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Abstract: Myeloperoxidase (MPO) is a heme-containing peroxidase, mainly expressed in neutrophils
and, to a lesser extent, in monocytes. MPO is known to have a broad bactericidal ability via catalyzing
the reaction of Cl− with H2O2 to produce a strong oxidant, hypochlorous acid (HOCl). However, the
overproduction of MPO-derived oxidants has drawn attention to its detrimental role, especially in
diseases characterized by acute or chronic inflammation. Broadly speaking, MPO and its derived
oxidants are involved in the pathological processes of diseases mainly through the oxidation of
biomolecules, which promotes inflammation and oxidative stress. Meanwhile, some researchers
found that MPO deficiency or using MPO inhibitors could attenuate inflammation and tissue injuries.
Taken together, MPO might be a promising target for both prognostic and therapeutic interventions.
Therefore, understanding the role of MPO in the progress of various diseases is of great value.
This review provides a comprehensive analysis of the diverse roles of MPO in the progression of
several diseases, including cardiovascular diseases (CVDs), neurodegenerative diseases, cancers,
renal diseases, and lung diseases (including COVID-19). This information serves as a valuable
reference for subsequent mechanistic research and drug development.

Keywords: myeloperoxidase; COVID-19; cardiovascular disease; cancer; renal disease; neurodegenerative
disease; lung disease

1. Introduction

Myeloperoxidase (MPO), a member of the heme peroxidase enzyme family, is predom-
inantly found in neutrophils, with only a small amount present in monocytes, which is lost
during their maturation into macrophages [1,2]. The early recognition of MPO’s presence
dates back to 1868 when Klebs observed that guaiac tincture, a substance reacting with
peroxidase and used for peroxidase activity assays, could be oxidized by pus, suggesting
the existence of MPO in leukocytes. In 1898, Linossier found that H2O2 is required for the
peroxidase reaction in leukocytes [3]. Initially known as verdoperoxidase due to its green
color [4], MPO was isolated from leucocytes in 1941 [5]. However, the extraction of peroxi-
dase with a brown-green color from milk indicated its distinction from verdoperoxidase [6].
In 1943, Theorell coined the name MPO, elucidating its source, “myeloid”, and peroxidase
activity, “peroxidase” [7].

Due to the bactericidal effects of neutrophils, researchers hypothesized that MPO
could also play an antimicrobial role. However, Klebanoff found that MPO, either alone
or with semi-lethal amounts of H2O2, had little bactericidal effect on microorganisms in
1961–1962 [8]. Five years later, Klebanoff proposed and demonstrated that MPO exerted
its antimicrobial effect via the MPO-H2O2-iodide system [9]. In a subsequent study, it was
demonstrated that MPO and H2O2 form antibacterial systems with other halide and pseudo-
halide ions. Among these, the MPO-H2O2-Cl− system exhibited the strongest antibacterial
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activity [10]. The formation of the MPO-H2O2-iodide system is as follows: Upon the
invasion of pathogens, neutrophils are activated and secrete MPO into extracellular and
phagocytic vesicles [11]. Then, MPO takes two electrons from halogen ions and oxidizes
them to produce their corresponding hypohalous acids, using the H2O2 produced by
respiratory burst as a co-substrate. MPO, with its powerful oxidation products, is an
important factor in the role of neutrophils in innate immunity. Inhibiting MPO results
in neutrophils maintaining normal phagocytic activity but with reduced antimicrobial
activity [12].

If the antibacterial activity of MPO is not properly terminated, inflammation ceases to
be salutary and becomes pathogenic. During oxidative stress or chronic inflammatory pro-
cesses, MPO is secreted outside the cell, and the concentration of MPO-derived HOCl in the
extracellular fluid increases, which leads to the oxidation of DNA [13], RNA, proteins, and
lipids [14] due to their strong reactivity with biomolecules, resulting in tissue damage and
impaired biological functions [15,16]. Furthermore, these injuries cause inflammation [8],
which is thought to be a common mechanism in the pathological processes of many dis-
eases, including but not limited to cardiovascular, respiratory, renal, and neurodegenerative
diseases, in which MPO levels in patients’ plasma or other body fluids were significantly
elevated and correlated with disease severity [17–20]. In this review, we focus on the basic
information of MPO and integrate extensive information about the relationship between
MPO and its active reaction products and multiple diseases, hoping to provide a reference
for the development of MPO-related biological targets. In addition, MPO was found to
be relevant to the COVID-19 pandemic in the past three years [21–24]; therefore, the most
recent information on the role of MPO in COVID-19 has also been included and discussed
in detail in this review.

2. Generation and Structure of MPO

MPO was mainly found in neutrophils and monocytes, with a dry weight of 5% and
1%, respectively [25]. The circulating neutrophil count in mice is 10–15%, much lower than
that in humans, 60–70%, and the MPO level in murine neutrophils is approximately 10–20%
of that in human neutrophils [26]. MPO is actively synthesized in promyelocytes and
promonocytes during myelopoiesis in the bone marrow, while it remains inactive in fully
differentiated myeloid cells [27]. The specific biosynthetic process of MPO is as follows
(as shown in Figure 1) [28]: (a) The production of primary translation, pre-MPO, occurs
in the endoplasmic reticulum (ER). Then, after the cotranslational cleavage of the signal
peptide and incorporation of high-mannose oligosaccharide side chains, pre-MPO turns
into apo-pro-MPO without enzymatic activity. (b) Apo-pro-MPO transiently associates
with ER molecular chaperones (including calreticulin and calnexin [29]) in the ER, acquiring
a heme group to generate enzymatically active pro-MPO [30]. (c) Subsequently, pro-MPO
leaves the endoplasmic reticulum and mostly undergoes intramolecular protein hydrolysis
cleavage to form heavy and light chains and form mature MPO dimers that are stored in
neutrophils, while a small amount is secreted from the cells [31].

MPO is a dimer with a molecular weight ranging from 120 to 160 kDa [32]. It consists,
symmetrically, of a light chain (14.5 kDa, 106 amino acids) and a heavy chain (58.5 kDa,
467 amino acids) [33]. Both of these chains have a biological action and are connected by a
single disulfide bridge [34]. MPO is highly glycosylated, which is important for its enzymatic
activity. Deglycosylated MPO, on the other hand, exhibits a significant decrease in chlorination
activity, low-density lipoprotein (LDL) oxidation, and the ability to produce ROS [35].

The heme group in MPO is the derivative of protoporphyrin IX, with modified methyl
groups on pyrrole rings A and C [34]. This modification helps form two ester bonds with
the heavy-chain ester bond Glu (408) and the light-chain Asp (260). Heme is attached to
MPO via three covalent bonds, in addition to the above two ester bonds, and there is a
sulfonate bond between the pyrrole ring A and Met (243) [36], which causes the planar
distortion and asymmetry of the heme group, resulting in the unique spectral properties
and characteristic green color of MPO.
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Figure 1. The generation, structure, and catalytic cycle of MPO. The upper part of Figure 1 shows
the MPO synthetic process. MPO primarily exists in the azurophil granules of the myeloid series
of hematopoietic cells. MPO synthesis occurs at the promyelocyte differentiation stages, and MPO
synthesis activity gradually decreases during this process, disappearing in fully differentiated myeloid
cells. The first step occurs in the ER, where primary translation production apo-pre-pro-MPO
becomes apo-pro-MPO via the cotranslational glycosylation process. The next step, also in the ER,
involves apo-pro-MPO combining with ER molecular chaperones and a heme group to turn into
enzymatically active pro-MPO. The final step is pro-MPO leaving the ER and entering the azurophilic
granule, where the two monomers combine to generate mature MPO. The left side of the picture
demonstrates the structure of MPO, constructed in the Protein Data Bank (accession code 7Z53,
https://www.rcsb.org/structure/7Z53, accessed on 12 September 2023). MPO (120–160 kDa) is a
dimeric enzyme containing a light chain and a heavy chain in each monomer. There is a disulfide
bridge connecting the two monomers, and each of them has a heme group that is attached to MPO
with two ester bonds (connecting the light chain and the heavy chain) and a sulfonate bond. The
right side of the picture illustrates the catalytic cycle of MPO, representing the main ways in which
MPO exerts its innate immune function. Ferric MPO reacts with H2O2 to generate Compound I.
Compound I can be backward-reacted into ferric MPO via two pathways, which are marked in blue
and red in the figure. Among them, the blue path is called the halogenation cycle: Compound I is
reduced by halide ions (or pseudohalide ions) to form ferric MPO and respective hypohalous acids.
Also in the red path, Compound I can transform into native MPO via an intermediate, Compound II.
Ferric MPO and Compound III can mutually transform by consuming or generating O2

•−.

3. MPO-Derived Oxidants

The function of MPO mainly depends on its oxidative catalytic cycle (as shown in
Figure 1). The native state of MPO is normally in the ferric form (MPO-Fe3+), which
reacts with H2O2 to generate H2O and Compound I, which is a ferryl π-cation radical
(FeIV = O) [34]. Compound I can be regenerated into ferric MPO via two different path-

https://www.rcsb.org/structure/7Z53
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ways. On the one hand, Compound I can accept two electrons from halide (Cl−, Br−, and
I−) or pseudohalide thiocyanate (SCN−). In the meantime, it generates corresponding
oxidants [37], which are commonly termed the halogenation cycle [38]. The concentrations
in the plasma of Cl−, Br−, I−, and SCN− are 100–140 mM, 20–100 µM, less than 1 µM,
and 20–120 µM, respectively [10]. On the other hand, Compound I can also be reduced
via a two-step one-electron reduction [39] with radicals (nitric oxide, •NO, and O2

•−) or
organic compounds (including tyrosine, ascorbate, and steroidal hormones), generating
an intermediate, Compound II, which then undergoes a second one-electron reduction
to give the ferric species. This process is termed the peroxidase cycle. Native MPO can
also directly react with O2

•− to form Compound III [40], which can be reduced by certain
reducing agents [41].

3.1. HOCl

H2O2 is catalyzed by MPO to react with halogen ions, of which 45% reacts with Cl−

to form HOCl [10], partly due to the high concentration of Cl− in tissues [42] and its
higher reactivity. Also, HOCl is considered the main oxidant product of MPO [43]. The
antibacterial activity of HOCl is superior to that of other MPO-catalyzed products [44].
With its short-lived but highly reactive characteristic, HOCl can potentially oxidize most
oxidizable groups in most substrates.

However, excessive or misplaced production of HOCl is associated with the onset and
development of various pathological processes. HOCl can rapidly react with downstream
macromolecules, such as proteins, DNA [13], and lipids [14]. Researchers determined
the reactivity of HOCl with potential reactive sites of proteins under physiological pH
conditions, showing the following order: Met > Cys ≫ Cystine ≈ His ≈ α-amino > Trp >
Lys ≫ Tyr > Arg > Gln ≈ Asn [45].

3.2. HOSCN

As the most favorable substrate for MPO (with decreased protonation and a standard
redox potential), HOSCN can regulate the final ratio of HOSCN and HOX (X = Cl−, Br−,
and I−) produced by MPO [46], and in extreme cases, a high enough amount of SCN−

can completely replace other halogen ions. HOSCN can be produced either via the MPO
catalysis or direct reaction of SCN− and HOCl [47]. HOSCN can be produced in greater
amounts in smokers, who have a higher level of SCN− compared with nonsmokers [48].
The antibacterial ability of HOSCN is inferior to that of HOCl because its oxidizing ability
is much weaker than that of HOCl [49]. However, HOSCN can penetrate cells to oxidize
intracellular sulfhydryl groups [50].

HOSCN reacts with thiols [51] and selenocysteine [52] in thiol/disulfide-like ex-
change reactions. As stated above, HOCl can produce irreversible oxidative damage
to biomolecules, whereas HOSCN reacts reversibly with less impact on biological functions.
The definite effects of HOSCN on diseases are unclear, and some investigators believe that
HOSCN can induce cellular dysfunction in some specific cell types, such as macrophages
and endothelial cells [53,54], which may be related to the pathological processes of some
diseases. Others suggest that the formation of HOSCN is a protective mechanism that
competitively inhibits the production of HOCl while consuming H2O2 [55].

3.3. ONOO−

When neutrophils are stimulated, respiratory burst occurs with increased oxygen
consumption and the production of NADPH oxidase [56,57], and then superoxide (O2

•−)
reacts with •NO to form peroxynitrite (ONOO−), which contributes to the bactericidal
activity of phagosomes [58]. ONOO− further generates a more active oxide, nitrogen
dioxide (NO2) [59], which mainly exerts its bactericidal effect by oxidizing the sulfhydryl
groups of biomolecules [60].

The half-life of ONOO−/ONOOH at physiological pH is approximately 1 s, while
ONOO− is relatively stable and can react directly with proteins, lipids, DNA [61], and other
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biomolecules, promoting oxidation and nitration reactions [62], separately or collectively,
in some pathophysiological processes [63]. Numerous studies have shown that ONOO−

has a close association with some diseases, including but not limited to atherosclerosis [64],
myocardial ischemia–reperfusion injury (MIR) [65], stroke [66], sepsis [67] and Alzheimer’s
disease (AD) [68]. Currently, there are three primary categories of ONOO− inhibition: first,
the use of antioxidants, such as NAC [69] and LA [70], to resist its oxidation; second, the
inhibition of the raw materials and enzymes (such as MPO) for ONOO− synthesis; and
third, the promotion of the degradation of ONOO−, such as via metalloporphyrins and
organo-seleno derivatives [71].

4. Role of MPO in Innate Immunity

Neutrophils, constituting 60–70% of all human leukocytes [72], employ both oxidative
and non-oxidative mechanisms to combat bacteria. Stored in the azurophilic granules
and released upon neutrophil activation (triggered by contact with pathogens) [8], MPO
plays a major role in the innate immune response [73]. Neutrophil activation by pathogen
ingestion triggers the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
enzyme system [74], catalyzing the generation of O2

•− with O2 as the substrate. O2
•−

produces hydrogen peroxide (H2O2) via a disproportionation reaction, which can react
with halides to form the respective sub-halogenated acids catalyzed by MPO [75]. Among
these, HOCl, synthesized via the reaction of H2O2 and Cl−, is a very effective component
involved in antimicrobial defense and is capable of destroying biomolecules in the cells
and tissues of host organisms [39]. HOCl is widely considered to be located in neutrophil
phagosomes [76]. An in vitro experiment indicated that HOCI inhibited E. coli growth
and division rapidly and selectively and impaired its protein synthesis [77]. Researchers
found that MPO-knockout mice were more susceptible to bacterial infection, and further
experiments indicated that MPO could protect the host against Klebsiella pneumoniae [78].
Neutrophils release both MPO and serine proteinases, and their relationships decide the
final antimicrobial effect. Low levels of HOCl can inactivate α1-antitrypsin (the specific
endogenous inhibitor of neutrophil elastase) [79], while high levels of HOCl can increase
the susceptibility of neutrophil-derived proteins to proteolysis [80], implying that the MPO
concentration can modulate the immune effect. Pseudomonas infections are more com-
mon in patients with MPO deficiency [81]. Population studies utilizing Bayer-Technicon
hematological devices have found that a small number of patients with complete MPO
deficiency experience severe complications related to infection or inflammation patholo-
gies [82]. However, increased MPO levels are connected to some autoimmune diseases
such as eosinophilic granulomatosis [83] and Kawasaki’s disease [84].

The antimicrobial activity of MPO is associated with three main antimicrobial modal-
ities of neutrophils: phagocytosis [85], degranulation, and the formation of neutrophil
extracellular traps (NETs). NETs are reticular structures composed of DNA and granular
proteins [86], serving as extracellular anti-bacterial structures [87]. However, dysregulated
NET formation can also lead to diseases, such as thrombosis [88] and respiratory failure [89].
Pathogens and inflammatory mediators activate the formation and release of NETs [90],
which can be divided into three main steps: (a) The activation of NADPH oxidase results
in the production of ROS, leading to chromatin denudation. (b) The translocation of neu-
trophil elastase (NE) and MPO to the nucleus [91] promotes further chromatin unfolding
and nuclear membrane rupture [86], which results in the release of chromatin into the
cytoplasm, where it is decorated with granules and cytoplasmic proteins. (c) After the
disruption of the cytoplasmic membrane, NETs are released with the death of neutrophils.
Previous articles have demonstrated that MPO is critical to the formation of NETs [92], as
it is a major particle-resident protein that promotes the decondensation of chromatin [93].
In chronic granulomatous disease (CGD) patients who had damaged NADPH oxidase
function affecting the production of hydrogen peroxide, it was difficult for the reaction
substrate of MPO to form NETs [90]. Also, a study demonstrated that neutrophils from
MPO-deficient patients failed to release NETs upon stimulation [94].
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Even though MPO plays a pivotal role in the innate immune system, some researchers
have differing views on the antimicrobial effect of MPO. It has been observed that MPO
primarily targets specific microorganisms, such as Candida albicans and Staphylococcus au-
reus [11,27]. Moreover, individuals with MPO deficiency do not seem to experience sig-
nificant health problems [95]. Some researchers have speculated on this phenomenon,
suggesting that other antimicrobial systems may compensate for the long-term absence of
MPO at the developmental stage. Additionally, the lack of production of active substances
also prevents the inactivation of innate immune molecules within phagocytosed bodies [96].

5. Role of MPO in Diseases
5.1. Cardiovascular Diseases

Numerous studies suggest a robust association between MPO and CVDs, such as
atherosclerosis, MIR [97], coronary artery disease [98], and stroke [99–101]. Elevated MPO
levels are correlated with a poorer prognosis and increased severity of CVDs [102]. In
a long-term clinical trial with 1302 asymptomatic adults, researchers found that adults
with MPO at or above the median had greater body mass indices (p < 0.001), increased
LDL-C levels (p = 0.001), decreased HDL-C levels (p = 0.001), and elevated systolic and
diastolic blood pressure (p = 0.001 and p = 0.02, respectively) compared with those below
the median. Moreover, the CVD event rate was twofold higher in adults with MPO levels
at or above the median compared with adults with MPO levels below the median, at 2.3%
and 4.6%, respectively [103]. Researchers built an unstable atherosclerotic plaque animal
model, showing that the enzyme activity of MPO in unstable plaques was three times
higher than that in stable phenotypic plaques. After inhibiting MPO or MPO gene deletion,
the unstable phenotype was significantly attenuated, indicating that MPO is a potential
therapeutic target for the identification and stabilization of unstable plaque [104]. Then,
they collected carotid endarterectomy specimens from 31 patients and coronary plaques
removed from 12 patients with cardiac transplantation, and the researchers found that MPO
levels were higher in unstable carotid and coronary plaques than in stable plaques [105],
providing significant new insights into the role of MPO in vulnerable plaques. MPO
disrupts the stability of plaque by reducing the thickness of the fibrous cap, consequently
leading to a rise in intraplaque bleeding and an increased likelihood of thrombotic incidents.
MPO serum levels were considered as a powerful independent prognostic determinant
of clinical outcomes in patients with ACS [18]. Combined with cardiac troponin T, the
established prognostic markers of ACS, MPO identified 95% of all adverse events in the
c7E3 Anti-Platelet Therapy in Unstable Refractory Angina trial.

Since MPO and its oxidative products are involved in all stages of atherosclerosis,
atherosclerosis is highlighted in this review among CVDs (the main mechanisms are shown
in Figure 2). A study that detected MPO levels in detergent extracts of atherosclerotic
arteries demonstrated that MPO was expressed in human atherosclerotic lesions [106].
Moreover, after using the MPO inhibitor AZM198 in a tandem stenosis model of plaque
instability, a study found that inhibiting MPO can stabilize existing vulnerable plaque [107].
Stroke, attributed to vascular disease, was induced by MPO by destroying the integrity of
blood vessels, either directly or indirectly [108].

MPO is involved in CVD processes in many ways, contributing to the oxidation of
LDL [109], the impairment of high-density lipoprotein (HDL) function, the reduction in
nitric oxide (NO) bioavailability leading to endothelial dysfunction [110], and the activation
of matrix metalloproteinases (MMPs) [111]. Additionally, MPO-derived-oxidant HOCl
promotes endothelial cell apoptosis and shedding, leading to plaque instability [112]. The
combination of these functions of MPO makes it an active mediator in the development
of CVDs.
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Figure 2. The role of MPO in the pathogenesis of cardiovascular disease. The red arrows demonstrate
the process promoted by MPO: the migration of monocytes, the oxidation of LDL, the dysfunction
of HDL, the activation of MMP, the migration of SMC, the death of EC, the formation of foam cells,
and the rupture of atherosclerotic plaque. The blue arrows show the inhibition process caused by
MPO: the reduction in cholesterol efflux and NO bioavailability.

5.1.1. LDL

The oxidative conversion of LDL to atherogenic forms is a key event in cardiovascu-
lar disease development [113]. MPO is capable of generating a large number of reactive
products, including HOCl, chloramines, tyrosine radicals, and nitrogen dioxide. These
oxidative products oxidize the proteins, lipids, and antioxidant components in LDL, lead-
ing to the formation of oxidized LDL (oxLDL) [114]. In vitro studies showed that the
MPO-H2O2-Cl− system oxidizes L-tyrosine, leading to the production of 3-chlorotyrosine,
which serves as a specific marker of oxLDL. Furthermore, HOCl is an intermediate of this
reaction. The detection of 3-chlorotyrosine in human atherosclerotic lesions and isolated
LDL from atherosclerotic lesions strongly supports the hypothesis that MPO plays a crucial
role in the oxidative modification of lipoproteins [115]. OxLDL can inhibit reverse choles-
terol transport by promoting the formation of oxidized HDL (oxHDL), thereby impairing
the protective effect of HDL on LDL [116].

The oxidative modification of LDL is an early event in the development of atherosclero-
sis [117]. OxLDL promotes atherogenesis by promoting cholesterol deposition, converting
macrophages into foam cells. Retention in the subendothelial space makes LDL a major
target of pro-oxidant oxidation produced by arterial wall cells [118]. OxLDL is more readily
taken up by macrophages than natural LDL, potentially leading to the generation of foam
cells as well as an enlarged lipid core that exacerbates the stress on the fibrous cap matrix,
making atherosclerotic plaques more prone to rupture [119]. Furthermore, when LDL
is oxidized to oxLDL, it is recognized by CD36, the scavenger receptor of macrophages,
contributing to irregular uptake and the formation of foam cells [116].
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5.1.2. HDL

HDL possesses several functions that help protect against CVDs. These functions
include cholesterol reverse transport [120], anti-oxidation [121], anti-inflammation [122],
protecting endothelial cells, and inhibiting the formation of oxLDL [123]. The major protein
of HDL [124], ApoA-1, is the main location where HDL exerts its anti-oxidative effect [125],
as circulating levels of ApoA-1 or HDL are negatively associated with CVDs [126]. It is
worth noting that dysfunctional apoA1 can have a pro-inflammatory effect [127]. HDL,
isolated from atherosclerotic lesions, contains a large number of MPO-modified peptides,
such as chlorinated, nitrated, and sulfoxidated apoA-I [128], demonstrating the correlation
between the modifying effect of MPO on HDL and the development of atherosclerosis.

Studies indicate that both HDL and apoA1 undergo extensive oxidation by MPO in
human atherosclerotic lesions, resulting in decreased ABCA1-dependent cholesterol ef-
flux [129] via the specific chlorination of the tyrosine residue site of apoA-1 [130]. Moreover,
MPO-modified HDL forms a tighter connection with MPO when HDL is oxidized, creating
a vicious cycle [131]. Modified HDL also competes with natural HDL as a ligand for the
scavenger receptor BI, potentially interfering with cholesterol mobilization from peripheral
tissues to the liver [132]. Besides the direct oxidation of apoA-I, MPO-derived oxidants
modify lipids to produce highly reactive dicarbonates, such as malondialdehyde and iso-
prenoid adenosine, which can form a covalent bond with apoA-I and reduce cholesterol
efflux [133,134]. In addition, MPO can induce the production of apoA-I/apoA-II het-
erodimers in HDL [135]. These heterodimers impaired wound-healing cell migration, and
MPO-mediated HDL was shown to have an impaired endothelial healing function [136].
Taken together, MPO is considered to contribute to HDL dysfunction, which participates in
the pathologic process of atherosclerosis.

5.1.3. Endothelial Dysfunction

Endothelial dysfunction, which is considered an early marker of atherosclerosis [137],
has been linked to the potential role of MPO [138]. Researchers observed that the inhibition
of MPO in a mice model of atherosclerosis reduced both the inflammatory response and
endothelial dysfunction [139].

NO is produced by endothelial NO synthase (eNOS), which plays a key role in
vascular homeostasis [140]. Insufficient NO can increase arterial oxidative stress and
endothelial cell damage. MPO can be localized on the surface of endothelial cells and
internalized [141], oxidizing NO and limiting its bioavailability [142], causing impaired
endothelium-dependent diastole and resulting in endothelial dysfunction. MPO interferes
with the eNOS/NO pathway to reduce eNOS activity [143], affecting endothelium-derived
relaxation. In an in vitro experiment, MPO induced endothelial dysfunction by decreasing
eNOS Ser1177 phosphorylation [144]. Meanwhile, HOCl-modified proteins were found in
endothelial cells overlying atherosclerotic lesions in an immunostaining experiment [145].
When exposed to HOCl, the arterial rings of rabbits showed dose- and time-dependent
endothelium impairment [146].

Endothelial glycocalyx (EG), playing a key role in maintaining vascular homeosta-
sis [147], is highly susceptible to structural changes due to charge modifications. MPO has
a high cationic charge at physiological pH [8] due to its arginine and lysine residues, while
EG has a highly anionic nature [148]. Researchers demonstrated that MPO was bound
to EG via the heparan sulfate side chain, leading to the collapse of the EG [149], and this
reaction was not related to the catalytic activity of MPO.

While completely inhibiting MPO activity with non-selective inhibitors may affect its
antimicrobial activity, selectively targeting extracellular MPO shows promise in eliminat-
ing MPO-induced endothelial dysfunction without compromising its bactericidal effect.
However, currently, there are insufficient data to support whether specific MPO activity
inhibition can still impact endothelial function in vivo.
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5.2. Neurodegenerative Diseases

MPO plays an important role in neurodegenerative diseases, including AD, Parkin-
son’s disease (PD), cerebral ischemia, and multiple sclerosis (MS). MPO is a critical in-
flammatory enzyme and therapeutic target, triggering both oxidative stress and neuroin-
flammation in the pathological process of cerebral ischemia–reperfusion injury. It induces
chloride stress and nitrosative stress. MPO catalyzes the reaction of H2O2 with Cl− to
form HOCl, which causes chloride stress [150]. It also catalyzes the formation of NO2

−

from NO, leading to nitrosative stress [151], leading to protein nitrification and oxidation,
lipid peroxidation, oxidative DNA damage, and the activation of MMP [152], which are all
related to neurodegenerative diseases.

The microglia in the brain are usually in a “resting state” [153], with MPO mainly
found in the microglia of diseased brains [154], whereas normal-brain microglia rarely
express this enzyme [155]. Activated microglia release inducible nitric oxide synthase
(iNOS), producing NO, which is converted into reactive oxidants such as NO2Cl and
ONOO−, leading to neuronal damage [152].

HOCl triggers apoptosis at low doses and induces necrosis, including that of neurons
and astrocytes, which are major components of the blood–brain barrier, at high doses [156].
It can also interact with ATP to interfere with energy metabolic processes [157]. HOCl-
mediated activation of MMP induces tight junction degradation, leading to blood–brain
barrier catabolism [158]. Elevated levels of 3-chlorotyrosine (a biomarker of HOCl) were
found in damaged brain regions in [159].

5.2.1. Alzheimer’s Disease

The deposition of β-amyloid (Aβ) is a major pathological feature of AD [160]. MPO
is co-localized with the Aβ protein in the senile plaques of cortical sections of AD pa-
tients [161]. The gene encoding MPO was involved in the pathway leading to Aβ de-
position. AD patients had increased levels of neuronal expression of MPO [162]. In a
meta-analysis, the concentration of MPO in peripheral blood was significantly higher in
AD patients than that in healthy controls [163]. MPO polymorphisms have been identified
as risk factors for AD [164].

MPO has been widely recognized to stimulate macrophages and cause the production
of ROS and inflammatory factors. In a study about how MPO and microglia play a role
in neurodegenerative Alzheimer’s disease, researchers found that MPO could cause the
production of ROS and TNFα, the leading proinflammatory cytokines in this disease, in
and around microglia, inducing neuronal apoptosis and necrosis [165]. In AD, microglia
can interact with Aβ, thereby stimulating microglia inflammatory responses, which can
lead to neuronal loss [166]. Therefore, MPO is a promising biomarker for AD that can help
in the detection and risk stratification of AD patients.

5.2.2. Parkinson’s Disease

Neuronal expression of MPO is increased in the substantia nigra [167] in PD. MPO-
deficient mice showed resistance to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-
induced neurotoxicity, a PD model [168]. As mentioned previously, MPO is found mainly in
the microglia of the diseased brain [169], and microglia are mainly located in the substantia
nigra, which is the brain region most susceptible to the influence of PD. HOCl chloritizes
dopamine and neuromelanin to produce chloro-dopamine [170] and neuromelanin, which
can enter dopaminergic cells via dopamine transporters to poison the mitochondria [171],
contributing to selective dopaminergic neuron death in the substantia nigra [172].

5.2.3. Multiple Sclerosis

MS is an autoimmune disease that causes inflammatory damage to the central nervous
system [173]. Immunohistochemical detection found that MPO is located in macrophages/microglia
in nearby MS lesions, showing the role of MPO in the pathogenesis of MS [174]. Moreover,
a study that collected the white matter of nine MS patients and seven healthy controls
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found that MPO levels were the highest in demyelinated white matter, followed by non-
demyelinated white matter, and were lowest in control white matter [175]. This means
elevated MPO levels were associated with MS, and MPO may contribute to axonal injury
within plaques. However, in the EAE model, which is the animal model for MS, MPO−/−

mice showed an increase in MS morbidity compared with wild-type (WT) mice, at 90%
and 30%, respectively [176]. The study indicated that MPO may have a protective role in
MS, which could be due to immunosuppressive effects. However, in consideration of the
different MPO levels in humans and mice (which are six-fold higher in humans than in
mice), the balance between its immunosuppressive and pathogenic effects might vary. The
MPO GG genotype with the high-expression property was related to higher disability, a
secondary progressive course of MS (p < 0.05), and the degree of brain atrophy (p < 0.05)
in [177]. However, in a later study, the researchers did not find an association between
MPO and susceptibility to the course and severity of MS [178]. This might be due to ethnic
differences. As a result, the real association is not clear and should be investigated in
different populations.

5.3. Cancers

MPO plays a dual role in tumor progression. On the one hand, MPO is involved in
promoting tumor initiation, development, and migration; on the other hand, MPO enhances
innate immune action during tumor elimination [179]. Increased levels of MPO have been
found in biological samples of cancers, such as serum from lung cancer patients [180],
plasma from subjects with gynecologic cancer, the neoplastic tissue of colon tumors [181],
and so on. Previous research demonstrated that MPO had gene polymorphisms, the most
common of which was MPO-463G, a polymorphism that affects MPO gene transcriptional
levels [182]. This polymorphism, located 463 bp upstream of the transcription start site,
binds to specificity protein 1 (SP1) [183]. The -463G site enhances the binding to SP1
compared with -463A so that the expression of the G allele is several times higher than
that of the A allele [184,185]. Previous studies have shown that -463A is associated with
a decreased risk of developing lung cancer, liver cancer, bladder cancer, and ovarian
cancer [185], while -463G with a higher mRNA expression is believed to be connected to
increased risks of many types of cancers [186].

MPO plays multiple roles in the progression of cancer. Caspase-3 plays a key role
in the control of apoptosis, mediating cellular autophagy by participating in a cascade of
reactions triggered in response to pro-apoptotic signals [187], while the non-enzymatic func-
tion of MPO acts by protecting cancer cells from caspase-3-mediated cell apoptosis [188].
The nitrosonium ion, an oxidative product of NO catalyzed by MPO, reduces caspase-3
activity via the nitroxylation of the caspase-3 thiol group, protecting tumor cells from
apoptosis [189]. Meanwhile, MPO has been shown to catalyze the bioactivation of poly-
cyclic aromatic hydrocarbons [190] and aromatic amines [191], leading to the production of
carcinogenically active metabolites.

Due to increased exposure to oxidative stress, prolonged inflammation can lead to
DNA damage [192] that induces malignant cell transformation [193]. Also, the concentra-
tion of HOCl is higher in tumor cells, especially in transformed cells, than in normal cells,
which can also explain this viewpoint [194]. HOCl is the main oxidation product of MPO
in vivo, and researchers have found that apoptosis could be induced by inhibiting the chlo-
rination of MPO and thus reducing HOCl levels [195], implying a new anti-cancer strategy
by targeting HOCl. HOCl has been shown to cause slow but effective DNA damage by
breaking hydrogen bonds, which leads to DNA double-strand dissociation [196]. Also,
HOCl can contribute to DNA structural changes and chemical modifications of the hetero-
cyclic NH groups of guanosine and thymine [13]. Reactions with these groups result in the
formation of chloramine, which can cause the double-strand dissociation of DNA [197].

On the plus side, MPO can protect against cancers associated with serious infections, such
as cervical cancer. In a clinical study with 100 invasive cervical cancer patients and 122 healthy
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controls, the GG genotype was protective against cancer compared with the GA genotype,
possibly due to the role of MPO oxidation products in killing HPV-transformed cells [198].

5.4. Renal Diseases

Elevated levels of MPO and its biological products are found in a variety of kidney
diseases [199], including chronic kidney disease (CKD), pyelonephritis, and glomeru-
lonephritis [200]. In a prospective cohort study of 3872 participants with CKD who were
grouped by MPO levels, higher MPO levels were associated with a 10% higher risk for
CKD progression (p = 0.03) compared with participants who held lower baseline MPO
concentrations [201].

In a renal ablation model simulating CKD, researchers compared MPO−/− mice with
WT mice for the incidence of nephropathy [202]. Compared with WT mice, MPO−/− mice
showed significantly diminished glomerular injury, decreased gene expression of renal
fibrosis markers, and reduced renal monocytes and macrophage infiltration. Also, they
found that the level of plasma MPO tripled after renal ablation, suggesting a role of MPO in
fibrotic remodeling [203]. In a clinical trial, the level of MPO was higher in the CKD group
than in the control group and increased as CKD progressed [204]. As previously described,
MPO, being a cationic protein, interacts with glomerular anionic sites [205], and MPO was
also co-localized with the glomerulus after perfusion. With the infusion of MPO and H2O2
into the kidney, the urine protein content increased significantly, showing severe glomerular
injury and swelling of endothelial cells [206]. MPO and non-toxic concentrations of H2O2
perfused alone did not show the above, suggesting that the injury was dependent on
the action of the MPO-H2O2-halide system. MPO was considered to induce neutrophil
recruitment [92], while neutrophils can produce a series of reactive oxygen intermediates
when they are activated, mediating tissue injury with subsequent renal failure [207].

5.5. Lung Diseases and COVID-19

MPO and its derived oxidant HOCl may induce lung diseases by causing oxidative
stress and inflammatory responses. 3-chlorotyrosine is considered a biomarker in respira-
tory diseases, including asthma, cystic fibrosis (CF), and chronic obstructive pulmonary
disease, which are associated with the accumulation of inflammatory cells and oxidative
stress [208]. Neutrophil-derived MPO is thought to be a major source of oxidative stress on
the pulmonary airway surface in CF [209]. Researchers also administered MPO inhibitors at
different stages of lung tumors in model mice. They found that MPO catalytic activity was
present in the early stage of the tumors, the inflammation phase [188]. HOCl inactivates
protease inhibitors at the inflammation site, leading to the dysregulation of elastase activity
in the lungs, which may inadvertently destroy connective tissue fibers [210]. In the airways
of children with CF, a great deal of HOCl was produced, which may oxidize reduced
proteins like GSH in the airways to destroy the lung epithelium [211]. Also, HOCl was
discovered to induce ROS and have potential roles in the pyroptosis of acute lung injury
(ALI) death by using the fluorescent probe technique [212].

Researchers found that the use of SAAE, a syzygium aromaticum aqueous extract,
effectively reduced MPO activity, LPS-induced lung inflammation, and MMP-2 and MMP-9
activity in mice [213]. Also, the inhibition of MPO reduced morbidity and oxidative
stress in mice with cystic-fibrosis-like lung inflammation [214]. Researchers found that
intranasally injecting MPO−/− mice with LPS showed reduced pro-inflammatory cytokines
and chemokines compared with WT mice [215]. These results showed MPO is involved in
the inflammatory process of lung diseases, which has also been observed in the worldwide
COVID-19 pandemic in the past three years.

COVID-19 exploded at the end of 2019, caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) [216], and seriously disrupted healthcare systems, suppressed
economic development, and threatened social stability [217], directly and indirectly. Recent
studies have shown a correlation between COVID-19 and MPO, the major particle-resident
protein of NETs, as mentioned above [218]. Clinical research on COVID-19 found that



Antioxidants 2024, 13, 132 12 of 25

levels of MPO were significantly upregulated in the serum of COVID-19 patients compared
with healthy individuals, and serum MPO levels in the recovered population were reduced
to levels comparable to those in healthy people [21]. Also, another clinical trial focusing on
COVID-19-positive patients found that plasma MPO levels in patients were significantly
higher than those in healthy controls [219]. In an in-silico analysis to assess oxidative stress
gene expression levels in COVID-19 patients, these gene expression levels were evaluated
using COVID-19 transcriptomic datasets and single-cell datasets from specimens collected
from the broncho-alveolar lavage fluid (BALF), whole blood, and lung autopsies of COVID-19
patients with varying disease severities [220]. The researchers found MPO levels were not
only increased in the samples of COVID-19 patients in comparison with healthy individuals
but also in those of severe COVID-19 patients compared with asymptomatic COVID-19
patients. These results showed a relationship between MPO and COVID-19 severity and
the redox homeostasis dysfunction caused by this pandemic disease. The symptoms caused
by COVID-19 are related to the cytokine storm that it triggers: the excessive immune
response leads to the excessive activation of neutrophils and the subsequent production of
large amounts of MPO, resulting in the series of clinical manifestations of COVID-19 [221].
It seems that maintaining a normal inflammatory response is as important as anti-viral
treatment. COVID-19-induced dysfunctions, such as vascular inflammation and platelet
aggregation, were associated with NO synthase, suppressed by over-generated HOCl [222].
Increased levels of MPO generated more HOCl, affecting NO synthase and contributing to
COVID-19-induced dysfunctions, such as vascular inflammation and platelet aggregation.

In response to SARS-CoV-2 invasion, NADPH oxidase is activated, MPO is then
released and enters into the nuclei of neutrophils [91], and, eventually, NETs are created
and released extracellularly [223]. As stated above, NETs are at risk of triggering and
spreading inflammation and thrombosis when not properly regulated [224]. The levels of
DNA-MPO complexes in COVID-19 patients have been shown to be higher than in healthy
individuals [22]. NETs are considered to bring about increased pulmonary morbidity [22,225],
organ damage, and mortality rates, and the formation of microthrombosis, [226] during
COVID-19 infection.

However, some researchers view MPO’s role in COVID-19 differently, emphasizing its
antibacterial action [227]. Researchers produced recombinant MPO (establishing a human
HEK293 cell line stably expressing recombinant MPO) and demonstrated its ability to kill a
broad spectrum of pathogens, including bacteria and fungi with or without drug resistance,
suggesting it is a promising antibacterial agent for COVID-19.

6. MPO Inhibitors in Clinical Trials

MPO has been proven to play many roles in the pathological processes of diseases,
which are shown in Figure 3; thus, the inhibition of MPO has received much attention.
According to the different mechanisms of MPO inhibitors, they are divided into irreversible
inhibitors and reversible inhibitors (as shown in Table 1).

Irreversible inhibitors can be oxidized by MPO to generate a radical that binds to the
active site, finally leading to irreversible inhibition [228]. p-aminobenzoic acid hydrazide
(ABAH) was the first irreversible MPO inhibitor [229]. This inhibitor has been proven to be
effective in various diseases. For example, treatment with ABAH can improve neuroge-
nesis after stroke in the mice transient middle cerebral artery occlusion model [158]. An
important series of irreversible inhibitors based on the xanthine structure were developed
by AstraZeneca [230]. AZD3241 (verdiperstat), a first-class, oral, selective, and irreversible
MPO inhibitor, might protect neurons by alleviating MPO-induced pathological oxidative
stress and inflammatory effects [231]. Although no significant protective effects have been
seen in phase III trials for the treatment of multiple-system atrophy, it has demonstrated
efficacy in amyotrophic lateral sclerosis (NCT04436510). Several researchers have studied
AZD3241 at the animal level for other disease applications, such as ALI [232], and some
results have been achieved both in vitro (a reduced distribution of β-catenin in the nuclei
of pulmonary microvascular endothelial cells after treatment with AZD3241) and in vivo
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(decreased lung coefficient and pathology scores in a rat ALI model injected with AZD3241).
Also, this inhibitor could help improve the response in immune checkpoint therapy for
patients with melanoma and immune checkpoint therapy resistance for melanoma [233].
However, the clinical application of AZD3241 still has a long way to go. AZD4831, another
MPO inhibitor, has completed clinical trials in healthy volunteers and patients with CVDs,
renal impairment, and HF. A double-blind phase 2a clinical study identified biomarker
profiles associated with clinical outcomes in heart failure with preserved ejection fraction
(HFpEF) and the levels of these biomarkers were downregulated after MPO inhibitor
AZD4831 treatment, indicating that the effective inhibition of MPO is a promising strategy
for HFpEF patients [234]. Meanwhile, in another study, there were no new safety or tolera-
bility matters in HFpEF patients when extracellular MPO was inhibited by AZD4831 [235].
A sequential phase 2b–3 randomized clinical trial has been registered to evaluate the effects
of AZD4831 on symptoms and exercise capacity in HFpEF patients [235]. PF-06282999,
based on thiouracil, was developed by Pfizer [236]. There was a phase 1 study evaluating
the safety and pharmacodynamic effects of PF-06282999 using LPS to induce inflamma-
tion in healthy subjects; however, the study was terminated early due to the safety of
LPS. Depending on ligand-based pharmacophore modeling, several compounds via a
virtual screening procedure were obtained in [237]. Among them, MPO-IN-28, containing
a guanidinium-based structure, had the strongest inhibitory activity against MPO.
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Figure 3. MPO’s various roles in cardiovascular diseases, lung diseases, neurodegenerative diseases,
renal diseases, and cancer. (1) In cardiovascular diseases, MPO can oxidize LDL, impair HDL, activate
MMPs, as well as increase endothelial dysfunction and plaque instability. (2) In lung diseases, MPO
can increase inflammatory responses, morbidity, oxidative stress, and MMPs, while decreasing GSH
and elastase activity in the lung. Additionally, MPO is involved in the COVID-19 inflammatory
process and is associated with disease severity. (3) In neurodegenerative diseases, MPO can increase
BBB catabolism, nitrosative and chlorination stress, and lipid peroxidation as well as activate MMPs
and induce oxidative DNA damage. (4) In renal diseases, MPO can increase the urine protein content
and adhesion molecule expression and induce glomerular injury and the swelling of endothelial cells.
(5) Unlike in other diseases, MPO acts as a two-edged sword in the cancer pathological process. On
the one hand, MPO can increase carcinogenically active metabolites, DNA damage, and malignant
cell transformation, as well as reduce caspase-3 activity to protect cancer cells from apoptosis. On the
other hand, MPO has pharmacologic effects on cervical cancer via its innate immune action.
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Reversible inhibitors bind to the MPO active site via non-covalent interactions with
high affinity and low dissociation rates [228]. Researchers found MPO has a binding site
for aromatic substrates, as the hydroxamic side chains of salicylhydroxamic (SHA) acid
and benzohydroxamic acid (BHA) can bind to the hydrophobic pocket at the entrance
of the heme [238]. Approximately two decades later, based on the effect of hydroxamic
acid, three substituted aromatic hydroxamates were developed [239]. Among them, a
trifluoromethyl-substituted aromatic hydroxamate, 2-(3,5-bistrifluoromethylbenzylamino)-
6-oxo-1H-pyrimidine-5-carbohydroxamicv acid (HX1), was the most potent inhibitor with
an IC50 of 5 nM. N-acetyl lysyltyrosylcysteine amide (KYC), a tripeptide inhibitor, has been
widely used in different pharmacological studies and can suppress the production of HOCl
and the oxidation of LDL [240].

To further the understanding of the relationship between MPO’s structure and func-
tions, and with the help of new technologies such as virtual screening, a series of innovative
MPO inhibitors are being investigated. The past decades have witnessed a surge in public
interest in natural antioxidants globally, and some of them have been shown to be effective
MPO inhibitors. Due to the high efficiency and low toxicity of natural compounds, the use
of natural MPO inhibitors as adjunctive therapy for anti-inflammatory treatments holds
great potential. Recently, natural polyphenols and flavonoids, such as quercetin, were
considered to reversibly inhibit MPO activity [241].
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Table 1. Cont.
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Irreversible
inhibitors

Thiouracil PF-06282999

1 
 

Category Pharmacophore Inhibitor Structure IC50 Pharmacological Effects References 

Irreversible 
inhibitors 

Hydrazide 4-ABAH 

1 

 

0.3 
µM 

Improves neurogenesis after 
ischemic stroke (mice model); 
improves endothelial function 

and reduces atherosclerotic 
plaque development (mice 

model)  

[158,229,242] 

Xanthine  

AZD4831 

2 
 

 

1.5 
nM 

Downregulates biomarkers 
associated with HFpEF 

(clinical trial) 
[234,235,243,244] 

AZD3241 

3 
 

630 
nM 

Attenuates ALI (mice model); 
improves PD (clinical trial); 

and enhances immune 
checkpoint therapy for 

melanoma 

[231–233] 

AZD5904 

4 
 

 

140 
nM 

Alleviates the relaxation defect 
in hypertrophic human 

cardiomyocytes; enhances 
human sperm function in vitro 

[245,246] 

Thiouracil PF-06282999 

5 
 

 

1.9 
µM 

Promotes atherosclerotic 
lesion stabilization and 
prevents atherosclerotic 

plaque rupture (mice model) 

[236,247] 

Guanidine MPO-IN-28 

6 
 

 

44 nM 

Protects against endothelial 
glycocalyx degradation in 

primary human aortic 
endothelial cells cultured with 
plasma of COVID-19 patients 

[237,248] 

Reversible 
inhibitors 

Hydroxamic acid  SHA 
 
 

25 µM 
No evidence of 

pharmacological effects; can 
[238] 

1.9 µM

Promotes atherosclerotic
lesion stabilization and
prevents atherosclerotic

plaque rupture
(mice model)

[236,247]

Guanidine MPO-IN-28

1 
 

Category Pharmacophore Inhibitor Structure IC50 Pharmacological Effects References 

Irreversible 
inhibitors 

Hydrazide 4-ABAH 

1 

 

0.3 
µM 

Improves neurogenesis after 
ischemic stroke (mice model); 
improves endothelial function 

and reduces atherosclerotic 
plaque development (mice 

model)  

[158,229,242] 

Xanthine  

AZD4831 

2 
 

 

1.5 
nM 

Downregulates biomarkers 
associated with HFpEF 

(clinical trial) 
[234,235,243,244] 

AZD3241 

3 
 

630 
nM 

Attenuates ALI (mice model); 
improves PD (clinical trial); 

and enhances immune 
checkpoint therapy for 

melanoma 

[231–233] 

AZD5904 

4 
 

 

140 
nM 

Alleviates the relaxation defect 
in hypertrophic human 

cardiomyocytes; enhances 
human sperm function in vitro 

[245,246] 

Thiouracil PF-06282999 

5 
 

 

1.9 
µM 

Promotes atherosclerotic 
lesion stabilization and 
prevents atherosclerotic 

plaque rupture (mice model) 

[236,247] 

Guanidine MPO-IN-28 

6 
 

 

44 nM 

Protects against endothelial 
glycocalyx degradation in 

primary human aortic 
endothelial cells cultured with 
plasma of COVID-19 patients 

[237,248] 

Reversible 
inhibitors 

Hydroxamic acid  SHA 
 
 

25 µM 
No evidence of 

pharmacological effects; can 
[238] 

44 nM

Protects against endothelial
glycocalyx degradation in

primary human aortic
endothelial cells cultured
with plasma of COVID-19

patients

[237,248]

Reversible
inhibitors

Hydroxamic acid SHA

 

2 

 
7 
 

 

be used to validate MPO 
inhibitors in silico  

Tyrosine KYC 

8 
 

 

7 µM 

Reduces bronchopulmonary 
dysplasia in hyperoxic 

neonatal rat pups; reduces 
oxidative injury and preserves 
neuronal function in MS (mice 

model); increases 
vasodilatation in sickle cell 

disease mice; promotes brain 
recovery from injury after 

stroke (mice model) 

[240,249–252] 

Hydroxamate HX1 

9 
 

5 nM 
No evidence of 

pharmacological effects 
[239,253] 

 

25 µM

No evidence of
pharmacological effects;
can be used to validate
MPO inhibitors in silico

[238]

Tyrosine KYC

 

2 

 
7 
 

 

be used to validate MPO 
inhibitors in silico  

Tyrosine KYC 

8 
 

 

7 µM 

Reduces bronchopulmonary 
dysplasia in hyperoxic 

neonatal rat pups; reduces 
oxidative injury and preserves 
neuronal function in MS (mice 

model); increases 
vasodilatation in sickle cell 

disease mice; promotes brain 
recovery from injury after 

stroke (mice model) 

[240,249–252] 

Hydroxamate HX1 

9 
 

5 nM 
No evidence of 

pharmacological effects 
[239,253] 

 

7 µM

Reduces
bronchopulmonary

dysplasia in hyperoxic
neonatal rat pups; reduces

oxidative injury and
preserves neuronal function

in MS (mice model);
increases vasodilatation in

sickle cell disease mice;
promotes brain recovery
from injury after stroke

(mice model)

[240,249–252]

Hydroxamate HX1

 

2 

 

Reversible 
inhibitors 

Hydroxamic acid  SHA 

 
 
 
7 
 

 

2
5
µ
M

No evidence of 
pharmacological effects; can 

be used to validate MPO 
inhibitors in silico  

[238] 

Tyrosine KYC 

8 
 

 

7
µ
M

Reduces bronchopulmonary 
dysplasia in hyperoxic 

neonatal rat pups; reduces 
oxidative injury and preserves 
neuronal function in MS (mice 

model); increases 
vasodilatation in sickle cell 

disease mice; promotes brain 
recovery from injury after 

stroke (mice model) 

[240,249–252] 

Hydroxamate HX1 

 
 

 

5
n
M

No evidence of 
pharmacological effects 

[239,253] 

 

5 nM No evidence of
pharmacological effects [239,253]

7. Conclusions

MPO, as the most abundant protein in neutrophils, plays a crucial role in immune
responses via its catalytic cycle. MPO-derived HOCl is a strong oxidant and exerts an-
tibacterial action, which is beneficial for the body in this aspect. However, both MPO
and its product can react with biological molecules that cause tissue damage and cell
dysfunction; hence, its roles in pathological processes have aroused vast attention. MPO
has been implicated in many diseases, including CVDs, renal diseases, lung diseases
(including COVID-19), neurodegenerative diseases, and cancers. The precise and detailed
mechanisms of MPO’s effects on diseases require further exploration, and understanding
these mechanisms will be crucial for the development of MPO-related drugs. Some MPO
inhibitors have been found to be effective pharmacologically in in vitro and in vivo studies
of these diseases. Clinical trials of some specific MPO inhibitors have been finished or
continued based on their clinical outcomes. Despite the absence of MPO inhibitors on the
market, the development of MPO inhibitors as investigational new drugs (INDs) is still
significant and promising.
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