that one of the most important mechanisms of PQ damage is through the induction of
inflammation [31]. This effect was also confirmed in our study due to the elevated levels of
MCP-1, which is proposed as biomarkers for monitoring PQ-mediating inflammation [32].
Beyond the elevated levels of MCP-1, the PQ-treated groups also present increased excretion
levels of N-acetylglycoproteins in urine, which have been proposed as biomarkers of
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systemic inflammation [33]. Altogether, these findings strongly support the concept that
PQ toxicity is strongly associated with the activation of systemic inflammation.

On the other hand, the mitochondrial stress generated by PQ administration, which
has been confirmed by classical biomarkers such as MDA, SOD, CAT, GR and GPx1, was
also observed at a plasmatic metabolic level. In this regard, the plasma metabolic profile
of PQ-toxicity was characterized by altered metabolites associated with mitochondrial
metabolism along with other related pathways, as summarized in Figure 8. In fact, it
has long been recognized that energy metabolism is linked with the production of ROS.
Critical metabolites allied to metabolic pathways can be affected by redox reactions [34].
Mammals produce an important part of its metabolic energy from carbohydrates, with
glucose being the principal substrate for energy production (ATP), that is produced through
three well-known pathways: glycolysis, tricarboxylic acid (TCA) cycle and the electron
transport chain.
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Figure 8. Overview of the main metabolic pathways implicated in the PQ oxidative stress model.
Abbreviations: TG, triacylglycerol; FA, fatty acid; SM, sphingomyelin; GSH, glutathione; NAD, nicoti-
namide adenine dinucleotide; complex I, NADH:ubiquinone oxidoreductase; complex II, succinate
dehydrogenase; complex III, ubiquinol:cytochrome c oxidoreductase; complex IV, cytochrome c
oxidase; complex V, ATP synthase.

The TCA cycle, which constitutes an epicenter in cell metabolism, is one of the main PQ-
altered pathways in the mitochondria [35]. In the current research, citric acid and aconitic
acid, which are intermediates of TCA cycle, were increased in the PQ-15 group while they
were decreased in the PQ-30. Thereby, our experimental approach suggests that in moderate
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oxidative stages (PQ-15), TCA cycle increases in parallel to ketonic bodies accumulation;
while in higher altered oxidative stages (PQ-30), the TCA cycle was disrupted, but the
ketone bodies continue to accumulate. The H2O2 accumulation leads to the suppression
of the TCA cycle through the inhibition of enzymes implicated in the process, limiting
the availability of reduced nicotinamide adenine dinucleotide (NADH) for the respiratory
chain under oxidative stress. On the assumption that H2O2 levels determine their effect on
the TCA cycle and taking into account the results obtained for PQ-15 and PQ-30, it is likely
to suggest two states for each dose, as in agreement with previous studies [36,37]: (1) low
H2O2 concentrations inactivate aconitase, the most sensitive enzyme in the TCA cycle, to
H2O2 inhibition, thus glutamate fuels the TCA cycle and NADH generation is unaltered
(PQ-15), (2) high H2O2 concentrations also inhibits α-ketoglutarate dehydrogenase, limiting
the amount of NADH available for the respiratory chain (PQ-30). This disruption of the
TCA cycle is also evident in urine metabolites of the PQ-30 group.

A crucial metabolite linking the TCA cycle and glycolysis is acetyl-CoA, a fundamental
intermediate for ATP production. In fact, acetyl-CoA is the major product of fatty acid
catabolism and plays a key role in ketogenesis [38]. The main altered ketone body in our
animal model was 3-hydroxybutiric acid, which functions as a stress molecule response
and helps organisms to overcome stressful/pathological situations by triggering a molec-
ular program for stress resistance such as calorie restriction and starvation [39]. In fact,
prolonged fasting events cause a decrease in glucose levels, while the production of ketone
bodies increases at the expense of liver β-oxidation of adipose tissue-derived fatty acids [40].
In our study, we observed that the oxidative stress response leads to a decrease in caloric
intake. This could suggest a link between the PQ related oxidative stress, and changes in
the eating behavior. However, the mechanism linking fasting, and PQ is still lacking. In
this regard, it has been suggested that 3-hydroxybutiric acid mediates the beneficial effects
of calorie restriction through its antioxidant activity, by several mechanisms: (1) it acts
as a direct antioxidant [41]; (2) it inhibits mitochondrial ROS production through NADH
oxidation [42]; and (3) it promotes transcriptional activity of antioxidant defenses [43].

During fasting, the brain relies on ketone bodies as an alternative energy source.
However, this metabolic shift towards ketogenesis is linked with an impaired mitochondrial
respiration dysfunction and an elevation in H2O2, which has been observed in various
neurodegenerative diseases [44]. These changes in mitochondrial function and shift to
ketone body utilization in the brain, have been linked to a mechanistic pathway that
connects early decline in mitochondrial respiration and H2O2 production to activation of
pathways that catabolize myelin lipids (myelin to SMs, SMs to ceramide, ceramide to FAs
and FAs to ketone bodies) resulting in white matter degeneration [45]. These lipids act as a
local source of ketone body generation via astrocyte mediated β-oxidation of fatty acids.
Astrocyte derived ketone bodies can then be transported to neurons where they undergo
ketolysis to generate acetyl-CoA for TCA derived ATP generation required for synaptic
and cell function [45]. Hence, we suggest a similar effect in our model due to the similar
pattern found at both PQ doses, where an of increase in 3-hydroxybutiric acid expression is
linked to the increase in SMs.

Indeed, the generation of ROS regulates SMs pathways, specifically this pathway
is reversibly activated by H2O2 and reversibly inhibited by GSH. In our experimental
approach, we suggest that the SMs pathway could be up-regulated due to a hypothetical
elevated amount of H2O2; in parallel to the fact that GSH could not inhibit the activation of
the pathway due to the large amount of H2O2 available. In previous studies, SM signaling
cascade has been connected to oxidation stress in cell cycle and apoptotic signaling [46].
The SMs are recognized as a ubiquitous signaling system that links specific cell-surface
receptors and environmental stresses with the nucleus [47]. Thus, the crosstalk between
the oxidative system and SM metabolism could have important implication for developing
apoptosis which plays key role in NCD. In concordance, our data reflect an increase in
total SMs in the PQ-treated groups being more pronounced in the PQ-30 group following a
dose-dependent pattern.
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Serine, which was increased in PQ-15 and decreased in PQ-30, is a key amino acid
acting as a central node linking glycolysis to GSH synthesis and one-carbon (1C) metabolic
cycle, which are closely related to its antioxidant capacity [48]. 1C metabolism intermediary
products regulate oxidative stress with the production of NADH and GSH, which have
an intrinsic ROS scavenging capacity. In previous studies, it has been shown that serine
decreased when oxidative raised, thus favoring the development of metabolic syndrome
and obesity [49,50]. In line with this, our present results show decreased values of serine in
the PQ-30 group while this amino acid rises its concentration in the PQ-15 group; this fact
suggests that the PQ-15 animals are trying counterbalance the ROS by increasing the serine
levels. In addition, an in vitro study showed that serine deficiency causes a higher response
to oxidative stress and higher ROS content as it is shown in our case for PQ-30 [51].

Furthermore, elevated levels of LPC have been associated with oxidative stress through
ROS generation and systemic inflammation [52]. Interestingly, the LPC levels were de-
creased in the PQ-induced oxidative stress groups (PQ-15 and PQ-30). LPC, which is the
main component of oxLDL, originates from the cleavage of the membrane PC by phospho-
lipase A2 (PLA2). In this sense, inactivation of PLA2, which could explain the low LPC
levels detected in our PQ exposed rats could be attributed to the Fenton reaction as it has
been previously reported [53]. Additionally, it has also been proposed that LPC-induced
oxidative stress may have a dual effect depending on the amount and type of ROS, the
duration of exposure and the type of cell [54].

In this experimental approach, the plasma metabolome provides a broader picture of
the metabolic changes compared to the urine metabolome, nonetheless there are interesting
metabolites that could be also discussed and linked to the plasma metabolic profile. Related
to energy metabolism, the TCA cycle was decreased in group PQ-30 as it is previously
described for plasma. For instance, 1-methylnicotinamide, a major urinary product of
nicotinamide metabolism, was increased in animals with PQ-induced oxidative stress. In-
terestingly, 1-methylnicotinamide has been shown to inhibit NAD+ synthesis participating
in redox homeostasis, making it a central player for energy metabolism [55]. Additionally,
trigonelline, a methylated 1-methylnicotinamide, was also decreased in the PQ-30 group.

On the other hand, regarding NAD+ synthesis, tryptophan is degraded to produce
NAD+ in the kynurenine pathway that can be activated by stress and immunocytokines.
Thus, the decrease in tryptophan in PQ-30 groups suggests that tryptophan was dis-
placed to generate NAD+. Those altered metabolites reflect the importance of NADH
metabolism in energy metabolism and the subsequent development of metabolic disor-
ders [56]. In previous studies, pseudouridine has been considered a secreted urinary
oxidative stress biomarker, reflecting RNA turnover since it is originated from degraded
rRNA and tRNA [57]. The PQ-15 group followed the general tendency of increased pseu-
douridine in relation to oxidative stress [58], while the PQ-30 group presented similar values
to the CON group. That fact could likely be explained due to pseudouridine accumulating
in other tissues as previously reported in the case of renal failure [59].

For the global assessment of the toxicity of environmental contaminants on the body,
the gut microbiota is an important but often overlooked factor [60]. Research on the
effects of PQ on the gut microbiota has been limited, with few studies conducted on
piglets [13], flies [61] and mice [12]. Our findings on the gut microbiome from rats indicate
that high doses of PQ (PQ-30 group) lead to paramount changes in microbial population.
We suggest that the increase in oxidative molecules in the gut microbiome results in the
reduction in specific microorganisms sensitive to PQ. This phenomenon may explain the
non-homogeneous decrease in microbial diversity within the gut microbiome. For instance,
one of the latest studies on early PQ exposure indicated that PQ reduced gut microbiota
diversity altered the structure of gut microbiota in an early-life murine model [12].

Our results show that the microbiota changed in the PQ-15 group, but the change
was much more dramatic in the PQ-30 group. While PQ-15, at a lower dose, may not
have reached a concentration threshold able to induce significant shifts in the microbiome,
the PQ-30 dose could have surpassed a critical level, leading to pronounced microbiome
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alterations. Moreover, the gut microbiome is known for its resilience but can undergo
substantial changes in response to external stimuli [62]. The intense sensitivity to PQ may
indicate a dose-dependent threshold where the microbiome could suffer more pronounced
shifts in response to the external stressor.

In the present study, the relative abundance of Firmicutes decreased, which is widely
associated with obesity, as shown in the PQ-15 group. On the other hand, in the PQ-30
group the relative abundance of Firmicutes and Bacteroidetes dramatically decreased in
favor of Proteobacteria and Verrucomicrobia. Those changes suggest that Proteobacteria and
Verrucomicrobia have efficient mechanisms to manage oxidative stress in comparison to
other phyla.

On the one hand, Escherichia coli, which was the main altered species in the Proteobac-
teria phylum and positively associated with isoprostanes, has several major regulators
activated during oxidative stress. Those regulators are functionally conserved in a broad
range of bacterial groups in Proteobacteria (SoxRS and RpoS), reflecting a positive selection
of these regulators [63]. This could explain why E. coli presented a different pattern being
the most resistant in the PQ-30 group.

On the other hand, Akkermansia muciniphila, a mucin-degrading Gram-negative bac-
teria, belonging to the Verrucomicrobia phylum [64], is the second-most dominant species
of the PQ-30 group and was positively associated with isoprostanes. High inflammation
has previously been associated with a decreased abundance of A. muciniphila such as in
cases of ulcerative colitis patients [65]. A. muciniphila is associated with health benefits
including protection against cardiometabolic disorders such as diabetes and obesity [66,67],
hence its dominance may represent an adaptive response to elevated ROS and systemic
inflammation. Although A. muciniphila degrades mucus, its presence increases the number
of goblet cells which secrete mucus, thereby strengthening the protective barrier of the
intestine. In addition, A. muciniphila derived melatonin production has been found to
scavenge ROS [68]. Orally administered A. muciniphila in diabetic rats has demonstrated
a reduction in systemic inflammation, a decrease in gut permeability and reduction in
MDA [69]. Its health benefits are suggested to influence in an indirect fashion, creating
conditions for beneficial microbes and metabolites, or directly via heat-resistant surface
protein, Amuc_1100 or production of short-chain fatty acids, butyrate and propionate that
contribute to the gut barrier integrity [70].

5. Conclusions

Our study reveals the systemic impact of PQ administration in male Wistar rats,
emphasizing its effects on body weight, oxidative stress biomarkers, metabolome and gut
microbiome. Alterations in the tricarboxylic acid cycle and ketone body accumulation
highlight the intricate connection between energy metabolism, redox biology, and PQ-
induced oxidative stress.

Key metabolites, such as 3-hydroxybutyric acid, suggest potential links between
calorie restriction and stress resistance. Changes in serine levels provide insights into the
complex network of metabolic pathways affected by PQ exposure. Plasma metabolome
analysis reveals significant shifts in mitochondrial metabolism, including alterations in
nicotinamide metabolism and tryptophan degradation.

Exploring the gut microbiome indicates changes, with higher PQ doses affecting
microbial populations and metagenomic functions. Furthermore, our results suggest that
Proteobacteria and Verrucomicrobia have efficient mechanisms to manage oxidative stress in
comparison to other phyla.

Overall, this study contributes to our understanding of the mechanisms underlying
PQ-induced oxidative stress metabolic alterations and the connections between xenobiotic
exposure, gut microbiota and host metabolism.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox13010067/s1, Supplementary Figure S1: Full unedited gels
for Figure 2i. Supplementary Figure S2: Venn-diagram of plasma metabolites of the PQ-induced
oxidative stress model. The numbers correspond to the total number of metabolites presenting statis-
tical differences. Supplementary Figure S3: Multivariate analysis’s summary of plasma metabolome
in the PQ-induced oxidative stress model. (a) PCA scores of plasma metabolome. (b) PLS-DA scores
of plasma metabolome. The Score plot is represented, and it includes the number of components, the
cumulative R2X, R2Y and Q2Y. Groups (n = 10 animals per group): CON, blue; PQ-15, orange; PQ-30,
green. Supplementary Figure S4: Venn-diagram of urine metabolites of the PQ-induced oxidative
stress model. The numbers correspond to the total number of metabolites presenting statistical
differences. Supplementary Figure S5: Multivariate analysis’s summary of urine metabolome in the
PQ-induced oxidative stress model. (a) PCA scores of urine metabolome. (b) PLS-DA scores of urine
metabolome. The Score plot is represented, and it includes the number of components, the cumulative
R2X, R2Y and Q2Y. Groups (n = 10 animals per group): CON, blue; PQ-15, orange; PQ-30, green.
Supplementary Figure S6: Summary of the virus statistical analysis in the PQ-induced oxidative stress
model. (a) Beta diversity: PCA plot calculated by Aitchison distance. (b) Alpha diversity (AU): Chao1
index. (c) Relative distribution of virus phylum. (d) Relative distribution of virus species. Groups
(n = 8 animals per group): CON, blue; PQ-15, orange; PQ-30, green. Supplementary Figure S7: Rel-
ative distribution of functions between the experimental groups (n = 8 animals per group) of the
PQ-induced oxidative stress model. Supplementary Figure S8: Multi-omics data integration of plasma
metabolome, urine metabolome and microbiome using DIABLO in the PQ-induced oxidative stress
model. (a) Sample plot. The samples, which are plotted according to their scores on the 2 components
for each data set, are associated showing the degree of agreement between the different data sets
and the discriminative ability of each data set. Samples are coloured by group: CON; blue, PQ-15;
orange and PQ-30; green. (b) Arrow plot. The samples are projected into the space spanned by the
first 2 components for each data set then overlaid across data sets. The start of the arrow indicates
the centroid between all data sets for a given sample and the tip of the arrow the location of the
same sample in each block. Arrows further from their centroid indicate some disagreement between
data sets. Samples are coloured by group (CON; blue, PQ-15; orange and PQ-3; green) and data
sets are shaped (plasma metabolome: circle, urine metabolome: triangle and microbiome: cross).
(c) Correlation circle plot. The plot highlights the potential associations within and between different
variable types. Clusters of points indicate a strong elation between variables. Each colour and shape
indicate the type of features: plasma metabolome (purple circle), urine metabolites (red triangle)
and finally, microbiome (yellow cross). Supplementary Figure S9: ROC and AUC based on DIABLO
performed on the PQ-induced oxidative stress model. This figure shows the ROC curve and AUC for
one class versus the others for each data set (plasma metabolome, urine metabolome and microbiome)
and the 2 components. The Wilcoxon test p-value is calculated to assess the differences between
the predicted components from one class versus the others. ** p < 0.05 (significantly different) and
*** p < 0.01 (high significantly different). Supplementary Table S1: General characteristics of the
PQ-induced oxidative stress model. The results are presented as the mean ± SEM (n = 10 animals per
group). The biometric parameters are represented as a percentage of g per kg of body weight to allow
for proper comparison of parameters. The statistical comparisons among groups were conducted
using 1-way ANOVA and post hoc (Tukey) test. * Denotes p < 0.1 (tendency), ** p < 0.05 (significantly
different) and *** p < 0.01 (high significantly different) compared with control. Abbreviations: BW,
body weight; MWAT, mesenteric white adipose tissue; RWAT, retroperitoneal white adipose tissue;
TG, triglycerides; TC, total cholesterol; NEFAs, non-esterified fatty acids. Supplementary Table S2:
Statistical analysis of plasma metabolites in the PQ-induced oxidative stress model. CON, PQ-15
and PQ-30 groups (n = 10 animals per group) are represented by relative abundances (AU). Relative
abundances of metabolites are presented by the mean ± SEM. Plasma metabolites are shorted by VIPs.
The summary of univariant and multivariate analysis is shown including p-value (Kruskal-Wallis
test), q-value (correction with False discovery rate Benjamini-Hochberg test), post-Hoc test between
groups if there are significant differences in Krustal-Wallis test and VIP value of PLS-DA. The statis-
tically significant values (< 0.05) are highlighted in bold. Abbreviations: DG, diacylglycerol; ChoE,
cholesterol ester; TG, triglyceride; PC, phosphatidylcholine; SM, sphingomyelin; LPC, lysophospholipid;
PE, phosphatidylethanolamine. Supplementary Table S3: Statistical analysis of urine metabolites in the
PQ-induced oxidative stress model. CON, PQ-15 and PQ-30 groups (n = 10 animals per group) are
represented by relative abundances (AU). Relative abundances of metabolites are presented by the

https://www.mdpi.com/article/10.3390/antiox13010067/s1
https://www.mdpi.com/article/10.3390/antiox13010067/s1


Antioxidants 2024, 13, 67 25 of 28

mean ± SEM. Urine metabolites are shorted by VIPs. The summary of univariant and multivariate
analysis is shown including p-value (Kruskal-Wallis test), q-value (correction with False discovery rate
Benjamini-Hochberg test), post-Hoc test between groups if there are significant differences in Krustal-
Wallis test and VIP value of PLS-DA. The statistically significant values (<0.05) are highlighted in
bold. Supplementary Table S4: Summary of bacteria phyla in the CON, PQ-15 and PQ-30 groups
(n = 8 animals per group). The summary of univariant analysis is shown including results of
Kruskal-Wallis (p-value), Kruskal-Wallis corrected by HS (q-value) and FC, the statistically signif-
icant values (<0.05) are highlighted in bold. Taxonomic data is presented as the mean of relative
abundance (%). Supplementary Table S5: Summary of bacteria species in the CON, PQ-15 and PQ-30
groups (n = 8 animals per group). The summary of univariant analysis is shown including results of
Kruskal-Wallis (p-value), Kruskal-Wallis corrected by Holm-Šídák (q-value) and FC, the statistically
significant values (<0.05) are highlighted in bold. Taxonomic data is presented as the mean of relative
abundance (%). Supplementary Table S6: Summary of virus species in the CON, PQ-15 and PQ-30
groups (n = 8 animals per group). The summary of univariant analysis is shown including results of
Kruskal-Wallis (p-value), Kruskal-Wallis corrected by Holm-Šídák (q-value) and FC, the statistically
significant values (<0.05) are highlighted in bold. Taxonomic data is presented as the mean of relative
abundance (%). Supplementary Table S7: Statistically significant differences in functions between
the experimental groups of the PQ-induced oxidative stress model. In this table, the most abundant
functions are represented in CON, PQ-15 and PQ-30 groups (n = 8 animals per group). The summary
of analysis is shown including results of Kruskal-Wallis corrected by HS (q-value) and % relative of
each function, the statistically significant values (<0.05) are highlighted in bold. Supplementary Table
S8: Multi-omics data association with isoprostanes (gold standard biomarker). The multi-omics data
was given as input to MaAslin2 comprehensive R package (Multivariate Association with Linear
Models 2, v.1.8.0—Bioconductor) alongside isoprostanes levels. Results were considered significant if
they had a q-value smaller than 0.25.
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