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Abstract: The appropriate level of dietary lipids is essential for the nutrient requirements, rapid
growth, and health maintenance of aquatic animals, while excessive dietary lipid intake will lead
to lipid deposition and affect fish health. However, the symptoms of excessive lipid deposition
in the liver of freshwater drums (Aplodinotus grunniens) remain unclear. In this study, a 4-month
rearing experiment feeding with high-fat diets and a 6-week starvation stress experiment were
conducted to evaluate the physiological alteration and underlying mechanism associated with lipid
deposition in the liver of A. grunniens. From the results, high-fat-diet-induced lipid deposition
was associated with increased condition factor (CF), viscerosomatic index (VSI), and hepatosomatic
index (HSI). Meanwhile, lipid deposition led to physiological and metabolic disorders, inhibited
antioxidant capacity, and exacerbated the burden of lipid metabolism. Lipid deposition promoted
fatty acid synthesis but suppressed catabolism. Specifically, the transcriptome and metabolome
showed significant enrichment of lipid metabolism and antioxidant pathways. In addition, the
interaction analysis suggested that peroxisome proliferator-activated receptor (PPAR)-mediated 13-S-
hydroxyoctadecenoic acid (13 (s)-HODE) could serve as the key target in regulating lipid metabolism
and oxidative stress during lipid deposition in A. grunniens. Inversely, with a lipid intake restriction
experiment, PPARs were confirmed to regulate lipid expenditure and physiological homeostasis in A.
grunniens. These results uncover the molecular basis of and provide specific molecular targets for
fatty liver control and prevention, which are of great importance for the sustainable development of
A. grunniens.

Keywords: Aplodinotus grunniens; high-fat diet; starvation stress; lipid deposition; oxidative stress;
PPAR signaling

1. Introduction

Carbohydrates, lipids, and proteins are the main nutrients for fish to attain essential
energy and maintain normal life activities. It is well known that protein-source nutrients—
especially the most desirable protein, fish meal—are expensive and subject to a shortage
of supply all over the world [1]. Carbohydrates are essential in commercial fish feed
formulations as an energy-producing nutrient [2]. However, the nutritional value of dietary
carbohydrates for fish varies [3]. Compared to proteins and carbohydrates, lipids contain
relatively more energy per unit mass. Lipids are essential for the growth and reproduction
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of fish and have been highlighted as providing essential fatty acids and facilitate the
absorption of fat-soluble vitamins [4]. Therefore, dietary lipids are important for fish to
obtain sufficient energy [5,6]. As a non-protein energy substitute, the appropriate addition
of lipids in the diet can reduce protein consumption and improve the growth performance
and feed conversion of fish [7,8]. Insufficient or deficient dietary lipid content in the
diets of fish can cause metabolic disorders and reduced protein utilization and lead to
deficiencies in fat-soluble vitamins and fatty acids [9]. However, excessive lipid levels
trigger severe lipid accumulation in the liver, lead to metabolic disorders, and inhibit fish
growth [10–12]. Moreover, excessive lipid accumulation induces reactive oxygen species
(ROS), inflammation, and oxidative stress, which negatively affect the growth, physiological
homeostasis, and health of aquatic animals [13–15].

Lipid accumulation in the liver is caused by a variety of factors. Studies have shown
that excessive energy intake, essential nutrient deficiencies, exogenous and endogenous
peroxidation, environmental pollution, physiology, and species are important determinants
of lipid accumulation in the liver [16]. Excessive lipid intake is the main cause of lipid
accumulation in the livers of most fish. One possible reason is that an increase in dietary
lipids results in altered lipid metabolism, affecting lipogenesis and fatty acid oxidation [17].
Another important reason is that the liver, as an important central organ for controlling
lipid homeostasis [18], oxidizes lipids and also encapsulates excess lipids, secretes them
into other tissues (such as fat), and stores them [19]. In addition, once large amounts of
fatty acids from lipolysis enter the liver, they form triglycerides and are stored in the liver
as lipid droplets [20]. The adverse effects of a high-fat diet have been extensively studied in
aquatic animals. High-fat diets affected β-oxidation in the liver of Megalobrama amblycephala
and led to mitochondrial dysfunction, which subsequently mediated oxidative stress,
reduced immunity, and apoptosis [21]. High-fat diets led to lipid metabolism disturbances
and reduced immune capacity in Ctenopharyngodon idella [22,23], and in Acanthopagrus
schlegelii and Scophthalmus maximus, these were found to lead to oxidative stress and
lipid peroxidation [24,25]. In addition, oxidative damage, apoptosis, and inflammation of
the liver have been found in Oreochromis niloticu [26]. Furthermore, lipid deposition due
to high-fat diets has also been studied in a variety of aquatic animals, such as Trachinotus
ovatus [27], Hybrid yellow catfish [28], and Lateolabrax japonicus [13]. However, as a newly
domesticated aquatic animal, the effects of high-fat diets in freshwater drum have not
been investigated. In addition, the key molecules or signaling pathways involved in lipid
metabolism are not well elucidated.

An effective antioxidant system is essential for fish to resist disturbances by adverse
external factors [29]. Peroxisome proliferator-activated receptors (PPARs), as important
nuclear receptors [30], play a key role in the regulation of lipid metabolism, cell growth,
inflammation, and differentiation [31]. Many studies have demonstrated that PPARs are
associated with oxidative stress response. PPARs not only directly regulate the expression
of pro-oxidant and antioxidant genes but also influence antioxidant and anti-inflammatory
responses that interact with other pathways [32]. Different isoforms (pparα, pparβ/δ, pparγ)
control various intracellular metabolic processes [33]. In particular, pparα is involved
in the expression of lipid metabolism [34], and its ligands can activate antioxidant en-
zymes [35,36]. Pparβ/δ is implicated in lipid oxidation and cell proliferation [37], and its
activation inhibits ROS production and prevents apoptosis [38]. Pparγ is associated with
adipocyte differentiation [39] and also promotes oxidative phosphorylation, antioxidant
defense, and mitochondrial biogenesis [40]. In addition, linoleic acid oxidative metabolites
are natural ligands of PPARs [41]. As one of the metabolites, 13-S-hydroxyoctadecenoic acid
(13 (s)-HODE) has been found to be an agonist of pparβ/δ [42] and can activate pparγ [43].
Therefore, this study investigated the regulatory mechanism between liver metabolites and
PPARs when lipid intake is excessive or limited.

Freshwater drum (Aplodinotus grunniens) is a fish endemic to North and Central Amer-
ica. It is the only species in the genus of Aplodinotus that perpetually inhabits freshwater [44].
Freshwater drum is characterized by its possession of a higher proportion of edible parts,
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with delicious and nutritious flesh rich in proteins, amino acids, and fatty acids, especially
the unsaturated fatty acids DHA and EPA. Moreover, freshwater drum has no intermus-
cular bones, which improves the fish quality and the processing of the aquatic product.
Therefore, these distinct characteristics reveal that freshwater drum has the potential for
domestication and cultivation, providing high-quality proteins for human beings. In light
of these prospects, we imported freshwater drum larvae and achieved a worldwide break-
through in advanced research on artificial breeding, feeding, and domestication. In 2022,
we achieved large-scale fry breeding, laying the groundwork for the industrialized devel-
opment of freshwater drum culture and the breeding of new varieties [45–49]. However, in
the practical aquaculture, we found freshwater drum was susceptive to lipid deposition
in the liver, which adversely affected the health of the freshwater drum. Therefore, we
conducted the current study to evaluate the effects of lipid deposition on physiological
and metabolic homeostasis and the molecular mechanisms of its regulation in freshwater
drum. Specifically, we evaluated the effects of lipid deposition on the growth performance,
physiological homeostasis, and metabolic capacity of freshwater drum. Meanwhile, the
interaction between the liver transcriptome and metabolome was also investigated. In
addition, the restriction of lipid intake in a starvation stress experiment was used to further
reveal the regulatory mechanism in freshwater drum. These findings indicate the molecular
basis of liver lipid deposition and provide specific molecular targets for the control and
prevention of lipid deposition, which have important implications for the sustainability of
freshwater drum.

2. Materials and Methods
2.1. Ethics Statement

The study was approved by the Animal Care and Use Committee of Nanjing Agricul-
tural University (Nanjing, China, WXFC 2021-0006). All animal procedures were carried
out in accordance with the Guideline for the Care and Use of Laboratory Animals in China.

2.2. Experimental Animals and Experimental Design

Experiments were conducted in the breeding base of the Freshwater Fisheries Research
Center, Chinese Academy of Fishery Sciences. Approximately 40,000 healthy freshwater
drums were randomly transferred to two outdoor fish ponds (pond size: 667 m2, 20,000 fish
per pond representing three biological replicates) for a high-fat-diet experiment. The control
(CL) group and the high-fat-diet (FL) group were fed compound diets four times a day
for four months during the experiment (Table S1). The daily feeding amount was 3~5%
of the body weight. For the starvation stress experiment, 240 freshwater drums with an
average weight of 20.88 ± 2.75 g were randomly assigned into 12 tanks (3 tanks per group,
20 individuals per tank) in indoor temperature-adjustable circular aquaculture systems
(specifications for ϕ: 820 mm × 700 mm, 300 L). In the experiment, starvation for 0 d was
set as the control group (Con), and 1 d (Sta1d), 2 w (Sta2w), and 6 w (Sta6w) were set as
the starvation treatments. During the experiment, all fish were not fed. The water was
obtained from underground with absolute aeration and the temperature was maintained at
(26± 1) ◦C. Throughout the experiments, water parameters were kept as follows: dissolved
oxygen > 6 mg L−1, pH 7.2~7.8, NO2

− < 0.02 mg L−1, and NH3 < 0.05 mg L−1.

2.3. Sample Collection

After 4 months of rearing experiments, fish were starved for 24 h to evacuate the
alimentary tract contents. Fish from each group were randomly selected and anesthetized
with MS-222 (100 mg/L) to collect samples. For each fish, the final body weight, body
length, visceral weight, and liver weight were measured to access the growth performance
in terms of the condition factor (CF), viscerosomatic index (VSI), and hepatosomatic index
(HSI). After that, the fish were dissected and the liver tissues were collected on ice, imme-
diately frozen in liquid nitrogen, and stored at −80 ◦C for subsequent analysis. Growth
performance was calculated with the following equations:
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CF = weight/length3 × 100%; VSI = visceral weight/body weight × 100%; HSI = liver weight/body weight × 100%.

2.4. Biochemical Index Measurement

Enzyme activity/levels were measured with 10% liver homogenate supernatant ac-
cording to the manufacturer’s instructions. Specifically, nine liver samples were selected
from each group and measured in duplicate. For each liver sample, 0.1–0.2 g were sepa-
rated, rinsed in ice-cold saline to remove the blood, dried on filter paper, and homogenized
in ninefold physiological saline (w/v). After centrifugation (2500× g, 4 ◦C) for 10 min, the
supernatant was collected for further measurement.

Enzymatic activities/levels, including superoxide dismutase (SOD), glutathione per-
oxidase (GSH-PX), glutathione (GSH), glutamate pyruvic transaminase (GPT), glutamic
oxaloacetic transaminase (GOT), total antioxidant capacity (T-AOC), total cholesterol (T-
CHO), and triglycerides (TGs), were measured. In detail, SOD was measured with the
WST-1 method (Category No. A001-3), GSH-PX with the colorimetric method (Category
No. A005-1-2), GSH with the microplate method (Category No. A006-2-1), GPT with the
microplate method (Category No. C009-2-1), GOT with the microplate method (Category
No. C010-2-1), T-AOC with the colorimetric method (Category No. A015-1), T-CHO with
the microplate method (Category No. A111-1-1), and TGs with the microplate method
(Category No. A110-1-1). All the assay kits were purchased from Nanjing Jiancheng
Bioengineering Institute, Nanjing, China.

2.5. RNA Extraction and De Novo High-throughput Sequencing

We used the method described by Song [49]. In the high-fat-diet feeding experiment,
12 fish were selected from each group and three tissues were randomly mixed, so a total of
four samples were used for transcriptome sequencing. In the starvation stress experiment,
nine fish were selected from each group and three tissues were randomly mixed, so a total
of three samples were used for transcriptome sequencing. The first step was cDNA library
construction and de novo sequencing. Briefly, RNA quality was examined using Agilent
2100 and Nanodrop (ThermoFisher Ltd., Waltham, MA, USA), and high-quality RNA
(1.8 < OD260/280 < 2.0, RNA integrity number (RIN) ≥ 1.8, 28S/18S ≥ 1.0) was treated
with oligo (dT) to enrich mRNA. Next, the mRNA was randomly split into small fragments
of about 300 bp using random primers. The cDNA was synthesized using short fragments
as templates and PCR amplification was performed after the addition of the “A” tail and
sequencing connectors. Finally, de novo high-throughput sequencing was undertaken with
an Illumina NovaSeq6000 (Majorbio Bio-pharm Technology Co., Ltd., Shang, China). The
raw data were filtered to obtain high-grade quality control data. Assembly and splicing of
reads sequences were undertaken using Trinity and functional annotation in the NR, Swiss
Port, Pfam, KOG, and GO databases. Transcripts with |log2fold change| > 1 and corrected
p-value < 0.05 were considered as differentially expressed genes (DEGs). DEGs were also
analyzed for GO and KEGG enrichment.

2.6. Metabolome Sample Processing and LC-MS Detection

LC-MS metabolome analysis was undertaken following the method described by
Zhang [50]. Specifically, samples were weighed before extracting metabolites (12 individual
livers were selected from each experimental group, and 4 livers were randomly mixed),
dry-frozen, and then ground. Metabolites were extracted using 1000 µL precooled mixtures
of methanol, acetonitrile, and water (v/v/v, 2:2:1) and then placed for 1 h in ice baths
with ultrasonic shaking. The mixture was allowed to settle at −20 ◦C and treated with
the high-throughput tissue crusher Wonbio-96c (Shanghai wanbo biotechnology Co., Ltd.,
Shanghai, China). Finally, the supernatant was carefully transferred to sample vials for
LC-MS/MS analysis (UHPLC-Q Extractive system from Thermo Fisher Scientific, Waltham,
MA, USA). A pooled quality control (QC) sample was prepared by mixing equal volumes
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of all samples to monitor the stability of the analysis. The sample was kept in the 4 ◦C
autosampler for the entire analysis, and the samples were separated with an Agilent 1290
Infinity LC ultra-high-performance liquid chromatography (UHPLC) system using an
HILIC column. Data were processed using normalization and removal of variables with
relative standard deviations (RSDs) > 30% for QC samples, and log10 was logarithmically
processed to obtain the final data matrix for subsequent analysis.

2.7. Interaction Analysis

The connected networks were plotted using Cytoscape (Version 3.9.0) to elucidate the
relationship between genes and metabolites. To explore the relationship between different
DEGs and DEMs, a heat map was plotted and Pearson’s correlation test was performed to
further analyze the correlations between key genes and key metabolites. The significance
threshold was set as p < 0.05.

2.8. RT-PCR Analysis

RNAiso Plus reagent (Takara Co., Ltd., Dalian, China) was used to extract total RNA
from nine livers in each group in duplicate, and they were incubated with RNase-free
DNase (Takara Co., Ltd., Dalian, China) to remove contaminated genomic DNA. The
quantity and quality of RNA were assessed with the OD260/280 method and 1.5% agarose
gel electrophoresis. Primers (Table 1) for each gene were designed using Primer Premier
5.0 based on the mRNA sequences obtained from an A. grunniens liver genome database
in our lab. All primers were synthesized by Shanghai Generay Biotechnology Co., Ltd.,
Shanghai, China. RT-PCR was performed with SYBR Green (Takara, Dalian, China) on a
Takara 800 Fast Real-Time PCR system according to the manufacturer’s protocol. β-actin
was applied as an internal reference and further calculated using the 2−∆∆CT method.

Table 1. Primer sequences for target genes for RT-PCR analysis.

Accession No. Gene Primer Sequence (5′—3′)

XP_008328442.1 β-actin F: AGGCTGTGCTGTCCCTGTAT
R: GCTGTGGTGGTGAAGGAGTAG

XP_010742647.2 β2gp1 F: GGCAGTATCCTCACCCCATC
R: CCTTCTGAGGTCCATCCAGC

KKF21127.1 camk1g F: TACATGCTCGGCTCCACTCT
R: TCTCCTTCACGCTCAACTCG

KKF23363.1 krt222 F: GAGAGTGCAGAAGGTCACGG
R: GGGGAGGCTGTCCTGTTTAG

XP_018535573.1 cide3 F: ACCCCACATCCAAACAGCAT
R: TTTTTGGCAGCGTAACAGCG

XP_019122735.1 hsl F: TTGCTGAGATGAGGGTGGA
R: ACAGGCTGGTCTATGTTCC

XP_010730495.2 nceh1 F: TATTAACGGTGGCGTTCGCT
R: AAAGAAGCCAGGTGCATCGT

XP_010741055.2 fam213a F: CCCGTGAAAGAAAGATGG
R: GTCCAATGACGAACACCC

KKF24881.1 fas F: TGGCATCGAGTACAACAAGC
R: TTGGCACGAAGTAGCATCAC

XP_019127403.1 acc1 F: CTGGAGGAGACGGTGAAAAG
R: TGCGTATCTGCTTGAGGATG

XP_018523996.1 acc2 F: AGAGGACCATCCGTTTTGTG
R: TTCAGAGGAATGACCCCATC
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Table 1. Cont.

Accession No. Gene Primer Sequence (5′—3′)

XP_010755203.2 fabp4 F: CAGACGGTCGAAAGACCAAG
R: TCATGGCAACAACATCATCC

XP_010739642.2 atgl F: ACGGGGAGAACATACTGGTG
R: GTGGAAGCTGGTGGAGTTGT

XP_010729007.2 lpl F: CAGCCGTGCAGTATGTGACT
R: AGGTTTTGGAGGTGCTGTTG

XP_019132010.1 ucp2 F: ATTCGTGGTCTGTGGAAAGG
R: CTGCACCAAAGGCTGATAGG

XP_019134682.1 notch1a F: ACTCAAATGGCTCCCTCCTT
R: TCAGTTTCCCCATCTCTGCT

XP_019127721.1 fatp6 F: TCAGATCCAGCGTGTGTACG
G: CAACAAGGCAACGCAGTCTC

XP_027137407.1 acsl4 F: GGCACCCGAGATGTACTGAG
R: ACTCCGCTCTGGTTTCACAG

KAE8296399.1 cpt1 F: TCAGAGGCAGGAGCCCTATT
R: GTGCATGTTCACCACGTTCC

XP_010744948.3 fabp F: TGGTGAAAACCCTGAGCACC
R: GCACTTGCACCAGTTTGTCT

XP_019127104.1 rxr F: CAAGCTGTTGCTGCGGTTAC
R: TCATTTGATGCGGGGCTTCT

XP_010746626.2 acox1 F: TTACCAGCGCATCAGTGGAG
R: CTGCGTTGGTTGTCCATGTG

AGG69480.1 fads2 F: GAAACAGCTTACGCACTCTGC
R: AAGTTGCTCTCCATCCACAGG

XP_019126127.1 ehhadh F: CCTGGTCATTGAGGCTGTGT
R: GTTACGGGTTTGAGAGGCCA

XP_019131039.1 pepck F: CCACGTCAACTGGTTCAGGA
R: CAGCCAGCCGATAATGCTCT

XP_010747326.2 pparα
F: GTGCCTCTCTGTGGGAATGT
R: GCTTCGTGGATCTGCCTTAC

XP_019110784.1 pparγ
F: GCCTTTGTCTGCCTCTCAAC
R: GACCTCGCTACCCTTTCCTC

XP_010746753.2 pparδ
F: ATCACCGTCGCTGTCAGAAC
R: CCCTTACAACCCTCACAGG

Note: The mRNA sequences for each gene were obtained from an A. grunniens transcriptome sequencing database
that was preserved in the lab.

2.9. Statistical Analysis

In the study, all data were calculated using SPSS software (version 26.0) and are pre-
sented as means ± standard deviation (SD). For RNA expression analysis, the 2−∆∆CT

method was applied. For statistical difference evaluation, data were analyzed with an
independent-samples t-test when they were normally distributed and homoscedastic; oth-
erwise, a two-independent-samples nonparametric test (Mann–Whitney U) was used, with
p < 0.05 representing a significant difference. Pearson correlation analysis was performed to
evaluate the correlation between genes and metabolites. In general, p < 0.05 was considered
to be a significant difference or correlation, while p < 0.01 was regarded as an extremely
significant difference or correlation.
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3. Results
3.1. High-Fat Diet Induced Lipid Deposition and Destroyed Physiological Homeostasis in the Liver

Growth performance and antioxidant capacity were first evaluated. The results
showed that a high-fat diet resulted in significant increases in the CF, VSI, and HSI
(Figure 1A–C, p < 0.0001) in freshwater drum compared with the CL group. In addi-
tion, GPT (Figure 1D, F (1,16) =11.563, p = 0.004, Table S7), GOT (Figure 1E, F (1,13) = 5.370,
p = 0.037, Table S7), and GSH-PX (Figure 1F, F (1,13) = 7.639, p = 0.016) levels were dra-
matically increased, while SOD (Figure 1G, F (1,15) = 7.541, p = 0.015), T-AOC (Figure 1H,
F (1,12) = 6.879, p = 0.022), and GSH (Figure 1I, F (1,15) = 9.922, p = 0.007) levels were
markedly decreased in the FL group. These results demonstrated that a high-fat diet im-
proved the growth performance of freshwater drum; however, it also caused physiological
disorders and inhibited the antioxidant capacity of freshwater drum.
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Figure 1. High-fat diet induced lipid deposition and destroyed physiological homeostasis in the
liver of A. grunniens. (A–C) Growth performance: (A) condition factor (CF); (B) viscerosomatic index
(VSI); (C) hepatosomatic index (HSI). (D–I) Liver antioxidant enzyme activity: (D) glutamate pyruvic
transaminase (GPT); (E) glutamic oxaloacetic transaminase (GOT); (F) glutathione peroxidase (GSH-
PX); (G) superoxide dismutase (SOD); (H) total antioxidant capacity (T-AOC); (I) glutathione (GSH).
Data were analyzed with Student’s t-test. Results are indicated as means ± SD, n = 9. * indicates a
significant difference between CL and FL groups (*, p < 0.05; **, p < 0.01; ****, p < 0.0001).

3.2. High-Fat Diet Led to Lipid Metabolism Disorder in the Liver of Freshwater Drum

Based on the above studies, to explore whether physiological disorders caused by
a high-fat diet affected the metabolic capacity of the organism, we evaluated the liver
fat content and transcriptional expression of lipid metabolism-related genes. The results
showed that the contents of T-CHO (Figure 2A, F (1,15) = 5.596, p = 0.032) and TG (Figure 2B,
F (1,15) = 7.976, p = 0.013) in the liver were significantly increased in the FL group. The
expression of the adipose-specific genes beta-2-glycoprotein 1-like (β2gp1, F (1,11) = 6.558,
p = 0.026), keratin-like protein KRT222 (krt222, F (1,11) = 4.871, p = 0.049), cell death activator
CIDE-3-like (cide3, F (1,13) = 5.032, p = 0.042), and neutral cholesterol ester hydrolase 1
(nceh1, F (1,12) = 6.934, p = 0.022) was remarkably upregulated in the FL group (Figure 2C).
Meanwhile, we found that the expression of fatty acid synthase (fas, F (1,9) = 10.496,
p = 0.010), acetyl-CoA carboxylase 1 and 2 (acc1, F (1,9) = 7.125, p = 0.026; acc2, F (1,9) = 6.923,
p = 0.027), and fatty acid binding protein 4 (fabp4, F (1,10) = 5.439, p = 0.042) was significantly
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upregulated (Figure 2D). However, the expression of adipose triglyceride lipase (atgl,
F (1,13) = 6.091, p = 0.028), lipoprotein lipase (lpl, F (1,9) = 6.145, p = 0.035), and uncoupling
protein 2 (ucp2, F (1,14) = 24.836, p = 6.34 × 10−5) was markedly downregulated (Figure 2E).
These findings demonstrated that lipid deposition led to lipid metabolism disturbances in
the liver.
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Figure 2. High-fat diet led to lipid metabolism disorder in the liver of A. grunniens. (A) Total
cholesterol (T-CHO); (B) triglycerides (TGs); (C) expression levels of adipose tissue-specific expressed
genes in the fatty liver (β2gp1, camk1g, krt222, fam213a, cide3, hsl, nceh1); (D) fat synthesis-related
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3.3. Transcriptomic Analysis Revealed Lipid Metabolism and Antioxidant Pathways Are
Significantly Enriched in Livers with Lipid Deposition

To reveal the underlying mechanisms of lipid deposition, we conducted de novo
transcriptomic analysis using high-throughput sequencing. Principal component analysis
(PCA) score plots showed that the samples in the CL and FL groups were clustered sep-
arately, revealing clear differences between the transcriptome profiles of the CL and FL
groups (Figure 3A). When compared to the CL group, a total of 3144 differentially expressed
genes (DEGs) were identified and annotated in the FL group (log2|fold change| > 1 and
p-value < 0.05), including 1602 upregulated and 1542 downregulated genes (Figure 3B). To
reveal the molecular functions of these DEGs, GO and KEGG enrichment analyses were
performed. The results indicated that a total of 62 GO items (Table S2) and 36 KEGG
pathways (Table S3) were enriched. Specifically, lipid metabolism (PPAR signaling pathway,
cholesterol metabolism, steroid biosynthesis, primary bile acid biosynthesis, fat diges-
tion and absorption, fatty acid biosynthesis, adipocytokine signaling pathway, lipids and
atherosclerosis, fatty acid degradation), glucose metabolism (insulin resistance, pyruvate
metabolism), amino acid metabolism (cysteine and methionine metabolism; glycine, serine,
and threonine metabolism; arginine and proline metabolism), and oxidative stress (perox-
isome, ferroptosis, apoptosis-fly) were the most significantly enriched KEGG pathways
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(Figure 3C), revealing that lipid deposition affected lipid metabolism, glucose metabolism,
amino acid metabolism, and antioxidant capacity.
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3.4. Metabolomic Analysis Revealed Lipid Metabolism and Antioxidant Pathways Are
Significantly Enriched in Livers with Lipid Deposition

In order to further explore the potential regulatory mechanism, LC-MS-based metabolomics
was used to determine the changes in metabolites. The differential metabolites were
screened with |log2 FC| > 1, p ≤ 0.05, and VIP ≥ 1. The principal component analy-
sis (PCA) score plots showed that positive and negative ions in the CL and FL groups
were clustered into different subclasses, revealing clear differences between the metabo-
lites of the CL and FL groups (Figure 4A,B). A total of 216 effective positive metabolites
and 144 negative metabolites were identified, of which 97 and 80 were upregulated and
119 and 64 were downregulated, respectively (Figure 4C). The classification of HMDB
compounds showed that lipids and lipid-like molecules occupied the largest proportion
(41.02%, Figure 4D). Additionally, lipid metabolism (regulation of lipolysis in adipocytes
(map04923), taurine and hypotaurine metabolism (map0043), the PPAR signaling path-
way (map03320), linoleic acid metabolism (map00591), glycerophospholipid metabolism
(map00564), choline metabolism in cancer (map05231), and arachidonic acid metabolism
(map00590)), autophagy (map04136), and FOXO pathway signals (map04068) were sig-
nificantly enriched (Table S4 and Figure 4E) in KEGG pathways. These results provided
further evidence that lipid deposition was the dominant driver for lipid metabolism disor-
der; moreover, lipid deposition affected the regulation of autophagy and redox processes
in the liver of freshwater drum.
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3.5. DEM and DEG Interaction Analysis Revealed that PPAR Signaling Is Involved in the
Regulation of Lipid Deposition

Next, the correlation between DEGs and DEMs was analyzed to reveal the under-
lying mechanisms involved in lipid metabolic disorder under lipid deposition. KEGG
enrichment analysis demonstrated that PPAR signaling is a critical part of coping with
lipid deposition (Table S5 and Figure 5A). Based on targeting analysis, activation of PPAR
caused accumulation of the differential metabolite 13 (s)-HODE (Figure 5B). The correlation
analysis determined that key genes in PPAR were significantly correlated with 13 (s)-HODE.
Specifically, carnitine palmitoyl transferase 1 (cpt1, F (1,9) = 5.761, p = 0.040) and fatty acid
desaturase 2 (fads2, F (1,12) = 28.251, p = 0.0001) were remarkably correlated in the CL group,
and enoyl-coenzyme A hydratase/3-hydroxy acyl-coenzyme A dehydrogenase (ehhadh,
F (1,14) =17.046, p = 0.001) showed an extremely significant correlation in the FL group
(Figure 5C). In addition, we found that the relationship between genes and metabolites
significantly enriched in PPAR signaling was that upstream genes (fatty acid transport
protein 6 (fatp6), fatty acid-binding protein (fabp)) regulated the expression of downstream
target genes (such as cpt1, acyl-CoA oxidase 1 (acox1), acyl-CoA synthetase long-chain
family member 4 (acsl4), fads2, ehhadh, phosphoenolpyruvate carboxykinase (pepck), etc.)
through eicosanoid (13 (s)-HODE)-activated transcription factors (rxr) (Figure 5D). The
above findings indicated that PPAR-mediated 13 (s)-HODE may be a key target of lipid
metabolism and physiological homeostasis during lipid deposition in A. grunniens.

3.6. Transcriptomic Analysis Revealed that PPAR Signaling Is Involved in Regulation of
Lipid Consumption

To identify potential regulatory mechanisms in the liver after lipid intake restriction in
freshwater drum, high-throughput sequencing was performed with liver tissue from the
starvation stress experiment. With the analysis of transcriptome sequencing, a total of 49,
1230, and 1782 DEGs were identified in Sta1d, Sta2w, and Sta6w, respectively, of which 27,
511, and 681 were upregulated and 22, 719, and 1101 were downregulated, respectively
(Figure 6A). In order to reveal the molecular function of these DEGs, KEGG enrichment
analysis was performed and PPAR signals were significantly enriched at different starvation
times (Table S6 and Figure 6B–D). In addition, we also found that the cellular senescence
and “apoptosis-multiple species” pathways were enriched with 1 d starvation, and “drug
metabolism-cytochrome P450” was enriched with 6 w starvation. RT-PCR validation of key
genes in PPAR signaling revealed that starvation stress increased the expression levels of
pparα, pparδ, pparγ, and cpt1 and decreased fabp, acox1, fads2, and ehhadh (Figure 6E). The
above findings demonstrate that PPARs can regulate lipid consumption and short-term
starvation stress can alleviate oxidative stress in freshwater drum.

3.7. Hypothesized Regulatory Mechanisms of Freshwater Drum

According to the above study, we provide a possible schematic representation of the
regulatory mechanisms of lipid deposition (Figure 7). Through transcriptome analysis
of starvation stress and high-fat-diet experiments, we found that the expression of key
genes paprα, pparδ, and pparγ in PPAR signaling was upregulated when lipid intake was
restricted, and the downstream target genes cpt1, ehhadh, and fads2, which were significantly
associated with the metabolite 13 (s)-HODE, showed an opposite expression trend to that
of the high-fat diet. These results demonstrate that starvation stress can regulate lipid
consumption in freshwater drum through PPARs. In addition, our results demonstrate
that the disturbance of PPARs and metabolites caused by excessive lipid intake can cause
oxidative stress and disrupt the physiological homeostasis and lipid metabolic balance of
freshwater drum. The results of this study illustrate the hazards of excessive lipid intake in
freshwater drum and demonstrate that PPAR signaling and 13 (s)-HODE are key molecular
targets in regulating lipid metabolism and oxidative stress. These results provide new
insights into the potential regulatory mechanisms of freshwater drum under a high-fat diet.
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Figure 5. DEM and DEG interaction analysis revealed that PPAR signaling is involved in the regula-
tion of lipid deposition. (A) KEGG enrichment analysis of transcriptome and metabolome. (B) regu-
latory networks of key enriched genes and metabolite interactions in the PPAR signaling pathway. In
the network, nodes in yellow represent the upregulated DEGs, those in red represent the upregulated
DEGs, and those in green represent the microbe. (C) Pearson correlation analysis of key genes and
metabolites in the PPAR signaling pathway. (D) Validation of key gene expression in PPAR signaling.
Data were analyzed with Student’s t-test. Results are indicated as means ± SD, n = 9. * indicates a
significant difference between the CL and FL groups (*, p < 0.05; **, p < 0.01; ***, p < 0.001).
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Figure 6. Transcriptomic analysis revealed that PPAR signaling is involved in regulation of lipid
consumption and inflammatory responses in A. grunniens. (A) Account of differentially expressed
genes at different starvation times; (B–D) KEGG enrichment of differentially expressed genes at
different starvation times: (B) control vs. 1 d starvation, (C) control vs. 2 w starvation, (D) control
vs. 6 w starvation; (E) validation of key gene expression. Data were analyzed with Student’s t-test.
Results are indicated as means ± SD, n = 9. * indicates a significant difference between Con and
different starvation times (*, p < 0.05; **, p < 0.01; ***, p < 0.001).
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Figure 7. Hypothesized regulatory mechanisms of A. grunniens. Hypothetical mechanisms for the
regulation of lipid deposition in relation to physiological homeostasis and lipid metabolism, as well
as PPAR signaling, are proposed based on the results of this study. Green and red arrows indicate
positive and negative regulation of genes in the starvation stress experiment and the high-fat-diet
experiment, respectively.

4. Discussion

A high-fat diet leads to excessive lipid deposition in the liver [51], resulting in struc-
tural damage and metabolic disturbances, which ultimately affect the growth and health
of fish [52]. In the present study, the CF, HSI, and VSI were remarkably increased after
intake of the high-fat diet, indicating that the high-fat diet induced nutrient deposition in
the fish, which was in accordance with findings for T. ovatus [27], Oncorhynchus mykiss [53],
and Rachycentron canadum [12]. However, a high-fat diet induces significant increases in
T-CHO and TG levels in the liver. Studies have shown that higher levels of dietary soybean
oil addition are associated with increased liver lipid deposition in S. maximus [54], and
liver fat accumulation and tissue abnormalities were found in Megalobrama amblycephala
on a high-fat diet [55]. This same result was also observed in O. niloticus [56]. From the
point of view of energy utilization, a possible explanation is that the high-fat diet provides
more energy than the growth requirements of freshwater drum, thus leading to metabolic
disequilibrium. Moreover, alterations in liver fat content can provide strong evidence for
an in-depth study of metabolic disorders.
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High-fat diets tend to cause lipid accumulation and peroxidation in fish livers [57,58].
Cells respond to damage caused by lipid accumulation and peroxidation by producing
reactive oxygen species (ROS), but ROS have a strong oxidative capacity [59]. They can
cause hepatocyte dysfunction by damaging intracellular macromolecules (including lipids,
proteins, and DNA), and inhibition of ROS can alleviate hepatocyte lipid accumulation [60].
As a peroxidase, GSH-Px can convert peroxides into harmless hydroxyl compounds and
water to prevent them from oxidizing and forming dangerous free radicals [61,62]. In
our study, we found that liver lipid deposition increased GSH-Px levels, which might
have been due to a self-protection mechanism to resist lipid deposition-induced oxidative
stress. Specifically, GSH-Px converts harmful peroxides to components without oxidizing
properties during this process. However, further studies revealed that SOD, GSH, and T-
AOC levels were significantly decreased. The antioxidant enzyme SOD is often considered
the first line of defense against oxidative stress [63] and is able to dismount superoxide
anions into hydrogen peroxide. GSH performs its action as a scavenger by oxidizing to
GSSG [64]. In addition, T-AOC is able to respond to the total antioxidant level representing
various antioxidant substances and antioxidant enzymes. These results indicate that fatty
deposits reduce the antioxidant capacity of the liver. Furthermore, the elevated levels of
GPT and GOT, which reflect the degree of hepatocyte damage, were further evidence of
possible liver tissue damage. This has also been studied in Micropterus salmoides [65] and M.
amblycephala [66].

There is evidence that excessive lipid accumulation in liver cells can cause damage to
the liver metabolic system [67]. Therefore, we further explored the effect of lipid deposi-
tion on the metabolic capacity of freshwater drum. We discovered that the high-fat diet
significantly upregulated the expression of adipose-specific genes (β2gp1, cide3, nceh1, and
krt222) and adipogenic genes (fas, acc1, acc2, and fabp4). This is consistent with findings
for other fish [68–70]. These results demonstrate that the high-fat diet altered the rate of
lipid transport, accelerated the process of lipid accumulation, increased the rate of choles-
terol metabolism, and enhanced the protection of cellular structures in the face of liver
damage [71]. As is known, an imbalance between lipogenesis and lipolysis can lead to
abnormal lipid deposition [72]. We observed that the expression levels of key lipolytic genes
(atgl, lpl, and ucp2) were decreased, indicating a slowed rate of lipolytic metabolism in the
liver. Moreover, it has been shown that activation of notch signaling in hepatocytes causes
decreased glucose metabolism and adipogenesis, leading to lipid accumulation [73]. This
was also verified by the upregulation of notch1a expression. In general, lipid deposition
due to a high-fat diet increases fatty acid synthesis and decreases lipolysis, affecting lipid
metabolism in the liver and resulting in a disruption of lipid metabolism.

Based on the above studies, the transcriptome and metabolome were used to reveal the
response mechanisms of freshwater drum more comprehensively in response to lipid depo-
sition. In this study, we found that DEGs were mainly involved in lipid metabolism, glucose
metabolism, and amino acid metabolism, as well as antioxidant processes. DEMs were
mainly involved in lipid metabolism, and autophagy and antioxidant defense metabolites
were also enriched. Interaction analysis showed that the classical PPAR signaling-mediating
lipid metabolism is involved in the regulation of liver lipid deposition in freshwater drum.
The same finding has been reported for M. salmoides [74] and O. niloticus [75]. As a regu-
lator, PPAR controls the expression of a series of genes involved in lipid and lipoprotein
metabolism [76]. In addition, our previous study found that PPAR signaling is impli-
cated in the metabolic homeostasis of lipids and amino acids in freshwater drum with
hypothermia [48]. PPARs are activated under starvation stress to regulate the expression
of downstream adipose catabolism genes [77]. These studies illustrated the importance
of PPAR signaling for the regulation of lipid metabolism homeostasis in freshwater drum.
Furthermore, the expression levels of all three isoforms showed a trend for upregulation in
the starvation stress experiment. It has been shown that pparα activation promotes lipolysis
metabolism during fasting [78], which is consistent with the results of the present study. In
addition, pparδ has been shown to have a similar metabolic effect to pparα in promoting
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energy dissipation and, conversely, pparγ promotes energy storage [79]. Therefore, it can be
inferred that, when the intake of exogenous lipids is limited, freshwater drum will not only
decompose fat to provide energy for the organism but also store energy to ensure normal
life activities. In addition to the abovementioned functions of PPARs in regulating lipid
metabolism, as multifunctional nuclear receptors, PPARs also play vital roles in regulating
physiological homeostasis and responding to external stresses. In this study, we found that
high-fat diets can cause damage to the antioxidant system of the liver. However, when
starved for 2 w, cell fate, apoptosis, and antioxidant processes were not affected, indicating
that appropriate starvation may enhance the anti-stress ability of freshwater drum, which
further proves the strong adaptability of freshwater drum to the external environment.

Transcriptome and metabolome interaction analysis revealed that the key metabolite
13 (s)-HODE was significantly correlated with ehhadh, fads2, and cpt1. ehhadh and cpt1 are
involved in fatty acid β-oxidation [80,81], and fads2 is associated with fatty acid metabolism
and adipose tissue inflammation [82,83]. Studies have shown that 13 (s)-HODE can increase
lipid uptake, return cholesterol transport, and apoptosis. As a marker of oxidative stress,
high-fat diets also lead to increased 13 (s)-HODE. It was hypothesized that the increase in 13
(s)-HODE due to lipid deposition caused by a high-fat diet could, in turn, further exacerbate
lipid deposition and oxidative stress. However, in the starvation stress experiment, we
found that the key genes cpt1, ehhadh, and fads2 showed different trends compared to
the liver with lipid deposition. This not only indicates that lipid deposition affects liver
lipid metabolism, stress resistance, and physiological homeostasis but also demonstrates
that PPARs can regulate lipid consumption and reduce oxidative stress caused by lipid
deposition in freshwater drum when lipid intake is restricted. In accordance with the above
findings, PPAR signaling-mediated 13 (s)-HODE was identified as a key target for lipid
metabolism and oxidative stress regulation in the liver of freshwater drum.

5. Conclusions

In summary, the current study suggests that lipid deposition in the liver caused by a
high-fat diet leads to physiological disorders and affects liver metabolic capacity. Moreover,
transcriptome and metabolome studies revealed that PPAR signaling and metabolites (13 (s)-
HODE) might be the key targets for regulating liver lipid deposition and oxidative stress in
freshwater drum. In addition, PPARs can regulate lipid consumption and enhance stress
capacity in freshwater drum during periods of lipid intake restriction. These results reveal
potential regulatory mechanisms in the liver of freshwater drum with lipid deposition.
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