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Abstract: Gastric cancer (GC) is the fifth most common cancer worldwide and makes up a significant
component of the global cancer burden. Helicobacter pylori (H. pylori) is the most influential risk factor
for GC, with the International Agency for Research on Cancer classifying it as a Class I carcinogen
for GC. H. pylori has been shown to persist in stomach acid for decades, causing damage to the
stomach’s mucosal lining, altering gastric hormone release patterns, and potentially altering gastric
function. Epidemiological studies have shown that eliminating H. pylori reduces metachronous cancer.
Evidence shows that various molecular alterations are present in gastric cancer and precancerous
lesions associated with an H. pylori infection. However, although H. pylori can cause oxidative stress-
induced gastric cancer, with antioxidants potentially being a treatment for GC, the exact mechanism
underlying GC etiology is not fully understood. This review provides an overview of recent research
exploring the pathophysiology of H. pylori-induced oxidative stress that can cause cancer and the
antioxidant supplements that can reduce or even eliminate GC occurrence.
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1. Introduction

Gastric cancer/gastric adenocarcinoma (GC) is a global health threat. It is the third
most common cause of cancer-related death and the fifth most common cancer globally,
being responsible for approximately 800,000 cancer-related deaths annually [1]. GC is a
heterogeneous disease from a morphological and molecular perspective [2] and is also a
multifactorial disease that has genetic and environmental etiologies [3]. The American
Cancer Society classifies 90–95% of GC cases as adenocarcinomas (arising in gland cells that
produce gastric acids and mucus), 4% as lymphomas (arising in the stomach lymph tissues),
1–3% as hereditary diffuse gastric cancer (HDGC), and the remainder as gastrointestinal
stromal tumors (in the interstitial cells of Cajal). There are two main types of GC (cardia and
non-cardia) depending on their anatomic location. For most, the upper stomach constitutes
the cardia subtype, while the mid-distal stomach constitutes the non-cardia subtype. Non-
cardia GC is the subtype most commonly caused by chronic Helicobacter pylori (H. pylori)
infection [4,5]. GC is predominantly caused by a H. pylori infection [6]. High GC risk is
associated with virulent H. pylori strains, smoking, poor diet (e.g., high salt, smoked foods,
and low iron), unhealthy lifestyles, and pro-inflammatory host genetic factors [7].

Approximately half of the world’s population is thought to be infected with H. pylori.
H. pylori infection prevalence and virulence factor genotypes differ extensively depend-
ing on geographical regions [8]. H. Pylori is a Gram-negative, curved or S-shaped, mi-
croaerophilic, and highly motile bacterium because of its unipolar bundle of sheathed
flagella [9]. H. pylori strains exhibit a distinct population structure congruent with their
coevolution with humans, leading to implications about the history of the disease in hu-
mans [10]. A contaminated water source can result in infection as it can be cultivated from
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infected individuals’ vomit, stools, and saliva, and it most commonly spreads through
fecal–oral and oral–oral routes [11]. More than 47 species of Helicobacter have been rec-
ognized to date and have been classed into two major categories: gastric and non-gastric
(enterohepatic) [12,13]. In its ecological niche, H. pylori colonizes the deep gastric mucus
layer, producing urease, promoting motility and adhesion [14]. The Helicobacter species
found in the stomach are H. pylori, H. mustela, H. heilmannii, H. felis, and H. acinonychis.

It is believed that H. pylori is the primary cause of chronic gastritis and can cause other
severe gastroduodenal diseases, such as mucosa-associated lymphoid tissue lymphoma
(MALT) and gastric and duodenal peptic ulcer disease (PUD), as well as GC [15]. Sustained
chronic inflammation impairs and depletes the parietal cells, causing hypochlorhydria and
achlorhydria. As acidity decreases, harmful pro-inflammatory gastric microbes colonize in
gastric mucosa, thereby secreting genotoxic pro-inflammatory metabolites and carcinogens
that directly facilitate stomach cancers [16].

H. pylori is closely linked with chronic gastritis and is characterized by generating
reactive oxygen species (ROS) and nitric oxide (NO) metabolites and reducing antioxidant
mechanisms [17]. A high environmental ROS content favors H. pylori growth. Because
of its defensive strategies, H. pylori can survive, long-term, in the stomach environment
despite the inflammatory response of the host. The longer it remains, the more likely
H. pylori-induced oxidative stress will activate multiple signaling pathways, promoting
cancer development. Despite this, exactly how H. pylori triggers oxidative stress-mediated
gastric carcinogenesis is unclear. In this study, we discuss recent developments in H. pylori’s
oxidative stress-induced GC and its pathogenic mechanisms as well as the most recent
advances in antioxidant treatment strategies for H. pylori-induced GC.

2. The Role of ROS and Gastric Carcinogenesis

Cellular signaling relies on ROS, which are by-products of cellular metabolism. There
is a wide variety of molecules with oxidizing properties that can cause oxidative stress [18].
ROS include superoxide anions (O2

•−), hydroxyl radicals (HO•), nitric oxide radicals
(•NO), and lipid radicals, where unpaired electrons are present. Other ROS may also have
oxidizing properties, but they do not constitute free radicals such as hydrogen peroxide
(H2O2), peroxynitrite (ONOO), and hypochlorous acid (HOCl) [19]. As excess ROS accu-
mulate, they can damage cellular components such as membranes, proteins, and DNA,
which can be detrimental to cancerous and noncancerous cells [20]. Various research
studies have shown that H. pylori infection induces ROS generation and oxidative stress,
which can lead to GC [21,22]. In this study, we discuss the pathology of ROS generation in
H. pylori-mediated gastric carcinogenesis (see Figure 1).
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Figure 1. The role of ROS generation in gastric carcinogenesis. The prolonged presence of H. pylori in
gastric mucosal cells leads to oxidative stress, chronic inflammation, and DNA damage. In addition,
H. pylori facilitates the production of ROS and RNS using the host inflammation cells in the gastric
mucosa. This results in mucosal damage via the activation of neutrophils, which releases the oxidative
stressors that facilitate the exposure of gastric epithelium to reactive oxygen species. Even though
ROS can be generated by various cells, including macrophages and epithelial cells, neutrophils
generate the bulk of ROS. Recent research has indicated that H. pylori-induced ROS production may
influence gastric epithelial cell signal transduction, which contributes to GC [23]. (O2

•−: superoxide
anion, •OH: hydroxyl radicals, H2O2: hydrogen peroxide, NH3: ammonia, NH2Cl: monochloramine,
OCl−: hypochlorite ion, HOCl: hypochlorous acid, Cl−: chloride, H+: hydrogen ion, SOD: superoxide
dismutase, Cu+: cuprous ion, and Fe2+: ferrous ion).

Other studies have shown that H. pylori produces a high number of superoxide anions
(O2
•−) to inhibit its effect on inflammatory cells. The cytotoxicity of O2

•− is relatively
low; however, hydroxyl radicals (•OH) derived from Fenton’s reaction with metals and
hydrogen peroxide (H2O2) are much more toxic, meaning that H. pylori-produced O2

•− may
indirectly damage the gastric epithelial cells [24]. During unfavorable conditions, H. pylori
transforms into a coccid morphology from its normal helical bacillary morphology [25].
In contrast to H. pylori’s helical form, its coccoid form produces more •OH, but how it
produces them is unknown [26]. Among the potential sources of ROS and RNS in a stomach
infected with H. pylori are neutrophils, gastric mucosal cells, and vascular endothelial cells,
and, as mentioned before, the main source of ROS/RNS is believed to be neutrophils [27].
Cell membranes produce ROS by catalyzing nicotinamide adenine dinucleotide phosphate
oxidase (NADPH oxidase; NOx).

In gastric cells, neutrophils engulf bacteria and convert them into phagosomes, while
NADPH oxidase (NOx) generates ROS to kill bacteria [28]. By donating an electron, cy-



Antioxidants 2023, 12, 1712 4 of 27

toplasmic NADPH activates NOx’s catalytic subunit gp91phox. SOD converts O2 into
H2O2 by transferring this electron from NOx to molecular oxygen [29]. Toxic and highly
reactive ROS are created following H2O2

′s conversion into HOCl by Cl ions in phagocytes.
Additionally, H2O2 combined with the catalysts “Fe2+/Cu+” yields OH−, which is also
highly reactive. Neutrophils kill bacteria using ROS, such as HOCl and OH [30,31]. How-
ever, despite their ability to eradicate bacteria, ROS cannot completely eliminate them.
Consequently, inflammatory mediators are released excessively by the stomach epithelium
in an ongoing attempt to kill bacteria [32,33]. Additionally, epithelial cells and neutrophils
produce nitric oxide (NO) by expressing inducible nitric oxide synthase (iNOS), while NO
promotes peroxynitrite. Thus, NOx and iNOS overexpression results in high oxidative
stress caused by ROS/RNS [34]. Continued exposure to high levels of ROS interactions
and imbalances of oxidant–antioxidant balances eventually lead to DNA damage in gastric
epithelial cells and cell death [18,35].

ROS are produced by gastric epithelial cells in H. pylori-infected stomachs [36]. How-
ever, the host combats the H. pylori-induced ROS through two canonical pathways. (1) By
reducing molecular oxygen through NADPH, O2

•− is produced, which is capable of dis-
mutation to produce ROS. Also, (2) spermine is converted back to spermidine by the
enzyme spermine oxidase, resulting in the production of H2O2. Despite their potential
to adversely affect bacteria’s survival, H. pylori has developed numerous ways to combat
them. Although H. pylori has adapted to its ecological niche, ROS-mediated oxidative DNA
damage and mutations may contribute to its survival [37]. The gastric epithelium passively
produces ROS as a by-product of mitochondrial respiration when stimulated by bacterial
cytotoxic factors of H. pylori or cytokines [17]. Recently, phagocytic and non-phagocytic
epithelial cells of the alimentary tract expressed NOx [38].

In addition to causing neutrophils to produce O2
•−, H. pylori lipopolysaccharides (LPS)

stimulate gastric epithelial cells to produce NOx by activating Toll-like receptor 4 (TLR4) on
their surface [39,40]. There is also evidence that cytotoxic factors released by H. pylori, such
as vacuolating cytotoxins, cytotoxin-associated genes (CagA), and peptidoglycan, promote
oxidative stress in gastric epithelial cells [41]. Transfecting gastric epithelial cells with the
cagA gene induced significant ROS production in the cells by locating a fraction of the
CagA protein to the mitochondria [42]. Additionally, there is evidence that ROS production
plays a role in accelerating the cell cycle and subsequent proliferation of cells [43].

Oxidative stress induced by H. pylori plays a multifaceted role in the gastric mucosa.
H. pylori invades human gastric mucosa through neutrophils, which serve as convenient
tools for the bacteria to attack the mucosa. Even though its role in gastric epithelial cell
signal transduction or carcinogenesis is unclear, H. pylori-induced oxidative stress might
also play a significant role in signal transduction.

3. The Mechanisms Underlying H. pylori-Induced Oxidative Stress

As ROS are generated in cancer cells, we can connect them with signal pathways that
stimulate tumor development, as well as distortions in broader signaling networks that
lead to cancer progression. Dysregulated signaling interferes with the normal mechanisms
of control [44], and this review describes a few signaling pathways implicated in GC
caused by oxidative stress mediated by H. pylori. In oxidative stress-induced cancers, three
pathways are frequently activated: the PI3K/AKT/mTOR pathway, the JAK/STAT3 signal
transduction pathway, and the NF-κB/MAPK pathway (see Figure 2).
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Figure 2. The signaling pathways involved in H. pylori-mediated ROS production in gastric can-
cer. As a result of H. pylori’s virulence factors, gastric epithelial cells undergo oxidative stress,
which activates the inflammatory signaling pathways NF-κB (involved in inflammation and an-
giogenesis), PI3K/Akt/mTOR (cell proliferation), AMPK (AMPactivated protein kinase) (cell sur-
vival), PTEN/MAPK (apoptosis and inflammation), ERK (gene expression and cell proliferation),
JAK/STAT3 (cytoskeleton arrangement and cell migration), and NF-κB-mediated NLRP3 inflamma-
somes. Consequently, pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and COX-2) are secreted into
the gastric cancer cells, which lead to inflammation, cell cycle arrest, invasion, and migration.

3.1. NF-κB Signaling

The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) plays a
prominent role in the expression of inflammation-promoting genes, such as cytokines,
chemokines, and adhesion molecules [45]. The transcriptional factor NF-κB orchestrates in-
nate and adaptive immune responses during host responses to microbial infections. NF-κB
activity is also associated with the initiation and progression of gastrointestinal cancer as it
induces chronic inflammation, cellular transformation, and proliferation [46]. The study
confirmed that H pylori directly infected transformed gastric epithelial cells to activate
NF-κB rapidly (within 30 min), translocate p50/RelA and dimers into the nucleus, and
quickly accumulate IL-8 mRNA [47]. The last two decades have seen extensive research
conducted on the effects of H. pylori carrying a 40 kb gene cluster called the cag pathogenic-
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ity island (cagPAI). These cagPAI genes, such as cagE, cagL, and cagI, have been identified
as crucial for the response to H. pylori-induced NF-κB [48–50]. CagPAI is encoded largely
via the bacteria’s type 4 secretion system (T4SS), which transports the effector CagA from
H. pylori into the host cell’s cytoplasm [51]. When the T4SS binds to some plasma membrane
receptors of the host cell, an increase in the signaling activity is triggered, which causes
the NF-κB to be activated [52]. The T4SS transports peptidoglycans from H. pylori into
host cells. As a result of the nucleotide-binding oligomerization domain 1 of the pepti-
doglycan cytoplasmic receptor (NOD1), the serine–threonine kinase RICK and the TNF
receptor-associated factor 3 (TRAF3) are activated, which in turn activates IFN regulatory
factor 7 (IRF7) in mice [53]. Aside from cagPAI, outer membrane proteins from the Hop-
and Hor-gene families, gamma-glutamyl transpeptidase (GGT), and vacuolating cytotoxin
A are also found. Hop family members include sialic acid-dependent adhesins (SabA),
blood group antigen binding adhesins (BabA), adherence-associated lipoproteins A and B
(AlpA and AlpB), HopZ, HopQ, and outer inflammatory proteins (OipA) [54,55]. H. pylori
adheres to host cells through the binding of HopQ to carcinoembryonic antigen-related
cell adhesion molecules (CEACAMs) 1, 3, 5, and 6 [56,57]. T4SS function can be enhanced,
and H. pylori adherence is significantly supported by these molecules. In gastric epithelial
cells, OipA activates NF-B in a cagPAI-independent manner [51,58]. Recent studies have
reported that H. pylori-induced increases in ROS/NADPH oxidase levels activated the
NF-κB pathway in AGS cells [59,60]. In gastric epithelial cells, H. pylori activates NF-κB and
cytokine expression [61]. Another potential mechanism of H. pylori involved in regulation
of NF-κB and T4SS–cytokine expression involves the TNFα-inducing protein (Tipα), which
interacts with cell surfaces prior to entering gastric cells [62]. H pylori induces classical
and alternative NF-κB pathways through its effector ADP-L-glycero-β-D-manno-heptose
(ADP-heptose) [63]. Ferrand et al. reported that in vitro infection with H. pylori induces
mesenchymal stem cell migration via an NF-κB-dependent pathway [64]. It has also been
proposed that ROS both activate and deactivate the IKK complex, resulting in downstream
effects. ROS can activate NF-κB via alternative IκBα phosphorylation, either resulting in or
preventing IκBα degradation. Similarly, H. pylori-induced NF-κB activation decreased IκBα
and induced MMP expression in AGS cells [60]. ROS may also influence the DNA binding
properties of NF-κB proteins. A Trx1-dependent process involving Ref-1 is required to
reverse the oxidation of p50 on its DNA-binding domain. Conversely, ROS-dependent
processes that lead to the phosphorylation of RelA result in greater activation of NF-κB [65].

As mentioned above, H. pylori-induced oxidative stress response can trigger NF-κB
pathway activation by releasing the virulence factors that activate the upstream kinases
(IKK, NIK, and Akt), thereby causing the degradation of IκB or altering the nuclear translo-
cation and transcription factor binding to DNA by modifying the heterodimers of the
transcription factor.

3.2. NLRP3 Inflammasome Activation

An increasing body of evidence suggests that NF-κB signaling is also involved in
the regulation and integration of energy metabolism in addition to triggering inflamma-
tion [65]. NF-κB hinders inflammasome activation by eliminating damaged mitochon-
dria [66]. Surprisingly, however, NF-kB appears to be responsible for both priming NLRP-3
inflammasomes and inhibiting excessive inflammation, although the mechanism by which
this inhibition occurs is not currently understood [67]. Inflammasomes are multimeric
proteins found in the cytosol that assemble in response to perturbations in the cellular
environment [68]. Consequently, caspase-1 is activated, which promotes the maturation
and release of interleukin (IL)-1β and IL-18, inflammatory cell death, and pyroptosis. These
inflammatory cytokines contribute to low-grade systemic inflammation, while aberrant
NLRP3 activation can modulate the pathogenesis of inflammation-associated disease in the
body [69]. When immune cells, especially macrophages and dendritic cells, are infected
with H. pylori, the elevated IL-1β production via activation of the NLRP3 inflammasome
initiates an inflammatory reaction such as neutrophil infiltration. This decreases gastric acid
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secretion, helping bacteria colonize and survive in the gastric tissue [70,71]. Li et al. demon-
strated that H. pylori infection induced the expression of IL-1β/IL-18, which activated the
NLRP3 inflammasome and produced ROS in THP-1 cells [72]. As well as activating inflam-
matory genes, NF-κB appears to play a role in limiting NLRP3 inflammasome activation
and IL-1β production [73]. Another study reported that IL-1β overexpression activates
myeloid-derived suppressor cells (MDSCs) via the IL-1β/IL-1RI/NF-κB pathway in inflam-
matory and epithelial cells [74]. In addition, IL-18 overexpression may facilitate the immune
escape of GC cells by suppressing CD70 and increasing cancer cells’ metastatic ability by
upregulating CD44 and vascular endothelial growth factor (VEGF) [75]. Furthermore,
NF-κB inhibits the inflammasome via p62 induction.

When macrophages are activated via different NLRP3 inflammasome activators, NF-
κB appears to be able to regulate its inflammation by promoting p62-mediated mitochon-
drial removal (mitophagy) [76]. Therefore, H. pylori-induced oxidative stress activates the
NLRP3 inflammasome, increasing IL-1β and IL18 expression and contributing to immune
responses, migration, and angiogenesis by activating the VEGF and NF-κB pathways
in GC.

3.3. PI3K/AKT/mTOR Signaling

Autophagy occurs when enzyme-catalyzed metabolic processes break down proteins
and organelles for their macromolecule precursors [77]. In response to changes in ROS
levels, the phosphatidylinositol 3-kinase (PI3K) pathway is crucial in regulating autophagy.
ROS activate PIK3/AKT/mTOR signaling in cancer. After H. Pylori infection, CagA-MET
activates PI3K/Akt signaling, which contributes to H. pylori-associated chronic gastric
proliferation and NF-kB signaling, causing pro-inflammatory responses [78]. It has been
shown that the H pylori VacA toxin contributes to gastric injury pathogenesis through
phosphorylating protein kinase B (Akt) and glycogen synthase kinase-3β (GSK3β) via
a PI3K-dependent pathway [79,80]. H. pylori-induced PIK3/AKT/mTOR and NF-κB ac-
tivation decrease IκBα and induce matrix metalloproteinase (MMP) (MMP-7 and -10)
expression, invasive phenotypes, and migration in AGS cells [60]. The PI3K pathway is
activated by binding RTK/GPCR/GTP-binding proteins to adapter proteins. As a result
of this phosphorylation, PIP2 (phosphatidylinositol 3,4-bisphosphate) is converted into
PIP3 (phosphatidylinositol 3,4,5-triphosphate). Following its activation, PIP3 activates
3-phosphoinositide-dependent kinase 1 (PDK1) and Akt. Phosphorylated Akt promotes cell
survival, proliferation, differentiation, and migration [81]. A change in ROS levels inhibits
autophagy, while changing the PI3K catalytic subunit facilitates it. The downstream Akt
proteins act against autophagy initiation in response to increases in ROS levels. Also, stud-
ies have shown that MMP-7 overexpression correlates significantly with tumor morphology,
phenotype, and staging of GI tract tumor progression [82]. A similar diagnostic marker of
GC is MMP-10 overexpression [83], which regulates angiogenic and apoptotic pathways to
promote tumor progression [84]. Furthermore, by interacting with the mammalian target
of rapamycin complex 1 (mTORC1) and arresting autophagic gene expression, Akt inhibits
both cell growth and death. AMPK counteracts Akt, while the mTORC1 and mTORC2
proteins inhibit autophagy at moderate levels of ROS [85]. The mTORC1 protein plays a
key role in regulating cell survival, growth, proliferation, and metabolism [86]. However,
at high levels of ROS, the mTORC2 protein can promote cellular senescence by activating
autophagy [87].

In addition to being an inhibitor of the PI3K pathway and possessing pro-autophagic
properties, PI3K is negatively regulated by phosphatase and tensin homolog (PTEN) [88].
The PTEN protein dephosphorylates PIP3 and inhibits Akt activation via PIP3 [89]. mTOR
is activated because of Akt phosphorylation [90], and mTOR then phosphorylates S6K1
and 4EBP1, which increases ribosome and cell-cycle regulatory protein translation [91].
PI3K/Akt/mTOR plays a vital role in tumor initiation and progression, including prolif-
erative activity and apoptosis. In GC, PI3K signaling has also been linked to metastatic
cascades that include proteolytic activity, cytoskeletal remodeling, and chemotherapy re-
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sistance. Even though these pathways are currently poorly understood, clinical trials are
currently testing the effects of targeting the PI3K/Akt/mTOR pathway.

3.4. JAK/STAT Signaling

The cytokine activates cellular signaling pathways including the Janus Kinases (JAK:
a family of tyrosine kinases) and the Signal Transducer and Activator of Transcription
proteins (STAT) together when it binds to the receptors. This constitutes the JAK-STAT sig-
naling pathway, which is related and evolutionary conserved. Numerous physiological and
pathological processes are affected by this pathway, including inflammation, hematopoiesis,
and immune responses [92]. H. pylori-induced JAK1/STAT3 activation, increased ROS,
and NADPH oxidase activation may mediate MCP-1, iNOS, NF-κB, and IL-8 produc-
tion [59,61,93]. In contrast, H. pylori-induced integrin α5 can mediate cell adhesion and
migration by decreasing ROS and suppressing JAK1/STAT3 activation in gastric epithelial
cells [94]. Studies have also shown that H. pylori activates STAT3 by increasing its Tyr (705)
phosphorylation, nuclear localization, binding to DNA, and transcriptional activity. Addi-
tionally, ROS produced by H. pylori-infected cells increased IL-6 expression and binding
to IL-6 receptors [95], while other studies have confirmed that H. pylori infection increases
IL-6 expression in GC [96–98]. Iqra et al. reported that H. pylori infection increases the
secretion of IL-10, IL-6, and TGF-β, which mediates hyperactivation of JAK/STAT signaling,
deactivating the suppressor of the cytokine signaling 1 (SOCS1) gene via hypermethylation
of the promoter region in GC [99].

Hongyan et al. found that in GC cells, the STAT3 signaling pathway induces mitogen-
and stress-activated protein kinase 1 (MSK1), which activates H3S10 phosphorylation and
increases the potential for tumorigenesis [100]. In contrast, the virulence factor CagA
induces IL-6 expression by recruiting PKCδ via eEF1A1 in the cytoplasm to increase the
phosphorylation of STAT3S727 in the nucleus of AGS cells [101]. Guo and Ding showed that
high thioredoxin1 (Trx1) could mediate HP infection pathogenicity via the IL6/STAT3 path-
way in GES-1 cells [102]. In these cells with high Trx1 expression, apoptosis was induced,
cyclin D1 levels decreased, and p21 levels increased [103]. H. pylori caused ROS gener-
ation, which increased cytokine expression (IL-6, IL-10, and TGF-β), which reduced the
exogenous inhibitors and epigenetic hypermethylation of promoter regions that activated
JAK/STAT3 signaling, thus causing inflammation, proliferation, and angiogenesis.

3.5. MAPK/ERK/JNK Signaling

Mitogen-activated protein kinase (MAPK) cascades regulate various cellular activities,
including inflammation, apoptosis, proliferation, and differentiation. The MAPK family
comprises three major subfamilies: extracellular-signal-regulated kinases (ERK), c-jun N-
terminal kinases or stress-activated protein kinases (JNK or SAPK), and MAPK [104]. It is
known that CagA is dominated by the activation of ERK and JNK subgroups, among the
four major branches of ERK, JNK, p38 MAPK, and ERK5—where ERK is responsible for
cell differentiation and growth—and Ras/Raf is its upstream signal, while JNK plays an
important role in cell apoptosis and inflammation—both of which contribute to the pro-
gression of GC as a result of CagA [105]. H. pylori-induced increases in ROS and NADPH
oxidase activation of MAPK (ERK1/2, JNK1/2, and p38) and MCP-1 in AGS cells [59,106].
We previously mentioned that the adhesion molecules of BabA protein recognize both
H-type 1 and Lewis b (Leb) antigens expressed on gastric mucosa leading to the initial step
of infection. Subsequently, SabA adhesin mediates H. pylori binding to inflamed gastric
mucosa by recognizing sialyl-Lewis a (sLea) and sialyl-Lewis x (sLex) antigens to establish
persistent colonization [54]. Yang et al. reported that Lewis antigen expression and colo-
nization density are related to MAPK signaling in H. pylori-induced gastric inflammation
in children and adults [107]. Another study found that phosphorylated CagA triggers
ERK/MAPK signaling through interactions with SHP2, C-terminal Src kinase (CSK), and
Crk junction protein [108]. An N-SH2 and C-SH2 domain of CagA, as well as two structural
domains of SHP2, are required for a complex to be formed between CagA and SHP2. By
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activating SHP2, Ras/Raf/MEK/ERK signaling pathways are activated, which leads to
ERK activation through both RAS-dependent and non-dependent pathways [109]. Ac-
tivation of MAPKs and AP-1 by H. pylori increased gastric epithelial cell invasion and
MMP-10 expression by decreasing PPAR-γ-mediated catalase expression and increasing
ROS levels [110]. Another study showed that H. pylori induced mitochondrial dysfunction
and ROS-mediated IL-8 expression by activating PPAR-γ and catalase in gastric epithelial
cells [111]. Yakun Bi et al. reported that H. pylori infection increased cell viability, CyclinD1
expression, JNK and ERK phosphorylation, and cellular ROS content as well JNK, ERK, and
p38MAPK phosphorylation [112]. H. pylori is also known to activate ASK1 in gastric epithe-
lial cells as a result of ROS and Cag pathogenicity islands, while ASK1 is also responsible
for maintaining sustained JNK activation and apoptosis induced by the pathogen.

In contrast, TAK1 controls H. pylori-mediated JNK activation and cytokine production.
ROS-mediated apoptosis is regulated via the ROS/ASK1/JNK pathway by inhibiting TAK1
or downstream p38 MAPK; ASK1 suppresses TAK1 and downstream NF-κB [113]. It has
also been demonstrated, however, that altered intracellular calcium (Ca2+) concentrations
are associated with ROS generation through NADPH oxidase activation in macrophages.
The calcium signaling pathway in phagocytes plays a crucial role in the activation, migra-
tion, and resolution of infection and inflammation [114]. A transient receptor potential
melastatin 2 (TRPM2)-deficient macrophage is not able to control intracellular Ca2+ levels
when stimulated with H. pylori and will lead to calcium overload. Furthermore, increased
intracellular calcium levels in TRPM2−/− macrophages will exacerbate the activity of
MAPK and NADPH oxidase, leading to an increase in gastric inflammation. Similarly,
H. pylori infection decreased SOD-1 and HO-1 protein levels, SOD activity, and mitochon-
drial dysfunction by inhibiting the Nrf2 pathway in AGS cells [115].

3.6. ROS and Ferroptosis

Recently, research on ferroptosis in cancer has increased markedly, providing a new
perspective on cancer therapy. Ferroptosis is iron-dependent cellular death characterized
by an accumulation of lipid peroxide within the cell and an imbalance of redox poten-
tial [116]. Several small molecules are capable of initiating cell death because of specific
molecular events such as apoptosis, ferroptosis, or necrosis [117]. Ferroptosis begins with
iron accumulation. High iron levels are linked to lipid peroxidation and abnormal mer-
captan iron metabolism, leading to increased ROS production [118]. A transferrin receptor
binds to circulating iron as Fe3+, allowing it to enter the cell [119]. Through DMT1, iron
oxide reductase reduces Fe3+ to Fe2+, which is then pumped into the iron pool producing
ROS. In addition, it contributes to ferroptosis and lipid peroxidation. By contrast, the Xc
system simultaneously transports intracellular Glu to the extracellular space and extra-
cellular cystine into the cells for GSH synthesis. Consequently, GPX4 activation causes
polyunsaturated fatty acids (PUFAs) to become -OH, which is ultimately a cause of cellular
death [116].

SOCS1 is required for p53 activation and ferroptosis in response to aberrant JAK/STAT5
pathway activation [120]. SOCS1 may act as a potential biomarker for uncovering gastric
cancer underlying mechanisms. Increasing immunotherapy activity through ferroptosis–
immunomodulation may be a viable strategy in GC’s therapy [120]. Furthermore, by
promoting Arachidonate 5-Lipoxygenase (ALOX5) expression in pylori-positive GC cells,
PHKG2 facilitates ferroptosis induced by (RAS-selective lethal3) RSL3 [121]. It is thought
that these findings may contribute to an understanding of the unique pathogenesis of
H pylori-induced gastric cancer, as well as provide a means of controlling ferroptosis in
diverse situations using genetic, cellular, and immune therapies.

4. The Relationship between H. pylori Virulence Factors and ROS Production

The virulence of an H. pylori infection causes prolonged inflammation in the gastroin-
testinal mucosa. Multiple virulence factors associated with H. pylori strains may contribute
to oxidative stress in the host and appear to be a combination of three pathogenic mecha-
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nisms: colonization (involving the urease, adhesin, and flagellum chemotactic systems),
resistance to immunity (i.e., flagellum, lipopolysaccharides (LPS), VacA, and CagA), and
disease induction (DUpA, VacA, and BabA) [122] (see Figure 3). It is also possible to classify
these virulence factors as effector proteins. The main effector proteins/toxins released by
H. pylori include cytotoxin-associated genes (CagA), urease, blood group antigen-binding
adhesions (BabA), vacuolating cytotoxins (VacA), outer inflammatory proteins (OIPA),
outer membrane proteins, high-temperature requirement A (HtrA), sialic acid-binding
adhesins (SabA), outer membrane vesicles (OMV), and neutrophil-activating protein A
(NepA) [123].
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Figure 3. H. pylori’s virulence factor in ROS-mediated gastric cancer. The virulence factors of H. pylori
(CagA, VacA, NAP, OMV, and urease) induce ROS production and inflammatory signaling in host
cells and maintain an alkaline environment in which to protect itself against the acidic pH of the host
environment. CagA involved in activation of inflammatory pathways, VacA involved in autophagic
mechanism, LPS mediates upregulation of cell invasion and migration, NAP involved in neutrophil-
mediated inflammation, OMV involved in triggering immune response, and urease/antioxidant
enzymes regulating the gastric oxidative stress level.

4.1. Cytotoxin-Associated Gene A (CagA)

CagA is one of H. pylori’s most studied virulence genes. CagA expression is induced
by H. pylori adhering to the gastric epithelium [124]. CagA is injected directly into epithelial
cells by H. pylori through a type IV secretion system [123], whereupon it interacts with host
SH2 domains to phosphorylate tyrosine after reaching the host cell. Once this occurs, the
cells undergo morphological, apoptotic, proliferation, and motility changes, stimulating the
development of GC [125]. Zhan et al. (2022) reported that Hp/CagA+ strain infection and
pcDNA3.1/CagA vector transfection activated intracellular ROS production and NLRP3
inflammasome and also increased the migration and invasion of GC cells [126]. A study by
Jung et al. found that H. pylori CagA promoted gastric cell proliferation, ROS production,
antiapoptotic activity, cell migration, and invasion by activating the NF-κB and PI3K/Akt
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signaling pathways and EMT-related proteins [127]. Studies have also shown that in CagA+
H. Pylori-infected cells, the CagA protein located in the mitochondria increased HIF-1α
activity by causing ROS production via downregulated SIRT3 activity, similar to gastric
epithelial cells in hypoxic environments [128].

4.2. Vacuolating Cytotoxins (VacA)

Pore-forming toxin vacuolating cytotoxins (VacA) can induce vacuolation in gastric
epithelial cells while also inducing apoptosis, inhibiting proliferation, and inhibiting IL-2
release in the gastric epithelium [129]. In gastroduodenal disorders, VacA exerts pleiotropic
effects through the activation of specific receptors and can also mediate CagA activation via
phosphorylation of Src through receptor-type protein tyrosine phosphatase α (RPTPα) lead-
ing to CagA phosphorylation at Tyr972 in AZ-521 cells [130]. In H. pylori-infected gastric
epithelial cells, Src phosphorylates CagA at its Glu-Pro-Ile-Tyr-Ala (EPIYA-C) motif, which
allows CagA to bind to SHP-2 phosphatase [131]. On the other hand, because it is also a
critical regulator of mitochondrial fission within cells, VacA induces mitochondrial network
fragmentation by recruiting and activating dynamin-related protein 1 (Drp1). As VacA-
intoxicated cells undergo mitochondrial fission, Drp1 inhibition suppresses BAX and BCL
activation, leading to mitochondrial permeabilization and cell death [132]. Pan Zhu et al.
reported that VacA could induce autophagy and increase cell death via numerous dilated
numerous endoplasmic reticula (ER), increase the eukaryotic translation initiation factor 2
subunit 1 phosphorylation, and also increase expression of tribbles pseudokinase homolog
3 (TRIB3) upon ER stress in AGS cells [133]. Similarly, increased ROS levels and BECN1,
ATG7, and PIK3C3 mRNA expressions were observed following VacA protein treatment in
SGC7901 cells, which facilitated a significant decrease in proliferation and an increase in
autophagy [134]. Studies have also shown that CagA and VacA can inhibit autophagy sig-
naling upstream along with autophagy-lysosome maturation, inhibiting gastric autophagy
in precancerous lesions of GC. Thus, H. pylori cannot be effectively eliminated through
autophagy due to the persistence of CagA and VacA. Therefore, it will continue to cause
inflammation, oxidative stress, apoptosis, glycolysis, and proliferation in precancerous
gastric lesions, as well as inflammation, oxidative stress, and apoptosis [135].

4.3. Neutrophil-Activating Protein A

Neutrophil-activating protein (HP-NAP) of H. pylori is a virulence factor that triggers
the neutrophil release of reactive oxygen species during respiratory bursts. HP-NAP
stimulates ROS production by neutrophils and increases neutrophil adhesion to endothelial
cells [136]. NADPH oxidase generates ROS when HP-NAP is present in neutrophils, and its
components are translocated from their cytosol to their plasma membrane. H. pylori invades
the host gastric epithelium through HP-NAP’s oxidative stress and protects itself from
oxidative stress through ROS by forming a biofilm [137,138]. Inducing ROS by HP-NAP
occurs via the upregulation of the pertussis toxin (PTX)-sensitive heterotrimeric G protein,
PI3K, and SRC family tyrosine kinases, as well as via an increase in calcium concentration
in the cell [139].

4.4. Other Virulence Factors

Lipopolysaccharides (LPS) inhibit IL-33 expression and activity through oxidative
stress, apoptosis, and activation of ERK and sST2, thereby inhibiting IL-33-mediated gastric
barrier regeneration [140]. A study by Weronika et al. showed that LPS increase oxidative
stress, induce apoptosis, and also induce migration of cells through upregulation of MMP-9
in post inoculation of H. pylori in a guinea pig model [141].

The surface of H. pylori displays an intact surface membrane with OMV. It is made
up of periplasmic proteins, toxins, OMPs, lipids, and extracellular DNA (eDNA) [142].
Stress responses often result in the formation of OMV. Similarly, in a dose-dependent
manner, the OMV in H. pylori protect against toxic compounds like H2O2, as well as against
an antimicrobial peptide produced by epithelial cells called LL-37 that inhibits bacterial
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growth. Specifically, OMV enhance bacterial survival, antibiotic resistance, and DNA
transfer, triggering immune cells and apoptosis [143].

Numerous stimuli can increase ROS levels in cancer cells. A variety of antioxidant
proteins are involved in the process of protecting H. pylori against the acidic gastric environ-
ment, including peroxiredoxins (Prdx), nitric oxide synthase (NOS), superoxide dismutase
(SOD), nuclear factor erythroid 2-related factor 2 (Nrf2), thioredoxin reductase (TrxR), and
catalase. Higher levels of antioxidant proteins have also been observed in cancer cells
because of increased ROS detoxification. An antioxidant enzyme of 2 Cys, peroxiredoxin
2 (PRDX2), is crucial in scavenging ROS and oxidative stress in cells [144]. Wang et al.
found that, in in vivo and in vitro models, H. pylori infection activated NF-κB and increased
PRDX2 expression. Because of the H. pylori infection, PRDX2 knockdown increased ROS
production and DNA damage [145]. Thus, by releasing and modulating its virulence
factors, H. pylori induced oxidative stress and ROS production in gastric cancer, which
favored the tumor microenvironment. Moreover, targeting the virulence factor may be an
effective therapeutic strategy for treating gastric cancer caused by H. pylori.

5. The Effectiveness of Antioxidant Supplementation in Preventing Gastric Cancer in
H. pylori-Infected Individuals

This review summarizes redox homeostasis mechanisms and the relationship between
GC and oxidative stress. Additionally, we will discuss recent advances in antioxidant ther-
apy for cancers (see Figure 4). The possibilities and limitations of antioxidant therapeutic
strategies in H. pylori-mediated GC will also be discussed in the context of several kinds of
antioxidant drugs in both in vitro and in vivo studies (see Table 1).

Table 1. Therapeutic applications of antioxidant supplementation for H. pylori-induced gastric cancer.

No. Antioxidant
Supplementation Model Inference References

1 Scutellarin (20 and 80
µmol/L)

AGS, HGC-27, and
GES-1 cell lines

SCU suppressed gastric cancer cell
proliferation and increased apoptosis by
inhibiting the Wnt/β-catenin pathway.

[146]

2 ASX (1 or 5 µM) for 3 h H. pylori-infected AGS
cells

ASX inhibited H. pylori-induced integrin
α5-mediated cell adhesion and migration by

decreasing ROS levels and suppressing
JAK1/STAT3 activation.

[94]

3 Geraniol (30–100 µM) H. pylori-infected GES-1
cells

Increased the expression of peroxiredoxin-1
(Prdx-1) in GES-1 cells. [147]

4 Carvacrol (10, 25, 50,
and 100 mg/kg BW)

MNNG-induced GC
(200 mg/kg BW)/60

days/Wistar albino rats

High doses of carvacrol (50 and 100 mg/kg
BW) increased oxidative stress, inflammation,

and apoptosis.
[148]

5 SCU (10, 20, and 30
mg/kg)

MNNG-induced gastric
carcinogenesis/AGS
cell line and Wistar

albino rats

A reduction in LDH activity, ulcer index, pH,
mucus weight, and percentage inhibition of

ulcers was observed after SC treatment.
[149]

6
Korean red ginseng

extract (RGE)
(0.01–1µg/mL) for 1 h

H. pylori-infected AGS
cells

RGE treatment decreased IL-8 production,
mitochondrial dysfunction, and ROS

production by activating Nrf2, inducing
SOD-1 and HO-1, and decreasing ROS levels.

[115]

7 ASX (1 or 10 µM) for 3
h

H. pylori-infected AGS
cells

ASX suppressed MMP expression, cell
invasion, and migration via inhibition of

PI3K/AKT/mTOR/NF-κB signaling.
[60]

8 Curcumin (5 mM and
20 mM)

H. pylori-infected AGS
cells

Curcumin treatment inhibited the vacuolation
activity of H. pylori. [150]
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Table 1. Cont.

No. Antioxidant
Supplementation Model Inference References

9 Phycocyanin (150 µM) H. pylori-infected AGS
cells

Phycocyanin inhibited AGS cell
hyperproliferation by regulating ROS/MAPK
signaling pathways and reducing c-myc and

CyclinD1 expression.

[112]

10 SCU (0–80 µM) MGC-803 and AGS SCU inhibited GC growth and EMT by
regulating the PTEN/PI3K pathway. [151]

11
Silibinin (20 mg/kg or
200 mg/kg) for 4 or 8

weeks

H. pylori-infected
C57BL/6 mice/
MKN-1 cell line

Silibinin suppressed H. pylori infection by
inhibiting COX2 and inducing iNOS

expression by suppressing NF-κB and STAT
pathways.

[152]

12 β-carotene (0.1 or 0.2
µM) for 2 h

H. pylori-infected AGS
cells

β-carotene suppressed MAPK-driven
MMP-10 expression and cell invasion by

promoting PPAR-γ-mediated catalase
expression and inhibiting ROS levels.

[110]

13 Vicenin-2 (40 µM) H. pylori-infected GES
cells

Vicenin-2 enhanced Nrf2 and PTEN in GES
cells. [153]

14 Luteolin (30 µM) H. pylori-infected
CRL-1739 cells

Luteolin significantly induced IL-8, IL-10, and
NF-κB expression and reduced ADAM-17

expression.
[154]

15 Astragalin (0–40
µM)—6 h

HGC-27, MGC-803,
and MKN-28 cell lines

Astragalin-induced apoptosis inhibited the
migration and invasion via inhibition of the

PI3K/AKT signaling pathway.
[155]

16 Eugenol (0–240
ug/mL) AGS cell lines Eugenol inhibited the TGF-β/SMAD4

signaling pathway in GC. [156]

17 Celastrol (5 mM for 1 h) SGC-7901 and BGC-823
cell lines

Increased cellular ROS levels led to
ROS-dependent endoplasmic reticulum stress,

mitochondrial dysfunction, and apoptosis.
[157]

18 Tanshinone IIA (2 and 4
4 µM) BGC-823 and NCI-H87

Tan IIA upregulated p53 expression and lipid
peroxidation (LPO); ferroptosis

downregulated xCT expression, intracellular
glutathione (GSH), and cysteine levels..

[158]

19 Nobiletin H. pylori-infected GES-1
cells.

Nobiletin significantly decreased the
expression of TNF-α, IL-6, COX-2, PI3K, AKT,

and MAPK molecules, including p38 and
c-Jun amino-terminal expression in H.

pylori-infected GES-1 cells.

[159]

20 Zeaxanthin (100 µM for
24 h)

AGS, KATO-3,
MKN-28, MKN-45,
NCI-N87, YCC-1,

YCC-6, YCC-16, SUN-5,
SUN-216, SUN-484,

and SUN-668 cell lines

Zeaxanthin against GC by inhibiting the
ROS-mediated MAPK, AKT, NF-κB, and

STAT3 signaling pathways.
[160]

21 Celastrol MKN45 cells

Celastrol inhibited proliferation, migration,
and invasion and inactivated

PTEN/PI3K/AKT and NF- κB signaling
pathways in MKN45 cells by downregulating

miR-21.

[161]

22 Celastrol (0 or 2 µM) HGC27 and AGS cells

Celastrol activated RIP1/RIP3/MLKL
pathways and suppressed the level of

pro-inflammatory cytokines by
downregulating biglycan (BGN) in HGC-27

and AGS cells.

[162]
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Table 1. Cont.

No. Antioxidant
Supplementation Model Inference References

23 ASX (1 or 5 µM) for 3 h H. pylori-infected AGS
cells

ASX inhibited the reduction in mitochondrial
ROS caused by H. pylori and decreased SOD2

and SOD activity.
[163]

24 ASX (1 or 5 µM) for 3 h H. pylori-infected AGS
cells

Astaxanthin inhibited H. pylori-induced
mitochondrial dysfunction and

ROS-mediated IL-8 expression by activating
PPAR-γ and catalase.

[111]

25 Ebselen (0 or 100 µM) AGS and MGC-803
cells

Ebselen may inhibit ROS production
triggered by H. pylori LPS treatment via

GPX2/4 instead of TLR4 signaling and reduce
phosphorylation of p38 MAPK, resulting in

altered production of IL-8.

[164]

26 α-lipoic acid (10 and 20
µM for 2 h)

H. pylori-treated AGS
cells

α-lipoic acid inhibited ROS levels, IL-8
expression, activation of MAPK, ERK1/2,
JNK1/2, p38, JAK1/2, STAT3, and NF-κB

signaling pathways.

[59]

27

Epigallocatechin
Gallate (EGCG) (0.05%

EGCG in drinking
water)

H. pylori-infected
Mongolian gerbils

EGCG inhibited the IL-1β, TNF-α, COX-2,
and iNOS in the gerbil model of H.

pylori-induced
inflammation.

[165]

28 Artemisia and/or
green tea extracts

H. pylori-infected and
high-salt-diet-

administered C57BL/6
mice

Artemisia and/or green tea extract treatment
significantly decreased the expressions of
COX-2, TNF-α, IL-6, lipid peroxide, and

activated STAT3 relevant to H. pylori infection.

[166]

29 Curcumin
H. pylori-infected

8-week-old BALB/c
mice

Curcumin reduced the LPO, MPO level,
urease activity, the number of colonized

bacteria, levels of anti-H. pylori antibodies,
biofilm formation, IFN-γ, IL-4, gastrin and

somatostatin levels in serum, and minimum
inhibitory concentration.

[167]

30 Nobiletin (0–50 µM) SNU-16 cells
Nobiletin-induced apoptosis in SNU-16 cells

was mediated via intracellular ER
stress-mediated protective autophagy.

[168]

31 Eugenol (0.1–1.7 mM) AGS cells
Eugenol induced apoptosis (caspase 3 and

caspase 8) in the presence of as well as in the
absence of functional p53.

[169]

32 α-LA (10µM and
20µM) 2 h

H. pylori-infected AGS
cells

α-LA inhibited NADPH oxidase and ROS
production, inhibition of NF-κB and AP-1

activation, induction of oncogenes, β-catenin
nuclear translocation, and hyperproliferation

in AGS cells.

[170]

33 Celastrol AGS and YCC-2 cells
GC xenografted mice

Celastrol induced apoptosis and autophagy in
gastric cancer cells. [171]

34 RGE (at various
concentrations)

H. pylori-infected AGS
cells

RGE inhibited the expression of MCP-1 and
iNOS by suppressing the activation of

NADPH oxidase and Jak2/Stat3 signaling.
[93]

35
Catechins (CAs), sialic
acid (SA) combination
of CA and SA (CASA)

H. pylori-infected AGS
cells and BALB/c mice

CASA attenuated the caspase-1-mediated
epithelial damage. [172]
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Table 1. Cont.

No. Antioxidant
Supplementation Model Inference References

36 Celastrol (0–5 µM) BGC-823, MGC-803,
and SGC-7901 cells

Celastrol induced apoptosis by inhibiting
NF-κB activity by upregulating miR-146a

expression.
[173]

37 Diphenyleneiodonium
(DPI) (2.5 or 5.0 µM) 2 h

H. pylori-infected AGS
cells

DPI inhibited H. pylori-induced activation of
MAPKs and MCP-1 expression in AGS cells. [106]

38
Sporoderm-removed
spores of G. lucidum

(RSGLP)

H. pylori-infected AGS
cells

RSGLP is more effective at inhibiting gastric
cancer cell viability and may serve as a

promising autophagy inhibitor for gastric
cancer.

[174]

39
Resveratrol (100 mg/kg

body weight/day)
orally for six weeks

Male Kunming mice

Resveratrol inhibited oxidative stress and
inflammation in H. pylori-infected mucosa

via the suppression of IL-8, iNOS, and NF-κB
and the activation of the Nrf2/HO-1 pathway.

[175]

5.1. Phenolics

Phytochemicals in plants have been extensively studied by researchers because of their
health-promoting potential. Phenolic phytochemicals are a broad category of nutraceuticals
found in plants. For example, a phenolic monoterpenoid known as carvacrol is found in
the essential oils of plants like oregano (Origanum vulgare), wild bergamot (Citrus aurantium
bergamia), thyme (Thymus vulgaris), and pepperwort (Lepidium flavum) [176]. The bioactivity
of carvacrol includes antioxidant, antimicrobial, and anticancer properties. MNNG (N-
methyl-N′-nitro-N-nitrosoguanidine) induces GC in Wistar rats treated with different
concentrations of carvacrol, which inhibits oxidative stress, increases apoptotic transcription
factors (caspase 3, Bcl2, and BAX), and reduces inflammation [148].

Carvacrol can trigger apoptosis, ROS synthesis, and GSH reduction in AGS cells in a
dose-dependent manner [177]. This suggests that carvacrol could be a potential therapeutic
treatment for GC and could be a potential candidate for clinical trials in the future. Another
important phenolic compound is eugenol (1-allyl-4-hydroxy-3-methoxybenzene), which is
mainly derived from Syzygium aromaticum. The growing body of literature indicates that
eugenol is an antioxidant, anti-inflammatory, antimutagenic, antigenotoxic, and anticancer
agent. Efficacious against resistant H. pylori strains, eugenol essential oil (EEO) exhibits
antibiofilm and anti-inflammatory properties, suggesting it may be a natural alternative
to antibiotic therapy [178]. (-)-Epigallocatechin-3-O-gallate (EGCG), a primary green tea
polyphenol, is an iron scavenger and an antioxidant, and it also has anticarcinogenic
properties [45]. Jing et al. reported that treatment with EGCG inhibited IL-1β, TNF-α,
COX-2, and iNOS expression in the gerbil model of H. pylori-induced inflammation [165].
Similarly, Jeong et al. (2016) mentioned that the combination of green tea and Artemisia
extract significantly reduced COX-2, TNF-α, IL-6, and lipid peroxide expression and
activated STAT3 relevant to H. pylori infection [166].

5.2. Flavonoids

The flavonoid phytochemical luteolin induces apoptosis, initiates cell cycle arrest,
and inhibits angiogenesis, metastasis, and cell proliferation during carcinogenesis [179].
Stutellarin (Scu) is a flavonoid obtained from Erigeron breviscapus (Vant.). Scutellarin (20
and 80 µmol/L) suppressed proliferation and promoted LDH release and apoptosis by
raising BAX and Cytochrome C levels and reducing Bcl-2, Wnt1, cytoplasmic β-catenin, and
basal β-catenin [146]. The polymethoxylated flavonoid nobiletin, which is present in citrus
fruits, possesses a variety of pharmaceutical properties, including anticarcinogenic, anti-
inflammatory, antioxidative, and antimetabolic properties [180]. Nobiletin triggers ER stress
by activating the IRE-1α/GRP78/CHOP axis, which reduces neutral lipid accumulation,
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inducing apoptosis and inhibiting GC cell progression [181]. Luteolin is a flavone naturally
found in its glycosylated structure in many edible fruits, vegetables, and herbs (e.g., carrots,
peppers, peppermint, and oregano) [182]. Iwoana et al. demonstrated that 30 µM of luteolin
significantly induced IL-8, IL-10, and NF-κB expression and reduced ADAM-17, MUC1,
GalNAcα-R (Tn antigen), and NeuAcα2-3Galβ1-3GalNAc-R (sT antigen) expression in H.
pylori-infected CRL-1739 cells [154].
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5.3. Terpenoids and Carotenoids

The Chinese herbal medicine Danshen (Salvia miltiorrhiza Bunge) contains a pharmaco-
logically active component, Tanshinone IIA (Tan IIA), which has been proven to prevent
and treat cancers of the respiratory, circulatory, and digestive systems [183]. In gastric
AGS cell lines, Tan IIA was shown to suppress the expression of epidermal growth factor
receptor (EGF), insulin-like growth factor receptor (IGFR) by inhibiting PI3K/Akt/mTOR
signaling [184], and vascular endothelial growth factor receptor (VEGFR) and to inhibit the
Ras/Raf/MEK/ERK pathways [185]. The oxycarotenoid orange-red pigment astaxanthin
(ASX) is naturally found in seafood [186] and has been shown to suppress H. pylori-induced
SOD2 levels and SOD activity and also inhibits mitochondrial ROS [163] by activating
PPAR-γ and catalase expression [111].

5.4. Other Phytochemical Compounds

A plant triterpene known as Celastrol inhibits the proliferation of GC cells and induces
apoptosis. Celastrol directly binds to PRDX2, which leads to increased ROS production,
mitochondrial dysfunction, and apoptosis through ROS-dependent stress in the ER [157].
In xenografted GC mice, Celastrol significantly elevated AMPK phosphorylation and ac-
tivated apoptosis, autophagy, and mTOR following a reduction in Akt, mTOR, and S6K
phosphorylation [171]. Additionally, Celastrol was shown to inhibit GC viability by reduc-
ing IKB phosphorylation, as well as nuclear P65 protein level, by upregulating miR-146a
expression [173]. Furthermore, Celastrol increased PTEN phosphorylation and decreased
PI3K, AKT, p65, and IκBα phosphorylation by downregulating miR-21, which in turn,
inhibited cell proliferation, migration, and invasion and induced apoptosis and G2/M cell
cycle arrest in MKN45 cells [161]. Polyphyllin I (PPI) treatment inhibited GC growth by
increasing intracellular ROS/LPO, liproxstain-1, and Fe2+ ions and decreasing NRF2 and
ferritin heavy chain 1 (FTH1) through NRF2/FTH1 pathway regulation [187]. Geraniol
prevents apoptosis, ROS, and cytotoxicity by depleting malondialdehyde levels and re-
ducing reactive DNA damage and nuclear fragmentation. Geraniol significantly reduced
the expression of phosphorylated p38 MAPK, ERK1, c-JNK, TNF-α, IL-6, and COX-2 and
increased the expression of the antioxidant protein Prdx-1 in H. pylori-infected cells [147].
There is a growing body of evidence that Ganoderma lucidum can serve as a chemopreventive
agent as well as a functional food. The mushroom is known for its medicinal properties,
and some extracts of Glucidum have shown promising antitumor properties. Inhibition of
cell growth and cell cycle via methanolic extracts of the Ganoderma lucidum fruiting body
were observed in a gastric cancer cell line [175]. In SGC-7901 human gastric cancer cells,
recombinant Lz-8 induces autophagy via endoplasmic reticulum stress [188].

Iwona et al. demonstrated that when AGS cells were treated with phenolics (phenolic
acid or p-coumaric acid) and flavonoids (kaempferol, astragalin, or tiliroside) at 80 and
160 µM, the mRNA expression of MUC1, ppGalNAcT2, and C1GalT1 was inhibited, and the
protein expression of ST6GalNAcT2 and FUT4, C1GalT1, St3Gal-IV, Tn and sialyl T antigen,
and MUC1 domain in H. pylori-infected AGS cells was also reduced [189]. In traditional
Indian medicine, curcumin, which is a secondary turmeric metabolite, has been used to
treat gastrointestinal ailments including gastric dyspepsia. As well as modulating apoptosis
and cell proliferation, curcumin affects the immune system [190] by attenuating the mRNA
expression of the H. pylori virulence genes CagE and CagF. It also inhibits the translocation
and phosphorylation of CagA in gastric epithelial cells. H. pylori strains isolated from
mice treated with dietary curcumin could not effectively induce cSrc phosphorylation and
IL-8 gene expression [191]. Biocompatible co-polymer PLGA nanoparticles encapsulated
with curcumin have also been shown to enhance anti-gastric cancer and anti-H. pylori
activity [192]. On the other hand, as an antioxidant, Piperine, a nitrogenous substance
abundant in black pepper, plays a variety of roles in the metabolism of lipids and drugs, the
bioavailability of drugs, antimutagenic effects, and tumor inhibition in the gastrointestinal
system [193,194]. In GC cells, Piperine treatment inhibits the adhesion of H. pylori by
suppressing the expression of the flagellar hook gene flgE and the integral membrane
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component of the export apparatus gene flhA [195]. It was found that the antioxidant-rich
phytochemicals mentioned above and their compounds reduce the effects of oxidative
stress induced by H. pylori on gastric cancer cell proliferation, angiogenesis, metastasis,
and invasion.

5.5. Nanosystems in H. pylori-Induced Gastric Cancer

Currently, biomaterials are mainly used as delivery systems for drugs to eradicate
H. pylori, thus increasing the efficiency of drug delivery. In addition to encapsulating
antibacterial agents, biomaterials (including lipid nanoparticles, chitosan nanoparticles,
and inorganic nanoparticles) have been used directly in H. pylori treatment due to their
inherent antibacterial properties. Biomaterials have been demonstrated to be effective in
treating H. pylori infections in these recent studies.

As a result of their remarkable therapeutic potential, selenium nanoparticles (SeNPs)
have earned a high reputation. Biogenic selenium nanoparticles (PG-SeNPs) produced
using pomegranate peels (PP) aqueous extract significantly reduced gastric cancer cell
viability in a dose-dependent manner [196]. An inorganic nanoparticle is a small particle
with a high surface area and many surface-active centers. This characteristic gives them a
strong catalytic ability and means that they can be employed in a variety of applications.
They are found in inorganic salts (such as silver, gold, and zinc) or oxides with nanoscale
sizes (1–100 nm). Metal ion release and ROS production are the main mechanisms by which
inorganic nanoparticles eliminate H. pylori as an effective remedy [197–200].

6. Future Directions for ROS and H. pylori-Related Gastric Cancer Research

The low malignancy stage of GC is relatively asymptomatic, which means that many
cases are only diagnosed at an advanced stage. There are still too many unsatisfactory
outcomes, and recurrence rates are still high, despite substantial advances in diagnosis
and therapeutic strategies and significant improvements in patient survival. Because of its
complex pathological microenvironment in vivo, clinical therapies to eradicate H. pylori
have been difficult to develop. Also, because of its virulence factors, H. pylori infection
causes prolonged inflammation in the gastrointestinal mucosa. This response triggers
chronic oxidative stress, which is responsible for destroying the bacteria through the
immune system.

This review has outlined the molecular mechanisms of oxidative stress induced by
H. pylori-induced GC and how ROS are regulated. In addition, it has identified critical
factors that impact signaling pathways. The review has also suggested that targeted therapy
against oxidative stress combined with antioxidant supplementation might be a promis-
ing way of delaying or even preventing future gastric mucosal diseases resulting from
H. pylori-induced GC. Further research is necessary to understand better and characterize
ROS-mediated H. pylori infection and the mechanisms by which they are linked to GC.
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