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Abstract: The liver is an organ that is particularly exposed to reactive oxygen species (ROS), which
not only arise during metabolic functions but also during the biotransformation of xenobiotics.
The disruption of redox balance causes oxidative stress, which affects liver function, modulates
inflammatory pathways and contributes to disease. Thus, oxidative stress is implicated in acute liver
injury and in the pathogenesis of prevalent infectious or metabolic chronic liver diseases such as
viral hepatitis B or C, alcoholic fatty liver disease, non-alcoholic fatty liver disease (NAFLD) and
non-alcoholic steatohepatitis (NASH). Moreover, oxidative stress plays a crucial role in liver disease
progression to liver fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Herein, we provide an
overview on the effects of oxidative stress on liver pathophysiology and the mechanisms by which
oxidative stress promotes liver disease.
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1. Major Types of Liver Cells and Their Role in Liver Functions

The liver is a large organ constituting about 2% of body weight in adult humans [1].
It is anatomically divided into a larger right and a smaller left lobe, each made up of
thousands of lobules. The liver lobules contain parenchymal and non-parenchymal cells
that interact to form a functional hepatic unit (Figure 1) [2]. Parenchymal cells include
hepatocytes, the predominant liver cell population, and cholangiocytes. Non-parenchymal
cells include sinusoidal endothelial cells, macrophages, stellate cells and natural killer
cells [3,4].

1.1. Hepatocytes

The liver parenchyma is mostly composed of hepatocytes, which make up to 80% of
total liver cells [5]. They perform vital functions such as the clearance of toxic metabolites
and xenobiotics, as well as the secretion of proteins and lipids to maintain blood home-
ostasis. Hepatocytes also produce hormones [6] and bile [7], and mediate innate immune
responses [8]. Nutrient-rich blood from the portal vein and oxygenated blood from the
hepatic artery are directed to hepatocytes via highly specialized capillaries known as hep-
atic sinusoids [9]. In liver lobules, hepatocytes are arranged into plates around the central
vein, which are separated by liver sinusoids. To enhance absorption from the plasma,
hepatocytes extend a number of microvilli into the space of Disse, a thin peri-sinusoidal
region between the hepatocytes and sinusoidal endothelium [10].
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1.2. Cholangiocytes

Cholangiocytes are specialized epithelial cells lining the extra and intrahepatic bile
ducts, which make up 3–5% of liver cells [11]. They are involved in the synthesis (together
with hepatocytes), secretion and modification of bile, which is essential for the digestion
and absorption of fats. Cholangiocytes also regulate bile flow in response to hormonal
and neural signals and exhibit immune functions. They represent a heterogeneous cell
population of biochemically and morphologically distinct large and small cholangiocytes.

1.3. Liver Sinusoidal Endothelial Cells (LSECs)

LSECs are the most abundant type of liver non-parenchymal cells, constituting about
15–20% of the total liver cell content [12]. They are very specialized endothelial cells that
discontinuously line the wall of hepatic sinusoids and make a unique permeable barrier
between blood within the sinusoids and the underlying hepatocytes and hepatic stellate
cells. LSECs have distinctive morphological features, including the presence of numerous
small open pores called fenestrae, and the absence of a classical basement membrane and
diaphragm, which help their permeability. LSEC fenestration provides access of hepa-
tocytes to certain substances from the circulating blood by connecting the lumen of the
sinusoids with the space of Disse. In addition, LSECs have important physiological and
immunological functions such as the regulation of hepatic vascular tone by synthesizing
nitric oxide (NO) and endothelin-1 (ET-1), the maintenance of hepatic stellate cells and
Kupffer cells in a quiescence state, filtration, endocytosis, antigen presentation and leuko-
cyte recruitment. LSECs are the first liver cells to be affected by liver injury and contribute
to the initiation and progression of liver disease. Thus, following liver injury, LSECs un-
dergo morphological changes culminating in capillarization (defenestration), which causes
sinusoidal endothelial dysfunction [13,14].

1.4. Hepatic Stellate Cells (HSCs)

HSCs, also known as Ito cells, are non-parenchymal liver pericytes located in the space
of Disse [15,16]. They store 50–95% of the body’s vitamin A and can communicate with all
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cell types within the liver, either physically or through cytokines and chemokines. HSCs
are considered liver-specific mesenchymal stem cells (MSCs), as they possess properties
akin to stem/progenitor cells. In the healthy liver, quiescent HSCs play a vital role in
vitamin A homeostasis. They also contribute to the regulation of extracellular matrix (ECM)
turnover, immunoregulation, expression of growth factors required for liver development
and regulation of hepatic blood flow with their contractile ability. Moreover, HSCs are
critical for liver regeneration and repair [17]. In response to liver injury, quiescent vitamin
A-rich HSCs undergo activation or trans-differentiation into proliferative and contractile
myofibroblast-like cells, which is a key event in liver fibrosis [18]. Activated HSCs lose
their vitamin A content and express α-smooth muscle actin (α-SMA; a key HSC activation
marker), while they synthesize and release specific ECM components, such as collagens,
proteoglycans and glycoproteins [18].

1.5. Liver Macrophages

Liver resident macrophages, also known as Kupffer cells (KCs), are located in the
lumen of sinusoids adherent to LSECs [19]. They constitute the largest population of
mononuclear phagocytes in the body and are considered a filter for gut-derived pathogens
within the portal circulation. In physiological states, KCs contribute to immune surveillance
by eliminating circulating pathogens and hazardous materials via phagocytosis. In addi-
tion, KCs play a key role in systemic iron homeostasis by clearing senescent red blood cells
via erythrophagocytosis, which is coupled with the recycling of iron to the bloodstream
for de novo erythropoiesis [20]. KCs are also crucial for cholesterol and lipid metabolism.
Liver macrophages were earlier considered to consist of a single population of KCs. How-
ever, the use of advanced single-cell and spatial transcriptomics technologies uncovered
an unexpected heterogeneity of liver macrophage populations [21]. Under pathological
conditions, KCs and other liver residents, as well as recruited macrophages, are activated
through various inducers and can acquire distinct phenotypes that affect liver disease
outcomes [22].

1.6. Liver Natural Killer (NK) Cells

Liver resident NK cells, also known as Pit cells, are primarily found in the sinusoidal
spaces. They are strategically positioned to monitor and respond to various substances,
including pathogens and tumor cells, that enter the liver through the bloodstream. Pit cells
exhibit morphological features of large granular lymphocytes and differ from circulating NK
cells in several aspects. For instance, they are physically connected with their pseudopodia
to the microvilli of hepatocytes in the space of Disse. Pit cells are a major part of the
hepatic innate immune system, participate in host defense mechanisms against tumors and
microbes, and are critical for maintaining immune balance [23].

2. Oxidative Stress in the Liver

Reactive oxygen species (ROS) such as superoxide radical (O2•−) and hydrogen
peroxide (H2O2) emerge from the incomplete reduction of molecular oxygen. They are
physiologically produced in mitochondria during aerobic respiration and are also generated
in cells via enzymatic reactions. H2O2 can oxidize ferrous (Fe2+) to ferric (Fe3+) iron
according to Fenton chemistry, which yields the short-lived but highly toxic hydroxyl
radical (OH•) [24]. Ferric iron undergoes redox cycling and is subsequently reduced to
ferrous by O2•−. Thus, in the presence of O2•− and H2O2, iron acts as a catalyst for the
generation of OH•, which may give rise to other reactive free radicals and propagate
lipid peroxidation. On the other hand, O2•− can react with nitrogen monoxide radical
(NO•) to yield peroxynitrite (NOO−), a potent oxidant. Reactive free radicals and non-
radical oxidants can attack and damage all cellular macromolecules, including proteins,
nucleic acids and lipids. Protein oxidation may have negative functional consequences,
while oxidation of nucleic acids may lead to mutagenesis. Peroxidation of membrane
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lipids, especially polyunsaturated fatty acids (PUFAs), may promote ferroptosis, an iron-
dependent form of cell death [25].

ROS such as O2•− and OH• are unstable free radicals. They owe their reactivity to
their capacity to extract an electron from, or donate their unpaired electron to neighboring
molecules, and thereby acquire a thermodynamically stable state. By contrast, H2O2 or
NOO− are stable non-radical oxidants. While ROS were initially considered as biohazards,
it is now clear that at low levels they also act as second messengers and play a major
role in physiological signaling pathways, gene expression regulation, host defense against
microorganisms, immune responses and vasodilation. However, an uncontrolled rise of
ROS levels is toxic and promotes “oxidative stress”, which has been defined as a disruption
of the oxidant/antioxidant balance in favor of the former that can lead to tissue damage [26].
This pathologic state is lately also referred to as “oxidative distress”, to distinguish it from
homeostatic “oxidative eustress” [27]. The same concept applies to NO• and other reactive
nitrogen species (RNS): at low levels, they act as important second messengers, while in
excess they disrupt the redox balance causing “nitrosative stress” [28].

The liver is an important site of ROS production by virtue of its metabolic and detox-
ification activities. ROS are generated via the mitochondrial respiratory chain and from
other sources including peroxisomes, xanthine oxidases, cytochrome P450 oxidases and
NADPH oxidases (NOXs) (Figure 2) [29]. Oxidases of the cytochrome P450 (CYP) fam-
ily, such as ethanol-induced cytochrome P450 2E1 (CYP2E1), are involved in xenobiotics
metabolism and constitute major sources of ROS in hepatocytes. Oxidases of the NOX fam-
ily utilize NADPH and molecular oxygen to produce O2•−, which is rapidly dismutated to
H2O2. The NOX2 isoform was originally characterized in phagocytes but is also expressed
in KCs. Hepatocytes, LSECs and HSCs express various isoforms including NOX2 and
the non-phagocytic NOX1, NOX4 and NOX5, as well as the dual oxidases DUOX1 and
DUOX2 [30,31]. NOX4 has a unique mode of action compared to other NADPH oxidases
and is known to predominantly generate H2O2 instead of O2•− [32].
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3. Antioxidant Defense Mechanisms in the Liver

Liver cells possess robust antioxidant defense mechanisms consisting of enzymatic
and non-enzymatic components, which enable them to keep ROS at physiological levels.
Antioxidant enzymes include superoxide dismutases (SOD), cytosolic glutathione peroxi-
dases (GPX), glutathione reductases (GRX), peroxiredoxins (PRX), thioredoxins (TRX) and
catalase (CAT). Glutathione (GSH), bilirubin, ubiquinone (coenzyme Q10), uric acid and
vitamins E, A and C are established non-enzymatic antioxidants [33]. Dietary antioxidants,
such as curcumin, resveratrol, quercetin and other flavonoids are also thought to contribute
to protection against oxidative stress [34].

In general, enzymatic antioxidants metabolize ROS, while non-enzymatic antioxi-
dants prevent or attenuate oxidative damages by neutralizing free radicals and non-radical
oxidants. Inhibition of the activity or expression of enzymes involved in free radical pro-
duction, such as NOXs and xanthine oxidases, or increasing the activity or expression
of intracellular antioxidant enzymes is also part of the antioxidant defense armamentar-
ium [35].

The NRF2/ARE signaling pathway (Figure 2) is considered the main cellular antioxi-
dant defense mechanism [36] and has critical functions in liver pathophysiology [37]. NRF2
(nuclear factor erythroid 2-related factor 2) is a member of the Cap’n’Collar (CNC) basic
leucine zipper (bZIP) family of transcription factors. Its primary function is to regulate
the expression of a wide array of antioxidant and detoxification genes. Under normal
physiological conditions, NRF2 is sequestered in the cytoplasm by its inhibitor, Kelch-like
ECH-associated protein 1 (Keap1). Keap1 acts as a sensor for oxidative stress and facilitates
the degradation of NRF2 via the proteasomal pathway. However, when cells encounter
oxidants or electrophilic insults, specific cysteine residues on Keap1 are modified, leading
to conformational changes in the Keap1–NRF2 complex. This results in the liberation
and nuclear translocation of NRF2. Once in the nucleus, NRF2 forms a heterodimer with
small musculoaponeurotic fibrosarcoma (MAF) proteins and binds to antioxidant response
elements (AREs) present in the promoter regions of target genes [36].

The binding of NRF2 to AREs initiates the transcription of a battery of cytoprotective
genes, including antioxidant enzymes (e.g., SOD, CAT and GPX), phase II detoxifying
enzymes (e.g., glutathione S-transferases, NAD(P)H quinone oxidoreductase 1) and other
stress response proteins. These gene products contribute to the cellular defense against
oxidative stress by enhancing the intracellular antioxidant capacity and by promoting
detoxification processes. The NRF2/ARE pathway is operational in parenchymal, as well
as non-parenchymal, cells of the liver [37].

4. The Impact of Oxidative Stress on Liver Cells

The liver is continuously exposed to different toxic and reactive metabolites including
ROS and RNS. A shift in the redox balance toward oxidative stress can be considered an
initial step in the pathogenesis of liver diseases [38]. This process is affected by comorbidi-
ties such as diabetes/insulin resistance and by various exogenous factors such as alcohol
abuse, viral infection, drug overdose, high-caloric diet, and exposure to environmental
toxins, UV light or heavy metals. A surge in ROS and RNS levels is important in the onset
of inflammatory reactions, fibrosis, necrosis, apoptosis or malignant transformation [28,38].

Hepatocytes are important sites of ROS production, especially in mitochondria, and
are also sensitive to ROS-mediated injury. Each hepatocyte contains 1000 to 2000 mitochon-
dria occupying about 20% of the cell volume [39]. ROS-mediated damage of lipids and
particularly, PUFAs, can alter cell membrane fluidity and permeability. Mitochondrial lipid
peroxidation negatively affects the electron transport chain, aggravating ROS production
and oxidative stress [38]. Mitochondrial dysfunction in hepatocytes has been linked to
the development and progression of chronic liver disorders [38,40]. For instance, patients
with non-alcoholic steatohepatitis (NASH) exhibit hepatic oxidative stress due to impaired
mitochondrial respiratory capacity and proton leakage [41]. In a mouse model of fatty
liver disease, pharmacological improvement of mitochondrial redox homeostasis with the
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flavonoid dihydromyricetin was shown to be hepatoprotective [42]. Hjv−/− mice, a model
of hereditary iron overload (hemochromatosis), exhibit mitochondrial hyperactivity in
hepatocytes, which predisposes them to HCC [43]. On the other hand, pharmacological
chelation of mitochondrial iron has been shown to promote mitophagy, which protects mice
against HCC [44]. Experiments with primary rat hepatocytes and rat H4IIEC3 hepatoma
cells showed that palmitate treatment promotes a flux of calcium from ER to mitochondria,
which causes mitochondrial oxidative stress and lipotoxicity. These data highlight the
physiological importance of finetuning mitochondrial activities and redox balance. Ac-
cumulation of ROS can induce hepatocellular dysfunction or death that will eventually
result in the release of damage-associated molecular patterns (DAMPs). Under these cir-
cumstances, non-parenchymal cells, such as KCs, HSCs and newly recruited immune cells
are activated and produce pro-fibrogenic and pro-inflammatory mediators [45].

Oxidative stress promotes an influx of calcium into cells and redistribution of cellular
calcium from the endoplasmic reticulum (ER) to the cytosol, mitochondria and nuclei,
which in turn may trigger apoptotic and necrotic death [46]. These responses increase
mitochondrial permeability transition and facilitate the release of pro-apoptotic factors
such as cytochrome c, and the activation of calcium-dependent endonucleases, proteases
and lipases, contributing to the death of hepatocytes and other liver cell types [47]. In
addition, oxidative stress can affect the secretory functions of hepatocytes by disrupting
the formation of bile flow, leading to cholestasis [48].

While ROS and lipid peroxidation products impair hepatocellular function and via-
bility, they promote the differentiation and activation of HSCs to myofibroblasts, leading
to the secretion and accumulation of collagen and other ECM components within the
liver [49]. Therefore, chronic activation of HSCs in response to oxidative stress favors the
development of liver fibrosis, which may progress to cirrhosis and HCC [50,51].

KCs are also activated by certain stimulants leading to ROS production, expression of
a variety of cytokines and pro-inflammatory mediators, and recruitment of more immune
cells [52]. Experimental studies with animal models have shown that ROS originating from
KCs play a prominent role in the development of liver injury in response to hepatotox-
ins [53–55]. KCs secrete transforming growth factor β (TGF-β) and platelet-derived growth
factor (PDGF), which in turn promote HSC activation, contributing to liver fibrosis [52].
In addition, KCs can directly kill hepatocytes through the activation of Fas-dependent
apoptosis [56].

LSECs are sensitive to oxidative stress mainly due to their low H2O2 clearance ca-
pacity [57,58], but also due to their exposure to gut-derived toxins carried in the portal
vein [59]. Therefore, ROS can selectively damage LSECs and impair their physiological
activities. For instance, the oxidation of spectrin can disrupt its interaction with actin,
which is essential to maintain fenestrae structure and function, and thereby cause fenes-
trae closure [60]. Defenestration impairs the bidirectional exchange of molecules between
hepatocytes and hepatic blood sinuses [61]. Vascular endothelial dysfunction driven by
oxidative stress and inflammation plays an important role in liver injury [62–64]. Thus,
it may lead to the decreased generation of vasodilator factors such as NO and promote
vasoconstriction, which causes increased resistance in sinusoidal microcirculation and
portal hypertension [65].

Autophagy is the main endogenous recycling process that preserves cell homeostasis
under physiological conditions and offers a survival mechanism under stress [66]. Ex-
perimental studies with animal models suggest that autophagy protects LSECs against
oxidative stress responses to acute liver injury, while impairment of this pathway leads to
endothelial dysfunction and contributes to HSC activation and liver fibrosis [62]. Along
these lines, NASH patients exhibit smaller autophagic vacuoles in LSECs [67], indicating
that autophagy is dysregulated in liver diseases.

Cholangiocytes are involved in cholangiopathies, which can be mediated by oxidative
stress factors [48]. Nevertheless, the effects of oxidative stress on cholangiocyte patho-
physiology are not well understood. As an example, increased oxidative stress can induce
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senescence in cholangiocytes through the stimulation of ER stress [68]. On the other hand,
melatonin appears to protect cholangiocytes against oxidative stress-induced cell damage
and inflammation [69].

NK cells are generally susceptible to ROS, and oxidative stress can alter their activ-
ity. This can contribute to immune escape within the tumor microenvironment [70,71].
However, the role of oxidative stress on liver resident NK cells (Pit cells) in the context of
liver disease is not clear. The effects of oxidative stress on the various liver cell types are
schematically illustrated in Figure 3.
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5. Role of NOX Enzymes in Oxidative Damage to Liver Cells

NOX enzymes are major sources of ROS production in the liver [72]. Moreover, it
appears that NOX-derived ROS are important contributors to the onset and progression of
liver injury and chronic liver disease [30]. Thus, the activation of NOX1, NOX2 and NOX4
isoforms in liver cells is associated with HSCs activation, apoptosis/necrosis of hepatocytes
and the amplification of inflammatory responses through KCs activation [73–75].

NOX-dependent ROS production is tightly linked to the TGF-β signaling pathway [76],
which drives various liver pathologies, especially fibrosis and cancer [77]. TGF-β causes
redox imbalance by directly increasing the production of ROS or by downregulating the
expression of antioxidant enzymes. Conversely, ROS can induce TGF-β activation and
stimulate TGF-β-related functions [78,79]. The degree of TGF-β activation reflects the
severity of liver injury and fibrosis. Hepatocellular NOX4 is a downstream target of TGF-β1
and plays a crucial role in oxidative stress-induced apoptosis [80]. Experiments in mouse
models showed that during liver injury, NOX4 [81–83], as well as NOX1 [84] and NOX2 [85],
is activated in HSCs and promotes fibrogenesis. Under these conditions, the activation
of NOX enzymes in HSCs is mediated by profibrogenic agonists such as angiotensin II
(Ang II) and PDGF, or by the phagocytosis of apoptotic bodies or other cellular debris from
dead hepatocytes.

KCs express NOX2, which generates ROS and thereby enhances production of pro-
inflammatory cytokines (such as TNFα, IL-6 and IL-1β). The pro-inflammatory cytokines
induce infiltration of neutrophils and, thus, indirectly trigger the activation of HSCs [86].
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6. Oxidative Stress in Drug-Induced Liver Injury

Drug-induced liver injury can lead to a rapid decline in liver function and acute liver
failure [87,88]. Hepatotoxic drugs may cause the accumulation of ROS/RNS and induce
oxidative/nitrosative stress in the liver by different mechanisms, including the increase in
intracellular oxidants, lipid peroxidation, depletion of antioxidants and mitochondrial dys-
function. Therefore, the dysregulation of redox balance is a hallmark of drug-induced liver
injury. A typical example is provided by acetaminophen (N-acetyl-p-aminophenol) toxicity.
This drug (widely known as paracetamol) is metabolized by cytochrome P450 enzymes
(mainly CYP2E1 and CYP1A2) to a reactive intermediate, N-acetyl-p-benzoquinone imine,
which is detoxified following conjugation with GSH. However, excessive acetaminophen
intake eventually leads to the depletion of the GSH pool of the liver, causing the death
of hepatocytes and innate immune activation [89]. Pharmacological administration of
N-acetylcysteine (NAC), a GSH precursor, can prevent and reverse acetaminophen liver
injury. In fact, NAC is clinically used as an antidote.

7. Oxidative Stress in Chronic Viral Hepatitis

Hepatitis is an inflammatory condition of the liver caused by various exogenous
and endogenous factors, including chronic alcohol intake, drugs, toxins, autoimmune
disorders or viral infection. The severity of hepatitis can vary from mild and self-resolving
to severe. Chronic hepatitis may lead to complications including liver fibrosis, cirrhosis,
cancer and/or liver failure [90]. Viral hepatitis is primarily caused by hepatotropic hepatitis
A, B, C, D or E viruses (abbreviated as HAV, HBV, HCV, HDV and HEV, respectively) [91].
In addition, several other viruses are capable of inducing liver inflammation, such as
Epstein–Barr virus, Herpes simplex virus and Cytomegalovirus [92]. Nevertheless, the
major cause of chronic viral hepatitis is infection by HBV or HCV, and, in fewer cases, by
HDV or HEV.

Chronic hepatitis B or C predisposes to the development of liver fibrosis and HCC [93–95].
It is estimated that more than 50% of HCC cases worldwide are associated with HBV and
25% with HCV infection [94]. There is evidence that these viruses contribute to liver
disease by inducing oxidative stress and activating ROS-sensitive signaling pathways and
inflammatory responses [93,96]. Thus, the HBx protein of HBV induces oxidative stress
due to mitochondrial dysfunction [97]; it is highly expressed in HCC tissues and promotes
hepatocarcinogenesis, even without liver fibrosis [95,98,99]. The HCV core protein is
known to inhibit the mitochondrial electron transport chain and decrease intracellular
and mitochondrial GSH levels [100,101], thereby causing oxidative stress. In line with
these data, transgenic expression of this protein in mice causes HCC via oxidative stress
and in the absence of inflammation [102,103]. Transgenic expression of the complete HCV
transgene likewise causes HCC in mice by oxidative stress due to iron overload [104], again,
independent of inflammation [105].

8. Oxidative Stress in Fatty Liver Disease

Increased deposition of lipids (steatosis) in the liver is the hallmark of non-alcoholic
fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) [106]. Abnormal
accumulation of fat droplets, mainly in the form of triglycerides, occurs in 5% or more of the
hepatocytes and exhibits a microvesicular or macrovesicular histological pattern. Hepatic
steatosis originates from abnormalities in lipid metabolism pathways including enhanced
free fatty acid (FFA) uptake and de novo lipogenesis, combined with decreased triglyceride
hydrolysis, fatty acid beta oxidation and lipid clearance [107]. Fatty liver disease was
originally described in 1980 as a single entity [108]. However, NAFLD and AFLD were
later considered as diseases with common pathophysiological and molecular features but
distinct etiologies; they constitute the most common causes of chronic liver disorders
worldwide [106,109,110]. In a subset of patients, liver steatosis progresses to steatohepatitis,
which may further progress to fibrosis, cirrhosis and HCC. In steatohepatitis, including
non-alcoholic steatohepatitis (NASH), excessive fat deposition in the liver is associated with
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necroinflammation and morphological alterations (ballooning) of hepatocytes. NAFLD
is tightly linked to metabolic abnormalities, such as abdominal obesity, type 2 diabetes,
dyslipidemia and hypertension. In fact, NAFLD is considered the hepatic manifestation
of metabolic syndrome. To emphasize this, a group of international experts proposed in
2020 to rename NAFLD as “metabolic dysfunction-associated fatty liver disease” (MAFLD),
without exclusion of alcohol consumption or viral hepatitis [111,112]. The term MAFLD is
not based on a negative definition (non-alcoholic) and takes into account that the course
and progression of the disease may be affected by alcohol consumption or viral infection.
More recently, leaders from multinational liver societies proposed the non-discriminatory
nomenclature “metabolic dysfunction-associated steatotic liver disease” (MASLD) and the
use of “metabolic steatohepatitis” (MASH) instead of NASH [113–115]. Nevertheless, the
terms NAFLD and NASH are still in use.

At the molecular level, fat accumulation in the liver is linked to ER stress, alterations
of lipid metabolism and disruption of the autophagy pathway, leading to lipotoxicity [107].
Recent data have suggested that nicotinamide N-methyltransferase (NNMT) is an impor-
tant contributor to liver steatosis following chronic alcohol consumption. This enzyme is
expressed in hepatocytes and catalyzes S-adenosylmethionine (SAM)-dependent methy-
lation of nicotinamide to 1-methylnicotinamide, which prevents nicotinamide adenine
dinucleotide (NAD+) regeneration [116]. Thus, NNMT is a crucial regulator of NAD+

homeostasis. Chronic exposure of mice to alcohol was shown to increase hepatic NNMT
expression via the ER stress-induced PERK-ATF4 pathway [117]. This response increased
lipogenesis and promoted liver steatosis but alleviated liver injury [117,118]. NNMT up-
regulation has been shown to inhibit oxidative stress-induced autophagy [119,120]. On the
other hand, endothelial NNMT appears to protect against oxidative stress and enhance
endothelial cell viability [121].

It should be noted that progression of simple liver steatosis to steatohepatitis re-
quires the action of multiple insults, one of them being oxidative stress [122,123]. In fact,
mitochondrial dysfunction, lipid peroxidation and oxidative DNA damage have been
demonstrated in the liver from NASH patients [124–127]. Interestingly, there is evidence
from clinical trials and pilot studies that vitamin E, a lipophilic antioxidant, reduces levels
of serum transaminases (ALT and AST) and improves liver histology in NAFLD/NASH
patients [128–130]. A meta-analysis confirmed that vitamin E treatment significantly re-
duces ALT, AST and body mass index (BMI) in NAFLD patients, but it did not decrease the
fibrosis score and total cholesterol [131]. Similar results were obtained in a meta-analysis of
studies with pediatric NAFLD patients [132].

The role of oxidative stress in NASH pathogenesis is also highlighted in data obtained
with animal models [133–135]. Interestingly, the amelioration of mitochondrial dysfunction
was shown to delay NASH progression by altering the intestinal microbiome in mice [136].
While oxidative stress promotes ATP depletion in hepatocytes and may lead to cell death,
the development of NASH is also linked to the activation of non-parenchymal liver cells,
such as macrophages and HSCs. KCs and other non-resident liver macrophages undergo
reprogramming to a proinflammatory phenotype with NASH-associated molecular signa-
tures in humans and mice [137,138].

NAFLD is often associated with moderate hepatic iron overload, a known inducer
of oxidative stress, which may affect progression to NASH [139]. Nevertheless, Hjv−/−

mice with severe iron overload in hepatocytes develop liver steatosis in response to a high
fat diet but this does not progress to NASH [140,141]; notably, these animals exhibit lipid
peroxidation and mitochondrial hyperactivity in the liver [43,142]. On the other hand,
genetically obese Leprob/ob mice accumulate excess iron in KCs in response to a high
iron diet and develop histological signs of NASH [143]. In line with this, iron loading
of KCs promotes their polarization to a proinflammatory M1 phenotype that drives the
progression of NAFLD to NASH [144]. A recent study showed that in NAFLD/NASH
livers, hepatocytes release iron to neighboring HSCs via extracellular vesicles, and the
redistribution of iron contributes to lipogenesis, insulin resistance and fibrosis [145]. These
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findings highlight the different effects of iron-induced oxidative stress in parenchymal
vs. non-parenchymal cells of the liver in the progression of NAFLD to NASH, at least in
mouse models. They may also be relevant to humans, as NAFLD patients exhibit different
histological patterns of iron overload, which are linked to disease pathophysiology [146].

9. Oxidative Stress in Genetic Liver Disorders

The most important genetic disorders leading to liver diseases include hereditary
hemochromatosis, Wilson’s disease and alpha-1 antitrypsin deficiency; they are all trans-
mitted in an autosomal recessive pattern.

Hereditary hemochromatosis is a genetically heterogenous endocrine disorder charac-
terized by excessive dietary iron absorption, resulting in tissue iron overload [147]. Excess
iron primarily accumulates in hepatocytes and to some extent also in parenchymal cells of
the pancreas and heart. The cause of hereditary hemochromatosis is mutations in genes
that regulate expression of hepcidin, the iron regulatory hormone. The predominant form
is linked to mutations in the HFE gene and constitutes the most frequent genetic disor-
der in Caucasians. Other forms are caused by mutations in transferrin receptor 2 (TFR2),
hemojuvelin (HJV) or the hepcidin (HAMP) genes. Clinical complications of hemochro-
matosis include liver cirrhosis/HCC, cardiomyopathy, diabetes, endocrinopathy, arthritis
and osteoporosis. Earlier studies have shown that hepatic iron overload promotes oxidative
stress in humans [148,149] and mouse models [142,150], consistent with the role of iron in
catalyzing ROS production and propagation via Fenton chemistry [24]. This is thought to
drive liver fibrosis and hepatocarcinogenesis. Nevertheless, it is possible that other factors,
such as inflammation, potentiate iron-induced liver injury and hepatotoxicity [151].

Wilson’s disease (hepatolenticular degeneration) is an autosomal recessive genetic
defect of copper (Cu) metabolism that originates from mutations in the ATP7B gene [152].
The gene product, ATP7B, is a member of the cation-transporting P-type ATPase family.
It is required for the biliary secretion of copper from hepatocytes as well as the transfer
of copper from hepatocytes to plasma for its incorporation into apo-ceruloplasmin, a
multicopper ferroxidase. Functional inactivation of ATP7B results in excessive deposition
of copper in the liver and other tissues, which causes oxidative stress due to copper’s
redox reactivity, and accounts for Wilson’s disease-associated hepatotoxicity [149,153].
Unshielded copper promotes oxidative stress via Fenton chemistry, pretty much like iron.
Thus, copper overload in the liver of Wilson’s disease patients is toxic and, if untreated or
late diagnosed, can lead to steatosis, inflammation, fibrosis, cirrhosis, and in some cases
progression to fulminant hepatic failure or HCC [154].

Alpha-1 antitrypsin deficiency is a hereditary proteinopathy that can increase the risk
of lung and/or liver disorders in children and adults [155]. Alpha-1 antitrypsin (A1AT),
a member of the serine protease inhibitors (serpin) superfamily, is abundantly produced
by hepatocytes and secreted into the bloodstream [156]. It constitutes the predominant
circulating serpin in human plasma and serves to protect tissues against enzymatic destruc-
tion by proinflammatory proteases such as neutrophil elastase. Different mutations have
been identified in the A1AT coding gene (SERPINA1), among which the Z variant is mainly
associated with liver diseases [157]. Z-A1AT protein with abnormal folding aggregates in
the ER of hepatocytes, instead of being efficiently secreted. This promotes ER stress, mito-
chondrial damage, necroinflammation and oxidative stress, which increase susceptibility
to liver fibrosis, cirrhosis and HCC [158]. The role of oxidative stress in the development of
liver disease has also been described in a murine model of A1AT deficiency [159].

10. Oxidative Stress in Liver Fibrosis

Hepatic fibrogenesis is defined as a natural wound-healing response to hepatocellular
damage, characterized by the increased production and accumulation of ECM to encap-
sulate and isolate the injured regions of liver tissue for repair [160]. The dysregulation of
the wound-healing process due to lack of inhibition or insufficient elimination of harmful
agents can lead to sustained and uncontrolled tissue repair responses. These are associated
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with pathological changes in the ECM, formation of fibrous scar and ultimately liver fibrosis,
a complex but potentially reversible process [161]. Measurement of the amount of fibrosis
in liver sections is called staging. There are five stages: F0, no scarring (physiological tissue);
F1, minimal scarring; F2, scarring extending outside the liver area (significant fibrosis); F3,
fibrosis spreading and forming bridges with other fibrotic liver areas (severe fibrosis); and
F4, cirrhosis or advanced scarring.

Liver fibrosis occurs in response to chronic liver injury and inflammation triggered
by various factors such as alcohol abuse, NAFLD, hepatitis B or C, autoimmune hepatitis,
infection with Schistosoma parasite, toxin- or drug-induced hepatotoxicity, genetic liver
disorders or cholestatic disease. Unrecognized or untreated liver fibrosis can have severe
consequences and eventually progress to end-stage liver cirrhosis and HCC. The initiation
and progression of liver fibrosis occur as a result of interaction between different types of
cells, including parenchymal and non-parenchymal liver-resident cells, as well as recruited
immune cells to the liver [160].

Activated HSCs are the major producers of ECM proteins in the injured liver (Figure 4) [18].
HSCs activation occurs in response to a series of events including the release of ROS and
inflammatory mediators from damaged hepatocytes, activation of inflammatory cells such
as KCs to secrete profibrotic cytokines, lymphocyte infiltration into the injured site, and
proliferation of cholangiocytes (ductular reaction). Under these conditions, LSECs undergo
morphological modifications such as capillarization, which inhibits perfusion between
blood and liver cells [13].
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derived myofibroblasts, fibrocytes originating from bone marrow hematopoietic cells, and
myofibroblasts derived from liver epithelial cells through the epithelial–mesenchymal
transition (EMT) process [162]. During fibrogenesis, the loose ECM composed of mainly
non-fibrous collagen types IV and VI and laminin turns into a dense matrix enriched in
fibrogenic collagens, especially type I, as well as non-collagenous glycoproteins such as
fibronectin and proteoglycans [163]. Therefore, significant changes in the amount and
composition of ECM components located in the space of Disse disrupt the physiological
architecture and function of the fibrotic liver.

At the biochemical level, liver fibrogenesis involves the TGF-β/SMAD, Wnt/β-catenin
and Hedgehog (Hh) signaling pathways [164]. TGF-β is the most effective pro-fibrogenic
cytokine that activates HSCs in a SMAD2/3-dependent manner and directly induces tran-
scription of the collagen type I α1 (COL1A1) and collagen type I α2 (COL1A2) genes [165].
In addition, TGF-β enhances HSC activation via non-SMAD pathways (MAPK, ERK, p38
and JNK). Connective tissue growth factor (CTGF), IL-6, TNFα or IL-1β can have a syner-
gistic interaction with TGF-β in liver fibrosis [166–168]. However, IL-6 and IL-17 induce
COL1A1 transcription via the STAT3 signaling pathway [169,170]. Under pathological
conditions, cytokines such as IL-33 can be released from the stressed hepatocytes to activate
HSCs and promote fibrosis [171]. Gelatinase is also released by activated KCs and causes
phenotypic changes in ECM by degrading collagen type IV [172]. Activated HSCs produce
fibronectin, TGF-β and PDGF that lead to liver fibrosis. PDGF can increase the expression
of tissue inhibitors of metalloproteinases (TIMPs) and inhibit collagenase activity, thereby
increasing ECM deposition [173].

Macrophages modulate liver fibrosis by providing an inflammatory milieu that favors
extensive production of pro-inflammatory cytokines and chemokines, which in turn activate
HSCs [160,161]. M1 macrophages may convert to the anti-inflammatory M2 subtype, critical
for the progression of liver fibrosis. Thus, M2 macrophages produce pro-fibrogenic factors
such as TGF-β, vascular endothelial growth factor (VEGF) and galectin-3, which promote
myofibroblast proliferation and activation leading to ECM deposition. Sustained fibrosis
can cause the production of growth factors, proteolytic enzymes, pro-fibrogenic cytokines
and collagen fragments [160,161].

Factors that trigger the development of chronic liver disorders such as ethanol abuse,
accumulation of free fatty acids, or iron overload can enhance the production of ROS. There
is experimental and clinical evidence that oxidative stress is involved in the initiation and
progression of liver fibrosis, while crosstalk between pathways of oxidative stress and liver
fibrogenesis is well established [174,175]. Thus, ROS may trigger the death of hepatocytes,
intensify inflammatory responses, stimulate the release of pro-inflammatory cytokines from
KCs and immune cells, and directly activate HSCs to produce pro-fibrogenic molecules. A
major source of ROS in the context of liver fibrosis are the NOX enzymes, and especially
the NOX1, NOX2 and NOX4 isoforms. Their importance was determined by experiments
with NOX inhibitors such as diphenylene iodonium (DPI), as well as with mouse models
bearing genetic disruption of the p47phox regulatory subunit of NOX enzymes [81–85].
Oxidative stress is particularly relevant in models of experimental liver fibrosis in response
to bile duct ligation (BDL) or chronic exposure of animals to carbon tetrachloride (CCl4) or
thioacetamide (TAA) [176].

Targeting oxidative stress has a therapeutic potential in liver disease, and novel drugs
against mitochondrial dysfunction, ER stress or NOX activity have shown promising results
in preclinical settings of NAFLD, NASH and liver fibrosis [38,175,177]. In general, antioxi-
dant drugs and supplements are expected to fortify the antioxidant capacity of the liver
and antagonize pathogenic oxidative stress responses. Plant antioxidant compounds, such
as polyphenols and flavonoids, and nutritional antioxidants, such as zinc and coenzyme
Q10, can induce antioxidant enzymes (CAT, SOD and GPX) [38,178]. Other drugs can
affect the levels of non-enzymatic antioxidants. Thus, NAC increases GSH concentration
in hepatocytes; this reduces ER stress, improves mitochondrial function, and protects
against acute liver injury [179]. Nevertheless, the clinical efficacy of antioxidant drugs
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and supplements in the context of chronic liver diseases and liver fibrosis remains to be
established [38,175,177,180]. Clinical data obtained thus far suggest that vitamin E offers
the most effective antioxidant therapeutic tool that can ameliorate metabolic liver disease
in some patients, but not prevent or reverse liver fibrosis (see Section 8).

Theoretically, liver fibrosis could be treated by targeting HSCs. The rationale is
that during the recovery phase from liver injury, activated HSCs are cleared via cellular
senescence and apoptosis, or revert to an inactive state [18,161]. Thus, drugs with the
capacity to induce the clearance of activated HSCs could be used to promote regression of
liver fibrosis in chronic liver disease.

While liver fibrosis is considered reversible, at least if treated in early stages, it may
progress to cirrhosis (stage F4), representing advanced states of the disease [181]. Liver
cirrhosis is characterized by the replacement of the normal liver parenchyma with regener-
ative hepatic nodules surrounded by fibrotic scar tissue, which eventually leads to the loss
of normal liver function [182]. This can cause complications such as portal hypertension
(increased pressure in the portal vein) resulting in splenomegaly, hypersplenism and varices
(enlarged blood vessels) in the esophagus and stomach. Varices are prone to bleeding and
can be life-threatening. The development of liver cirrhosis is dynamic and encompasses an
initial asymptomatic stage referred to as compensated cirrhosis, followed by a symptomatic
phase known as decompensated cirrhosis with clinical manifestations ranging from the
development of portal hypertension complications to liver failure [183]. Liver cirrhosis,
regardless of its etiology, is recognized as the most potent risk factor for HCC; thus, 80–90%
of patients with HCC have underlying cirrhosis [184].

11. Oxidative Stress in Hepatocellular Carcinoma

Liver cancer is the sixth most frequently diagnosed type of cancer and accounts
for the third leading cause of cancer mortality worldwide [185,186]. HCC comprises
75–85% of liver cancers and arises from malignant transformation of hepatocytes. Other
histological subtypes of liver cancer include cholangiocarcinoma (CCA), which arises from
the malignant transformation of cholangiocytes, and the rare hepatic angiosarcoma and
hepatoblastoma. HCC is prevalent in both developing and developed countries and has
the highest incidence in Africa and Asia [187]. It is characterized by sex disparity with
2–3 times prevalence in males [188] and has relatively poor prognosis compared to other
solid tumors with a 5-year survival of 18% in advanced HCC [189].

ROS can cause genomic instability and mutations either via direct DNA oxidation,
or indirectly by inducing DNA damage [190]. Oncogenic activation and/or inactivation
of tumor suppressor genes are subsequent steps that initiate carcinogenesis. It is well
established that a moderate increase in cellular ROS levels is important in cellular transfor-
mation by activating the signaling cascades related to cancer cell survival, including the
MAPK/ERK1/2 pathways [191].

Oxidative stress promotes HCC via genetic, but also epigenetic alterations, such
as changes in the expression of oncogenes, tumor suppressors and proinflammatory
genes [190]. Common HCC-related mutations have been identified in genes involved
in p53, Wnt and Retinoblastoma-1 (RB1) pathways [192]. A major lipid peroxidation prod-
uct, namely, 4-hydroxy-trans-2-nonenal (HNE), forms DNA adducts and can lead to p53
mutations that are associated with HCC [193]. High ROS levels facilitate epithelial-to-
mesenchymal transition (EMT) in HCC via epigenetic hypermethylation of the E-cadherin
gene promoter, leading to its suppression [194].

Oxidative stress also plays a key role in the pathogenesis and progression of HCC
by modulating the expression of cytokines and growth factors involved in cancer cell
survival [190]. Viral infections, excessive alcohol consumption, and lipids toxicity are
important risk factors that may contribute to hepatocarcinogenesis via oxidative stress-
related mechanisms [195,196]. Chronic inflammation, which predisposes hepatocytes to
HCC [197], is often observed in liver diseases such as NASH, hepatitis B and hepatitis C.
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Experiments in mouse models have established molecular links between oxidative
stress, antioxidant defense systems and HCC. For instance, mice with targeted disruption
of superoxide dismutase 1 (SOD1) [198] or the transcription factor NRF1 [199] (an NRF2
homolog), showed increased susceptibility to hepatocarcinogenesis. Cohort studies showed
that low SOD2 expression is associated with reduced survival in HCC patients [200]. In
another study, HCC patients exhibited decreased expression of the antioxidant enzyme
glutathione-S-transferase P1 (GSTP1) in peripheral blood mononuclear cells (PBMCs)
compared to chronic hepatitis B patients, which was associated with increased markers of
oxidative stress [201].

The tight connection between oxidative stress and HCC is highlighted in the predispo-
sition of hemochromatosis patients to hepatocarcinogenesis [202–205], which is recapitu-
lated in rodent models of iron overload [43,206,207]. There is evidence that hepatic iron
overload promotes oxidative stress via the Fenton reaction and by accelerating lipid peroxi-
dation, which leads to DNA damage and mutations in the tumor suppressor p53 [149,205].

The causative role of NOX enzymes in HCC mediated by fibrosis and inflammation
is well established [208]. During hepatocarcinogenesis in mice, NOX enzymes are major
sources of ROS production in liver cells [209]. Their activity can disrupt redox signaling
pathways involved in the initiation and progression of HCC. Different NOX isoforms show
differential effects in HCC development [210,211]. Thus, NOX4 may have a protective
role against HCC by promoting TGF-β-induced senescence in tumor cells [212]. However,
NOX1 stimulates the growth of HCC cell lines via epidermal growth factor receptor (EGFR)
signaling [213]. NOX1 expression in liver macrophages can promote liver tumorigenesis by
increasing the production of inflammatory cytokines [214]. In line with the experimental
data, NOX1 overexpression correlates with poor prognosis in HCC patients, while opposite
effects have been observed with NOX4 [210]. NOX1 is also critical for the development of
experimental HCC following the treatment of rodents with diethylnitrosamine (DEN); thus,
the pharmacological inhibition of NOX1 attenuated hepatocarcinogenesis by mitigating
inflammatory, angiogenic and fibrogenic responses [209].

ER stress develops following the accumulation of unfolded or misfolded proteins in
the ER and is a recognized contributor to hepatocarcinogenesis via the unfolded protein
response (UPR) [215,216]. For instance, experiments in mice showed that ER stress causes
HCC by activating NF-κB and TNF-α inflammatory signaling pathways [217]. ER stress
and UPR are tightly linked to oxidative stress. ER stress can increase the production of
ROS, especially via NOX enzymes [218,219]. On the other hand, since the protein folding
process relies on redox homeostasis, oxidative stress can exacerbate ER stress by increasing
misfolded protein production [220].

The role of the NRF2/ARE pathway in HCC has been extensively investigated. Even
though adaptive NRF2 induction appears protective against NASH and other liver dis-
eases [37], there is evidence that sustained NRF2 activation is maladaptive and promotes
increased cancer cell proliferation, migration, metastasis and survival, as well as drug
resistance in many cancers, including HCC [221–223]. The underlying mechanisms in-
clude induction of the anti-apoptotic factor Bcl-xL, induction of matrix metalloproteinase
9 (MMP-9) and inhibition of autophagy. In line with these data, high NRF2 expression
correlates with poor prognosis in HCC patients [223]. Therefore, modulating the NRF2
pathway may have translational potential in HCC.

12. Conclusions

We discussed the effects of oxidative stress on various liver cell types and liver patho-
physiology, as well as on liver disease pathogenesis and progression. The underlying
mechanisms are complex and in many instances are tightly linked to inflammatory path-
ways. While the role of oxidative stress as a contributor to liver diseases is undisputed, it is
not yet clear whether targeting oxidative stress pathways offers therapeutic benefits. This is
certainly the case in acute liver injury due to acetaminophen toxicity, where the antioxidant
N-acetylcysteine (NAC) is used as the first line of treatment. There is also evidence that
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vitamin E can improve liver function in some NAFLD/NASH patients. However, more
work is needed to evaluate the potential of antioxidant therapies in the context of other
liver diseases.
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