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Abstract: High glucose–induced endothelial dysfunction is an important pathological feature
of diabetic vasculopathy. While genome-wide studies have identified an association between
type 2 diabetes mellitus (T2DM) and increased expression of a C2 calcium-dependent domain contain-
ing 4B (C2CD4B), no study has yet explored the possible direct effect of C2CD4B on vascular function.
Vascular reactivity studies were conducted using a pressure myograph, and nitric oxide and oxidative
stress were assessed through difluorofluorescein diacetate and dihydroethidium, respectively. We
demonstrate that high glucose upregulated both mRNA and protein expression of C2CD4B in mice
mesenteric arteries in a time-dependent manner. Notably, the inhibition of C2CD4B expression
by genetic knockdown efficiently prevented hyperglycemia–induced oxidative stress, endothelial
dysfunction, and loss of nitric oxide (NO) bioavailability. Recombinant C2CD4B evoked endothelial
dysfunction of mice mesenteric arteries, an effect associated with increased reactive oxygen species
(ROS) and decreased NO production. In isolated human umbilical vein endothelial cells (HUVECs),
C2CD4B increased phosphorylation of endothelial nitric oxide synthase (eNOS) at the inhibitory site
Thr495 and reduced eNOS dimerization. Pharmacological inhibitors of phosphoinositide 3-kinase
(PI3K), Akt, and PKCα effectively attenuated oxidative stress, NO reduction, impairment of en-
dothelial function, and eNOS uncoupling induced by C2CD4B. These data demonstrate, for the first
time, that C2CD4B exerts a direct effect on vascular endothelium via a phosphoinositide 3-kinase
(PI3K)/Akt/PKCα–signaling pathway, providing a new perspective on C2CD4B as a promising
therapeutic target for the prevention of oxidative stress in diabetes–induced endothelial dysfunction.

Keywords: C2CD4B; endothelial dysfunction; oxidative stress; eNOS uncoupling; diabetes

1. Introduction

More than 450 million people worldwide are estimated to be living with diabetes
mellitus, a prevalence anticipated to increase by 25% in 2030 and 51% in 2045 [1,2]. The rise
in morbidity and mortality among diabetic patients is primarily attributed to the onset of
cardiovascular disease (CVD) [3], where vascular complications represent the most severe
clinical manifestations of the disease.

Chronic hyperglycemia has been shown to activate oxidative stress–generating ma-
chinery, leading to vascular dysfunction in mice [4,5]. Among the vascular cells, endothelial
cell (EC) dysfunction emerges as the primary mediator of vascular complications [6]. In dia-
betic patients, endothelial dysfunction is acknowledged as a critical contributor to vascular
disease pathogenesis, often preceding diabetes development [7–10].
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Despite these insights, there are few therapies specifically targeting oxidative stress
and vascular disease alterations in diabetes. Identifying previously unknown molecules
involved in hyperglycemia–induced endothelial damage could pave the way for new
therapeutic approaches to prevent or slow down the progression of diabetes–associated
vascular complications.

C2CD4B is a protein predominantly found in pancreatic and endothelial cells, where
it plays a role in beta cell differentiation [11], and in the regulation of cell architecture and
adhesion [12].

Previous studies have suggested that C2CD4B may regulate vascular permeability and
factors implicated in thrombotic events [12,13]. A genome-wide significant association was
found between the VPS13C/C2CD4A/C2CD4B locus and T2DM risk [14–18]. Subsequent
studies revealed that single nucleotide polymorphisms (SNPs) located in close proximity to
the C2CD4B gene were associated with diabetes–related traits [19,20], including increased
fasting plasma glucose [21], proinsulin levels [22] and impaired beta cell function [23].

The present study aims to shed light on the potential effects of C2CD4B on EC and
vascular function in mice resistance arteries. Using mice mesenteric arteries, we demon-
strate for the first time that recombinant C2CD4B promotes excessive ROS production and
impairs nitric oxide signaling, leading to vascular dysfunction through a PI3K/Akt/PKCα–
dependent pathway. We show that C2CD4B is required for the development of endothelial
dysfunction in hyperglycemic conditions. In terms of its therapeutic implication mecha-
nism, we demonstrate that gene silencing of C2CD4B protects against oxidative stress and
endothelial dysfunction induced by hyperglycemic conditions. Thus, targeting C2CD4B
opens a new therapeutic avenue for preventing vascular complications in patients with
diabetes mellitus.

2. Materials and Methods
2.1. Reagents

To characterize molecular signaling, mesenteric arteries or HUVECs were pre-treated,
or not, before data were obtained with the following: tempol (100 µM for 1 h; Cat. 176141;
Sigma-Aldrich, Merck Life Science S.r.l., Milano, Italy); the NOS inhibitor N-ω-nitro-l-
arginine methyl ester (L-NAME, 300 µmol/L for 30 min, Sigma-Aldrich, Cat. N5751); the
phosphatidylinositol-4,5-bisphosphate 3-kinase inhibitor (wortmannin; Cat. 1232; Tocris
Bioscience, Space Import-Export, Milano, Italy); the AKT inhibitor X (Sigma-Aldrich, Cat.
124020); Go6976 (Tocris Bioscience, Cat. 2253). Recombinant human C2CD4B protein (Cat.
MBS1165211) was purchased from MyBioSource (S.I.A.L. s.r.l., Rome, Italy).

2.2. Cell Culture and Treatment

Human umbilical vein endothelial cells (HUVEC; CRL-4053) were purchased from
American Type Culture Collection (ATCC) and cultured in Vascular Cell Basal Medium
(ATCC PCS-100-030) supplemented with Endothelial Cell Growth Kit (ATCC PCS-110-041),
penicillin (100 U/mL), and streptomycin (100 U/mL). Cells were maintained at 37 ◦C and
5% CO2 in a humidified incubator. To evaluate effects of C2CD4B, cells were cultured for 1 h
with the recombinant protein (100 ng/mL). To characterize intracellular signaling, HUVECs
were pretreated with the following pharmacological inhibitors: phosphatidylinositol-4,5-
bisphosphate 3-kinase inhibitor (wortmannin, 10 µM, 1 h); the AKT inhibitor X (10 µM,
1 h); and Go6976 (500 nM, 30 min).

2.3. Mice

All animal experiments were carried out in accordance with the Guide for the Care
and Use of Laboratory Animals published by the US National Institutes of Health and
approved by the Ethical Committee of Istituto Neurologico Mediterraneo IRCCS Neuromed
(Ethical protocol code: 570/2019PR). Mice were maintained in a 22 ◦C room with a 12 h
light/dark cycle, and received food and water ad libitum. Vascular reactivity and molecular
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studies were performed on 8–10 weeks-old wild-type male C57BL/6 mice (weighing
25–30 g) (Jackson Laboratories, Bar Harbor, ME, USA).

2.4. Determination of mRNA Expression Level of C2CD4B

RNA was extracted with TRI reagent (Sigma-Aldrich), quantified by NanoDrop
1000 spectrophotometer (Thermo Fisher Scientific, Milan, Italy), treated with DNase
I (Invitrogen, Milan, Italy), and reverse transcribed using a SuperScript VILO Master
Mix (Invitrogen, Cat. 11755500). Specific cDNAs were amplified and analyzed using a
7500 Real-Time PCR System (Applied Biosciences, Milan, Italy). Quantification of the rel-
ative expression levels was performed using ∆CT calculation. The sequences of primers
used for qRT-PCR are the following: C2CD4B, FW: 5′-GACCGCGAAGACAGTGACGAAG-3′;
RV: 5′-CGCAGAAGCCGTAAACGGTGC-3′; GAPDH, FW: 5′-CGTCCCGTAGACAAAATGGT-3′;
RV: 5′-TCAATGAAGGGGTCGTTGAT-3′.

2.5. Vascular Reactivity Studies

Vascular reactivity studies were performed as previously described [24]. In brief, mice
mesenteric arteries were mounted in a wire or pressure myograph system containing Krebs
solution (pH 7.4 at 37 ◦C in oxygenated 95% O2/5% CO2). An amount of 80 mmol/L of
KCl was used to evaluate the vasoconstrictive response at the basal level. Phenylephrine
(10−9 M to 10−6 M) was used to reproduce 80% of maximal contraction. Acetylcholine
(10−9 M to 10−6 M) was used to evaluate endothelial–dependent vasodilator response.
Mesenteric arteries were treated with recombinant C2CD4B (100 µg/mL) for 1 h.

2.6. Gene Silencing

Second-order branches of the mesenteric arterial tree were removed from C57BL/6
mice and transfected with siRNA against C2cd4b (sc-108918; Santa Cruz Biotechnology Inc.;
S.I.A.L. s.r.l., Rome, Italy) and its relative scramble sequence as previously described [25].
Vessels were placed in a Mulvany pressure system filled with Krebs solution and 100 nM
of siRNA vector. All vessels were perfused at 100 mmHg for 1 h and then at 60 mmHg
for 5 h. Endothelium–dependent and –independent relaxation was assessed by measuring
the dilatory responses of mesenteric arteries to cumulative concentrations of acetylcholine
(from 10−9 M to 10−5 M), in vessels precontracted with U46619 at a dose necessary to
obtain a similar level of precontraction (80% of initial KCl–evoked contraction) in each
vessel. Values are reported as a percentage of lumen diameter change after exposure to
the substance.

2.7. Evaluation of ROS Production

To determine eNOS–dependent ROS formation, mesenteric arteries were preincubated
with the NOS inhibitor L-NAME (300 µM for 30 min), embedded in Tissue Tek resin, frozen
and cryo-sectioned (7 µm) using a cryostat (Leica CM1950, Leica Microsystems, Wetzlar,
Germany). In detail, ROS production was evaluated by dihydroethidium staining (DHE,
Life Technologies, Carlsbad, CA, USA), as previously described [26]. Briefly, sections were
washed in PBS at 37 ◦C for 10 min and then incubated with DHE (5 µM, Sigma-Aldrich,
Cat. D7008) in a humidified chamber protected from light at 37 ◦C for 30 min. Slices
were washed with PBS 1X, and then mounted on a glass slide. Images were observed
and acquired under a Nikon Eclipse Ti-E fluorescence microscope (Nikon, Milan, Italy).
Fluorescence intensity was measured using ImageJ software.

ROS production in HUVECs was quantified with the membrane-permeable fluorescent
probe, Dihydrorhodamine 123 (DHR123) (Thermo Fisher Scientific, Cat. D23806). HUVECs
seeded on a microplate were washed with PBS 1X and then treated with DHR123 (10 µM)
for 30 min. Fluorescence was determined using an Infinite Pro M200 Tecan microplate
reader at a maximum excitation and emission spectra of 507 and 525 nm, respectively.
NADPH–mediated superoxide radical production was determined using the lucigenin–
enhanced chemiluminescence (ECL) assay, as previously described [25]. Briefly, after
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reaching 80% confluence, HUVECs were washed with pre-warmed PBS 1X, detached
using 0.25% trypsin/EDTA (1 mmol/L), and resuspended in modified HEPES buffer
containing 140 mmol/L NaCl; 5 mmol/L KCl; 0.8 mmol/L MgCl2; 1.8 mmol/L CaCl2;
1 mmol/L Na2HPO4; 25 mmol/L HEPES; and 1% glucose, pH 7. Subsequently, cells were
homogenized, and 100 µg of extract was distributed on a 96-well microplate. Protein
content was determined by the Bradford method. The reaction was started by adding
NADPH (0.1 mmol/L) and lucigenin (5 µmol/L) to each well. Chemiluminescence was
measured using Tecan Infinite Pro M200 microplate reader at 37 ◦C.

2.8. Nitric Oxide Detection

NO production was evaluated using 4-amino-5-methylamino-2′,7-difluorofluorescein
diacetate (DAF-FM, Thermo Fisher Scientific, Cat. D23844). Mesenteric arteries were
embedded in Tissue Tek resin, frozen, and cryo-sectioned at 7 µm. Sections were allowed to
air-dry at room temperature, fixed with 2% paraformaldehyde for 20 min, and then washed
with PBS. Subsequently, they were incubated with DAF-FM (20 µM) for 30 min at 37 ◦C
in a light-protected humidified chamber, washed with PBS, and then mounted on a glass
slide. Images were acquired using a fluorescence microscope (Nikon Eclipse Ti-E, Nikon
Corp.), and DAF-FM-derived fluorescent intensity was determined using ImageJ software.

2.9. Immunoblotting

Protein extracts were separated on SDS-PAGE and then transferred onto a PVDF mem-
brane. The membranes were incubated overnight with the following primary antibodies:
anti-eNOS (Cat. #5880; Cell signaling Technology, Danvers, MA, USA); anti-phospho-PI3K
(Abclonal, Rome, Italy, Cat. AP0854); anti-phospho-Akt (Cat. sc-7985; Santa Cruz Biotech-
nology, S.I.A.L. s.r.l., Rome, Italy); anti–β-actin (Cat. ab8226; Abcam, Prodotti Gianni,
Milan, Italy); anti–phospho-PKCα (Abcam, Cat. ab76016), anti-α-tubulin (Cat. 627901;
Biolegend, Campoverde S.r.l., Milan, Italy); anti-vinculin (Sigma-Aldrich, Cat. V4139); and
anti-GAPDH (Santa Cruz Biotechnology, Cat. sc-32233). After a triple wash, membranes
were incubated for 1 h with the HRP-conjugated secondary antibodies: anti-rabbit IgG
(Invitrogen, Cat. 31463) or anti-mouse IgG (Cat. 31430; Invitrogen, Milan, Italy). Bands
were visualized with ECL reagent (Thermo Fisher Scientific, Cat. 32209) according to the
manufacturer’s instructions. Immunoblotting data were analyzed using ImageJ software to
determine optical density (OD) of the bands. The OD readings of phosphorylated proteins
were expressed as a ratio relative to beta-actin or GAPDH.

Detection of eNOS Dimer and Monomer

Non-reducing low-temperature SDS-PAGE (LT-PAGE) was performed to detect eNOS
dimer and monomer. Briefly, the samples were incubated in O’Farrell’s lysis buffer without
(non-reducing) 2-mercaptoethanol at 37 ◦C for 5 min. Protein extracts were separated on
7.5% SDS-PAGE. Gel and buffers were equilibrated at 4 ◦C before electrophoresis, and the
buffer tank was placed in an ice bath during electrophoresis to maintain the temperature
of the gel < 15 ◦C. Subsequent to LT-PAGE, the gel was transferred, and the immunoblots
were performed as previously described [27].

2.10. Statistical Analysis

Data are presented as mean ± SEM. Data sets were tested for normality of distribution
with the Shapiro–Wilk or Kolmogorov–Smirnov test. Two-sided unpaired Student’s t-test
was used for comparisons between 2 independent groups. Data groups (comparisons
across multiple groups) with normal distributions were compared using one-way ANOVA
(with Bonferroni’s correction), unless otherwise indicated. For comparison across different
timepoints, data were analyzed using ordinary two-way ANOVA analysis followed by
a Bonferroni multiple comparison test. Differences were considered to be statistically
significant when p < 0.05.
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3. Results
3.1. Genetic Inhibition of C2CD4B Protects against High Glucose–Induced Oxidative Stress and
Endothelial Dysfunction

C2CD4B belongs to the C2CD4 family, whose genes are encoded in a susceptibility
locus for T2DM [14]. To investigate whether hyperglycemic conditions could modulate
C2CD4B expression, we examined mRNA and protein expression in mesenteric arteries
treated with normal glucose or high glucose conditions at different time points. RT-qPCR
analysis revealed a significant increase in C2CD4B mRNA expression after 3 h of high
glucose treatment compared to the normal glucose group, peaking at 6 h post treatment
(Figure 1A). While exposure of mesenteric arteries to high glucose for 3 h had no effect on
C2CD4B protein expression compared to the normal glucose group, C2CD4B protein was
significantly induced after 6 hours of high glucose treatment (Figure 1B).

Interestingly, siRNA–mediated knockdown of C2CD4B prevented the reduction in
endothelium–dependent vasodilation induced by 6 h of high glucose in mice mesenteric
arteries (Figure 1C). Genetic inhibition of C2CD4B severely blunted increased ROS [di-
hydroethidium (DHE) cryostaining] and nitric oxide loss [diaminofluorescein-diacetate
(DAF-FM)] induced by hyperglycemic conditions in mesenteric arteries (Figure 1D,E).
These findings suggest a potential contribution to the development of diabetes-associated
vascular complications.

3.2. C2CD4B Evokes Endothelial Dysfunction of Mice Resistance Arteries through a
ROS–Dependent Mechanism

To eliminate confounding factors associated with hyperglycemic conditions, we con-
ducted ex vivo studies to evaluate whether C2CD4B protein alone could influence endothe-
lial function. Vascular reactivity studies were performed on preconstricted mice mesenteric
arteries exposed to the recombinant C2CD4B protein. While 25 and 50 ng/mL did not
significantly influence endothelial function, 100 ng/mL induced a significant reduction
of acetylcholine–evoked vasorelaxation. A similar result was observed in the presence of
200 ng/mL of C2CD4B. As we noted a prominent impairment in vascular reactivity after
incubation with 100 ng/mL of C2CD4B for 1 h (Figure 2A), we decided to use this experi-
mental setting for all subsequent experiments. The experimental setup for assessment of the
effects of recombinant C2CD4B is reported in the Supplementary Data, Figure S1. Notably,
this effect was markedly prevented by pretreatment with the antioxidant agent Tempol
(Figure 2B), highlighting the crucial role of increased ROS generation in C2CD4B–evoked
endothelial dysfunction.

To assess the specific endothelial effects of C2CD4B, we focused our attention on
isolated human umbilical vein endothelial cells (HUVECs). C2CD4B significantly in-
creased oxidative stress production after 1 h of exposure (Figure 2C). Additionally, the
lucigenin–enhanced chemiluminescence assay clearly indicated the specific involvement
of the nicotinamide adenine dinucleotide phosphate (NADPH)–dependent oxidase fam-
ily in mediating superoxide radical (O2

−) generation in response to C2CD4B treatment
(Figure 2D).
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Figure 1. Effect of C2CD4B gene silencing on mice mesenteric arteries exposed to hyperglycemic
conditions. (A) mRNA expression of C2CD4B determined by quantitative reverse transcription
polymerase chain reaction in mice mesenteric arteries treated at different time points (3, 6 h) under
normal glucose (NG, 5 mM) or high glucose conditions (HG, 30 mM); (n = 3). (B) Representative
western blot and densitometric analyses evaluating protein levels of C2CD4B in mice mesenteric
arteries treated with normal glucose (NG) or high glucose (HG) at different time points (3, 6 h),
pretransfected with either scramble siRNA (NG 3 h; NG 6 h; HG 3 h and HG 6 h), or specific siRNA
against C2CD4B (Si−C2CD4B) before HG 6 h; (n = 4). Non-parametric Kruskal–Wallis test with
Dunn’s correction was used. (C) Acetylcholine (ACh)–evoked vasorelaxation in mice mesenteric
arteries exposed to NG or HG conditions and pretransfected with siRNA against C2CD4B (Si–
C2CD4B) or scrambled siRNA (Si–SCR); (n = 3). (D) ROS levels were detected by DHE in mice
mesenteric arteries treated with normal glucose (NG), high glucose (HG) alone, or pretransfected
with siRNA against C2CD4B (Si–C2CD4B). Box plots show relative fluorescence intensity, (AU,
arbitrary units); (n = 4). (E) NO levels were detected by DAF-FM in mice mesenteric arteries treated
with normal glucose (NG), high glucose (HG) alone, or pretransfected with siRNA against C2CD4B
(Si–C2CD4B). Box plots show relative fluorescence intensity, (AU, arbitrary units); (n = 4). Unless
otherwise stated, statistical analyses were performed using one-way or two-way ANOVA followed
by Bonferroni post-hoc test. * p < 0.05; ** p < 0.01; # p < 0.05; ## p < 0.01; § p < 0.05; §§ p < 0.01.
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Figure 2. Effect of recombinant C2CD4B on mice mesenteric arteries and human EC. (A) Acetylcholine
(ACh)–evoked vasorelaxation in mice mesenteric arteries exposed to vehicle or recombinant C2CD4B;
(n = 3). (B) Acetylcholine (ACh)–evoked vasorelaxation in mice mesenteric arteries exposed to vehicle
or recombinant C2CD4B in presence or absence of the antioxidant agent tempol; (n = 3). (C) Cellular
ROS levels assessed by determining dihydrorhodamine 123 (DHR) fluorescence intensity (AU,
arbitrary units); (n = 4–6). (D) NADPH–induced lucigenin chemiluminescence (data are expressed as
increase in chemiluminescence per minute in arbitrary units) in HUVECs treated with 100 ng/mL
of C2CD4B for 1 h; (n = 4–6). Statistical analyses were performed using Student’s t-test, one-way or
two-way ANOVA followed by Bonferroni post-hoc test. * p < 0.05; *** p < 0.001; # p < 0.05.

3.3. C2CD4B Relies on PI3K/AKT Pathway to Induce Endothelial Dysfunction of Mice
Mesenteric Arteries

Previous mechanistic studies have shown that under hyperglycemic conditions, EC un-
dergo oxidative stress overproduction and apoptosis through a phosphoinositide 3-kinase
(PI3K)/Akt–dependent pathway [28]. Compared to control cells, exposure of HUVECs to
1 h of recombinant C2CD4B significantly increased the expression of phosphorylated forms
of PI3K and Akt (Figure 3A,B), indicating the involvement of a PI3K signaling pathway. To
clarify this issue, subsequent studies were performed in the presence of the pharmacological
inhibitors of PI3K and Akt—wortmannin, and Akt inhibitor X, respectively. Interestingly,
both the inhibitors prevented increased NADPH oxidase activation in HUVECs (Figure 3C).
At the functional level, wortmannin markedly prevented the impairment of endothelial–
dependent vasorelaxation as well as the NO reduction observed in C2CD4B–stimulated
mesenteric arteries (Figure 3D,E). This effect was also observed after the pretreatment of
vessels with the Akt inhibitor X (Figure 3F), clearly indicating the ability of C2CD4B to
drive the activation of the PI3K/Akt signaling cascade, leading to excessive ROS generation
and, in turn, to endothelial dysfunction.
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signaling pathway. (A,B) Representative western blot and densitometric analyses of three inde-
pendent experiments evaluating protein levels of (A) phospho–PI3K and (B) phospho–Akt protein
expression in HUVECs treated with vehicle (ctrl), or recombinant C2CD4B. (C) NADPH–induced
lucigenin chemiluminescence (data are expressed as increase in chemiluminescence per minute
in arbitrary units) in HUVECs treated with 100 ng/mL of C2CD4B in the presence or absence of
wortmannin, or AKT inhibitor X; (n = 4–5). (D) Acetylcholine (ACh)–evoked vasorelaxation in
mice mesenteric arteries exposed to vehicle or recombinant C2CD4B in the presence or absence of
wortmannin (n = 3). (E) NO detection by DAF-FM in mice mesenteric arteries treated with vehicle,
C2CD4B alone, or pre-treated with wortmannin. Box plot shows relative fluorescence intensity;
(n = 3). (F) ACh–evoked vasorelaxation in mice mesenteric arteries exposed to vehicle or recombinant
C2CD4B in the presence or absence of AKT inhibitor X; (n = 3). Statistical analyses were performed
using Student’s t-test, one-way or two-way ANOVA followed by Bonferroni post-hoc test. * p < 0.05;
*** p < 0.001; # p < 0.05; § p < 0.05; ### p < 0.001.
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3.4. Inhibition of Endothelial Nitric Oxide Synthase Prevents C2CD4B–Mediated ROS Generation

To determine whether the enhanced superoxide formation was dependent on un-
coupled eNOS, C2CD4B–treated HUVECs were pre-incubated with the NOS inhibitor,
N-ω-nitro-l-arginine methyl ester (L-NAME). Intracellular superoxide production was eval-
uated using dihydroethidium (DHE) cryostaining in mesenteric arteries. We found that the
C2CD4B-induced increase in intracellular superoxide generation was markedly inhibited
by L-NAME pre-treatment (Figure 4), suggesting the involvement of eNOS uncoupling in
the exaggerated ROS production in response to C2CD4B.
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3.5. C2CD4B–Mediated eNOS Uncoupling Prevented by PI3K Inhibition

Given the critical role of the dimeric form of eNOS in its functionality [29], we inves-
tigated the proportion of the enzyme existing as either dimer or monomer in HUVECs
treated with recombinant C2CD4B. Exposure of HUVECs to recombinant C2CD4B for
1 h markedly reduced the dimer/monomer ratio of eNOS compared to control cells, while
increasing phosphorylation of eNOS at Thr495, an inhibitory site (Figure 5A,B). Intrigu-
ingly, these effects were significantly mitigated by wortmannin pre-treatment (Figure 5A,B;
Supplementary Data, Figure S2), indicating the involvement of PI3K in C2CD4B–mediating
eNOS uncoupling.

3.6. C2CD4B Induces eNOS Uncoupling and Vascular Dysfunction via a PI3K/Akt/PKCα
Signaling Cascade

To further explore the potential role of protein kinase C (PKC), a family of kinases
activated in response to high glucose concentration to induce oxidative stress [30]. In
particular, we focused our attention on PKCα, known to induce eNOS phosphorylation
on its inhibitory site [31]. In addition, PKC upregulation has been reported in metabolic
disorders, including diabetes [32].

Recombinant C2CD4B markedly upregulated the protein expression of phosphory-
lated PKCα, an effect prevented by wortmannin pre-treatment (Figure 6A). As PKCβ is
not expressed in HUVECs, Go6976, a specific PKCα pharmacological inhibitor, was em-
ployed [33]. Go6976 prevented C2CD4B–induced eNOS dysfunction, as indicated by the
preservation of eNOS dimerization (Figure 6B). These findings strongly support the notion
that PKCα participates in the C2CD4B cascade, acting downstream of PI3K to mediate
uncoupling of eNOS. At the functional level, experiments on mesenteric arteries were con-
ducted, assessing the vascular effects of Go6976 pre-treatment against C2CD4B–induced
endothelial dysfunction. Consistent with molecular level observations, Go6976 significantly
attenuated endothelial dysfunction, as well as the increased vasoconstriction induced by
C2CD4B (Figure 6C,D), clearly indicating the crucial role of PKCα in its harmful effect.



Antioxidants 2024, 13, 101 10 of 15Antioxidants 2024, 13, x FOR PEER REVIEW 10 of 16 
 

 
Figure 5. Wortmannin prevents C2CD4B–induced eNOS uncoupling in EC. (A) Representative 
western blot and densitometric analyses of three independent experiments evaluating eNOS dimer 
(280 kDa) and eNOS monomer (140 kDa) protein expression in HUVECs treated with vehicle (ctrl), 
recombinant C2CD4B alone, or pre-treated with wortmannin. Dimer/monomer eNOS were exam-
ined by non-reducing low-temperature SDS-PAGE. (B) Representative western blot and densito-
metric analyses of three independent experiments evaluating protein levels of phosphorylated 
eNOS at Thr 495 (p-eNOST495), and total eNOS expression in HUVECs treated with vehicle (ctrl), 
recombinant C2CD4B alone, or pre-treated with wortmannin. Statistical analyses were performed 
using one-way ANOVA followed by Bonferroni post-hoc test. ** p < 0.001; ## p < 0.001. 

3.6. C2CD4B Induces eNOS Uncoupling and Vascular Dysfunction via a PI3K/Akt/PKCα 
Signaling Cascade 

To further explore the potential role of protein kinase C (PKC), a family of kinases 
activated in response to high glucose concentration to induce oxidative stress [30]. In par-
ticular, we focused our attention on PKCα, known to induce eNOS phosphorylation on 
its inhibitory site [31]. In addition, PKC upregulation has been reported in metabolic dis-
orders, including diabetes [32]. 

Recombinant C2CD4B markedly upregulated the protein expression of phosphory-
lated PKCα, an effect prevented by wortmannin pre-treatment (Figure 6A). As PKCβ is 
not expressed in HUVECs, Go6976, a specific PKCα pharmacological inhibitor, was em-
ployed [33]. Go6976 prevented C2CD4B–induced eNOS dysfunction, as indicated by the 
preservation of eNOS dimerization (Figure 6B). These findings strongly support the no-
tion that PKCα participates in the C2CD4B cascade, acting downstream of PI3K to mediate 
uncoupling of eNOS. At the functional level, experiments on mesenteric arteries were con-
ducted, assessing the vascular effects of Go6976 pre-treatment against C2CD4B–induced 
endothelial dysfunction. Consistent with molecular level observations, Go6976 signifi-
cantly attenuated endothelial dysfunction, as well as the increased vasoconstriction in-
duced by C2CD4B (Figure 6C,D), clearly indicating the crucial role of PKCα in its harmful 
effect. 

Figure 5. Wortmannin prevents C2CD4B–induced eNOS uncoupling in EC. (A) Representative
western blot and densitometric analyses of three independent experiments evaluating eNOS dimer
(280 kDa) and eNOS monomer (140 kDa) protein expression in HUVECs treated with vehicle (ctrl),
recombinant C2CD4B alone, or pre-treated with wortmannin. Dimer/monomer eNOS were examined
by non-reducing low-temperature SDS-PAGE. (B) Representative western blot and densitometric
analyses of three independent experiments evaluating protein levels of phosphorylated eNOS at Thr
495 (p-eNOST495), and total eNOS expression in HUVECs treated with vehicle (ctrl), recombinant
C2CD4B alone, or pre-treated with wortmannin. Statistical analyses were performed using one-way
ANOVA followed by Bonferroni post-hoc test. ** p < 0.001; ## p < 0.001.
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dependent experiments evaluating the expression of phosphorylated form PKCα in HUVECs treated
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western blot and densitometric analyses of three independent experiments evaluating eNOS dimer
(280 kDa) and eNOS monomer (140 kDa) protein expression in HUVECs treated with vehicle (ctrl),
recombinant C2CD4B alone, or pre-treated with the pharmacological inhibitor of PKCα, Go6976.
Dimer/monomer eNOS were examined by non-reducing low-temperature SDS-PAGE. (C) Acetyl-
choline (ACh)–evoked vasorelaxation in mice mesenteric arteries exposed to vehicle or recombinant
C2CD4B in the presence or absence of the PKCα inhibitor, Go6976; (n = 3–4). (D) Dose–response
curves to phenylephrine of mice mesenteric arteries exposed to vehicle or recombinant C2CD4B in
the presence or absence of Go6976; (n = 3–4). Statistical analyses were performed using one-way or
two-way ANOVA followed by Bonferroni post-hoc test. * p < 0.05; ** p < 0.01, *** p < 0.001; # p < 0.05;
## p < 0.01; ### p < 0.001.

4. Discussion

Oxidative stress is a major trigger for diabetes mellitus–induced vascular endothelial
dysfunction leading to a reduction in NO bioavailability [34]. There is overwhelming
evidence that endothelial dysfunction plays a role in the progression of vascular and
end-organ damage in diabetic patients. This makes it a crucial early target for preventing
cardiovascular diseases [34]. Diabetes leads to multiple comorbidities, such as heart disease,
kidney dysfunction, retinopathy, and impaired wound healing. All these issues can be
attributed to vascular disease initiated by the loss of endothelial barrier integrity [35].

Originally described by Warton et al. [12], C2CD4B was, compared to smooth muscle
cells and fibroblasts, predominantly identified in human endothelial cells. It was found to
be induced after 2 h of treatment with IL-1β.

Genome-wide association studies revealed that single nucleotide polymorphisms
(SNPs) in close proximity to the VPS13C, C2CD4A, and C2CD4B genes on chromosome
15q contribute to an increased risk of type 2 diabetes [14,19]. Through human pancreatic
islet expression quantitative trait loci (eQTL) analysis, the T2DM–associated risk variant
rs7163757 was reported to be linked to increased expression of C2CD4B in alpha cells [15].
However, it remains unknown whether C2CD4B is affected by hyperglycemia conditions
and mediates vascular damage in this context.

Here, we show that high glucose markedly increased both mRNA and protein expres-
sion of C2CD4B in mice mesenteric arteries in a time-dependent manner. More importantly,
the knockdown of C2CD4B protects against high glucose–induced oxidative stress and
endothelial dysfunction.

Our findings indicate that C2CD4B is up-regulated by high glucose levels and its inhi-
bition prevents oxidative stress in human endothelial cells and in mice mesenteric arteries.

In diabetic blood vessels, major sources of ROS include the mitochondrial electron
transport chain, nicotinamide dinucleotide phosphate (NADPH) oxidase, xanthine oxidase
(XO) and uncoupled endothelial nitric oxide synthase (eNOS) [36]. In our study, the
increase in ROS generation can, in part, be ascribed to an enhanced expression of NADPH
oxidase activity observed in EC treated with the recombinant C2CD4B. Under high glucose
conditions, aberrant activation of eNOS, referred to as eNOS uncoupling, produces O2−

instead of NO. This superoxide rapidly combines with vascular NO to form peroxynitrite
(ONOO−), reducing the bioavailability of NO in vascular EC. This phenomenon results
in a vicious cycle that continuously increases superoxide in blood vessels and ultimately
impairs endothelium [37]. Importantly, uncoupling of eNOS has also been observed
in diabetic patients with endothelial dysfunction [38]. In our experimental setting, an
additional contribution to superoxide production came from uncoupled eNOS since pre-
treatment with the NOS inhibitor markedly reduced C2CD4B–induced ROS production.
Although activation of the PI3K/Akt pathway is critical for maintaining vascular tone
and endothelial integrity [39,40], previous studies by Sheu et al. [28] reported that, via
a PI3K/Akt–dependent pathway, hyperglycemic conditions may cause ROS generation
in HUVECs.

Consistent with these findings, the results of the present study demonstrate that acti-
vation of the PI3K/Akt–signaling pathway by C2CD4B can significantly induce oxidative
stress in EC and evoke endothelial dysfunction in ex vivo–treated mesenteric arteries.



Antioxidants 2024, 13, 101 12 of 15

These findings are supported by functional and molecular studies performed on mesenteric
arteries, showing that the pharmacological inhibition of PI3K/Akt activity can prevent
impaired endothelium–dependent relaxation as well as the reduction of NO levels observed
after exposure of vessels to recombinant C2CD4B.

We also observed that C2CD4B exposure in HUVECs resulted in a marked PI3K–
dependent reduction in eNOS dimerization and increased phosphorylation of the enzyme
on the inhibitory site T495. These are indicative of uncoupled eNOS [41,42]. Moreover,
increased eNOS phosphorylation at T495 has been reported to down-regulate NO produc-
tion [43,44].

Protein kinase C (PKC), an intracellular family of serine/threonine protein kinases, has
a crucial role in numerous biological processes, including proliferation, survival, invasion,
migration, and apoptosis [45,46].

In addition to being associated with several vascular disorders, including hypertension,
coronary artery disease, and diabetic vasculopathy [47], activation of PKC has emerged
as an important mechanism regulating endothelial dysfunction in diabetes mellitus [48].
In vitro, high glucose concentrations activate PKC and increase superoxide production [49].
Several studies have also demonstrated the ability of PKC to specifically phosphorylate
eNOS at T495, inducing oxidative stress and reducing eNOS catalytic activity [31,48]. These
concepts are supported by preclinical and clinical studies demonstrating that pharmacolog-
ical inhibition of PKC ameliorates vascular complications caused by hyperglycemia [50,51].

Our results further show that C2CD4B causes activation of PKCα in HUVEC cells,
an effect blunted by PI3K inhibition. We also observed that the PKCα inhibitor Go6976
prevented the decrease in eNOS dimer/monomer ratio, clearly indicating on the one hand,
PKCα as a downstream effector of the PI3K/Akt pathway, and an upstream mediator
of eNOS uncoupling on the other. These results are consistent with those of previous
studies demonstrating the role of PKC activation in mediating eNOS uncoupling and
oxidative stress in EC [31]. These data were further corroborated by functional studies,
which revealed that pharmacological inhibition of PKCα resulted in significant protection
against C2CD4B–induced vascular dysfunction. An exciting observation emerging from
our study is that Go6976 did not completely restore endothelial–dependent vasorelaxation,
but completely prevented vasoconstriction induced by C2CD4B in mesenteric arteries.
These results could be explained by the opposite effects that PKC may elicit on vascular
districts. Indeed, PKC is known to influence both vascular relaxation and contraction [52].
For instance, it may mediate NO synthesis but could also induce the release of endothelium–
derived constricting factors, thus promoting vasoconstriction [53].

Our data support the notion that C2CD4B is a negative modulator of vascular PKC func-
tion and may represent a potential target in vascular disorders. In detail, via PKCα, C2CD4B
induces vascular dysfunction through (i) an impairment of endothelium–dependent vasodi-
lation, and (ii) an enhancement of vascular contraction.

Although newly generated PKC inhibitors have shown promise in the treatment of
macular edema [54], retinopathy [55], and microvascular complications [56] in diabetic
patients, targeting upstream activators could be a therapeutic strategy for the develop-
ment of inhibitors able to prevent or delay vascular complications in the early stages of
diabetes mellitus.

5. Conclusions

Here we present, for the first time, evidence demonstrating that hyperglycemia in-
creased mRNA expression of the diabetic–associated protein C2CD4B. Mechanistically, via
activation of the PI3K/Akt/PKCα–pathway, C2CD4B promotes oxidative stress–dependent
endothelial dysfunction, driving eNOS uncoupling and NADPH oxidase dysregulation.

These findings lay the groundwork for further research aimed at deepening our
understanding of the molecular mechanism underlying the role of C2CD4B in cardiovas-
cular diseases. Additionally, they suggest the potential therapeutic value of targeting
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this protein for the prevention of oxidative stress in diabetes mellitus–induced vascular
endothelial dysfunction.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox13010101/s1, Figure S1: Experimental setup for the as-
sessment of the effects of recombinant C2CD4B on mice mesenteric arteries; Figure S2: Effect of
incubation of cell lysates from endothelial cells in the presence or the absence of the reducing agent
β-mercaptoethanol (1.5%, 2.5%) on levels of endothelial nitric oxide synthase (eNOS). Reference [57]
are cited in the supplementary materials.
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