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Abstract: Proteins have been extensively studied for their outstanding functional properties, while
polyphenols have been shown to possess biological activities such as antioxidant properties. There
is increasing clarity about the enhanced functional properties as well as the potential application
prospects for the polyphenol–protein complexes with antioxidant properties. It is both a means
of protein modification to provide enhanced antioxidant capacity and a way to deliver or protect
polyphenols from degradation. This review shows that polyphenol–protein complexes could be
formed via non-covalent or covalent interactions. The methods to assess the complex’s antioxidant
capacity, including scavenging free radicals and preventing lipid peroxidation, are summarized. The
combination mode, the type of protein or polyphenol, and the external conditions will be the factors
affecting the antioxidant properties of the complexes. There are several food systems that can benefit
from the enhanced antioxidant properties of polyphenol–protein complexes, including emulsions,
gels, packaging films, and bioactive substance delivery systems. Further validation of the cellular
and in vivo safety of the complexes and further expansion of the types and sources of proteins and
polyphenols for forming complexes are urgently needed to be addressed. The review will provide
effective information for expanding applications of proteins and polyphenols in the food industry.

Keywords: complex; interaction; antioxidation; free radical scavenging; lipid peroxidation;
delivery system

1. Introduction

Protein’s excellent functional properties make it an important ingredient of food
engineering a foaming agent, emulsion, film, gel, etc. [1]. It is also focused on improving
its functional characteristics through appropriate structural modification [2]. Polyphenols
(including flavonoids, phenolic acids, tannins, stilbene, curcumin, Figure 1) have excellent
biological activity such as antioxidant capacity and are therefore expected to be more
widely used in food systems. However, the low stability, degradability, and susceptibility to
oxidation limit their application [3]. In recent years, the complexes formed by proteins (such
as whey protein, egg protein, soy protein, zein, gelatin, casein) combined with polyphenols
(including flavonoids, phenolic acids, tannins, stilbene, lignin, curcumin) has become both
an effective mean of protein modification or processing with expanded functions and a
way to protect or deliver polyphenols with biological activities from degradation, therefore,
have shown increased attention and research heat [4–10].

Polyphenols can bind to proteins either covalently or non-covalently [5,7]. The en-
hanced antioxidant activity and functional properties of the complexes, such as emulsifying,
gelling, and stability, are being widely studied [7]. Among them, antioxidant activity is
one of the most essential characteristics of polyphenol–protein complexes. On the one
hand, combining the proteins and polyphenols can introduce the active hydroxyl group

Antioxidants 2023, 12, 1577. https://doi.org/10.3390/antiox12081577 https://www.mdpi.com/journal/antioxidants

https://doi.org/10.3390/antiox12081577
https://doi.org/10.3390/antiox12081577
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0003-3060-4246
https://orcid.org/0000-0003-4896-0142
https://doi.org/10.3390/antiox12081577
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox12081577?type=check_update&version=1


Antioxidants 2023, 12, 1577 2 of 24

from polyphenols into proteins so that it can endow proteins with significantly increased
antioxidant activity [11–13]. This makes the polyphenol–protein complexes used as an-
tioxidant emulsifiers, antioxidant films, etc. [7]. The emulsion prepared by Ren et al. [14]
using the covalent combination of zein and resveratrol had higher antioxidant activity.
The food packaging films prepared by Jiang et al. [15] applying the interaction between
proteins and polyphenols showed high free radical scavenging activities. On the other
hand, the combination with proteins can protect polyphenols from degradation and has
better antioxidant stability [3]. Zou et al. [16] reported that the antioxidant activity of grape
seed procyanidins could be protected from reducing activity loss during storage by soy
protein isolates. The resveratrol encapsulated with nano-delivery particles constructed
by Fan et al. [17] by conjugating bovine serum albumin (BSA) and caffeic acid had better
digestive stability and cell antioxidant capacity. Furthermore, polyphenols and proteins
can sometimes work synergistically to counteract oxidative [18]. Although there are some
reviews on this aspect, a comprehensive summary of antioxidant properties as one of the
most important functional properties of the complexes is still lacking.
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Figure 1. The classification of polyphenols and the chemical formulas of representative compounds.

This article reviewed the preparation path of the complexes and the interaction mecha-
nism between polyphenols and proteins, including covalent and non-covalent binding. The
assessment methods and the influencing factors of antioxidant capacity were summarized,
the potential applications of the complexes in food engineering were reviewed, and the
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inadequate aspects and perspectives were indicated. A comprehensive understanding
of the polyphenol–protein complexes with antioxidant properties is essential to promote
them to be effective means to improve the functional properties and biological activity of
proteins and polyphenols and expand their application in the food field.

2. Interaction Mechanism and Preparation of Polyphenol–Protein Complexes

In general, polyphenols may bind with proteins via covalent or non-covalent inter-
actions [19] (Figure 2). An example of non-covalent interaction is hydrogen bonding,
hydrophobic forces, electrostatic interactions, and van der Waals forces. In comparison,
the covalent binding of polyphenols and proteins can be obtained primarily by enzymatic,
alkaline, radical grafting, or chemical coupling methods [20].
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covalent bonding of polyphenols to proteins (the bottom half).

2.1. Non-Covalent Interactions

Non-covalent interactions between proteins and polyphenols may typically include
hydrophobic interactions, hydrogen bonds, electrostatic interactions, and van der Waals
interactions, which are reversible and weaker than covalent interactions [3,21].
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In general, the formation of polyphenol–protein complexes relies mainly on hydrogen
bonding and hydrophobic interactions, followed by other interactions (e.g., electrostatic
interactions) [7]. When proteins and polyphenols interact with each other, alterations
in the total strength of molecular interactions cause changes in the heat of the system.
Information about the combined thermodynamic parameters (∆H, ∆S, and ∆G) has been
used to determine the nature of the interaction forces involved [22]. The main non-covalent
interactions for ∆H > 0 and ∆S > 0 involve hydrophobic interactions. The main non-
covalent interactions for ∆H < 0 and ∆S < 0 involve hydrogen bonding and van der Waals
interactions. ∆H < 0 and ∆S > 0 interactions have been mainly attributed to electrostatic
interactions [5,22].

Hydrogen bonding interactions are one of the main drivers of polyphenols binding
to proteins. Hydrogen bonding is the interaction involving a hydrogen atom located
between a pair of other atoms having a high affinity for electrons. As for polyphenols, they
act as hydrogen donors, and their hydroxyl groups can form hydrogen bonds through
interactions between the C=O groups of the amide group on the peptide chain, the oxygen
or nitrogen on the side chains of amino acid residues, especially hydroxyl (–OH) and amino
(–NH2) groups [23,24]. Zhang et al. [25] found that ferulic acid, quercetin, and vanillic acid
could interact via three, seven, and two hydrogen bonds with β-lactoglobulin, respectively.
Wen et al. [26] revealed that ovalbumin and procyanidin have a hydrogen bond-dominated
interaction. Jiang et al. proved that Trp 118, Glu 11, and Lys 5 of α-lactalbumin could form
hydrogen bonds with hydroxy safflower yellow A, respectively [11].

In addition to hydrogen bonding, hydrophobic interactions are one of the main driv-
ing forces of polyphenol–protein binding [3,6]. Hydrophobic interaction is usually un-
derstood as the force that the hydrophobic groups cluster together to avoid contact with
water. The hydrophobic interactions rely on the fact that the non-polar aromatic ring
in the phenolic compounds interacts hydrophobically with the hydrophobic amino acid
residues of proteins (alanine, cysteine, glycine, isoleucine, leucine, methionine, pheny-
lalanine, tyrosine, tryptophan, and valine) [5,27]. For instance, the aromatic ring and
aliphatic chain of curcumin could interact hydrophobically with the hydrophobic region
(residues 971-1410) of myosin [28]. Rosmarinic acid was inserted into the hydrophobic
pocket formed by the amino acid residues Ser191, Arg198, Leu237, His241, Leu259, Ile263,
His287, Ala290, and Glu291 of BSA and bound to the hydrophobic amino acids in the lumen
of BSA through hydrophobic interactions [29]. The catechol part of chlorogenic acid inter-
acted via the PI-PI accumulation of hydrophobic force with β-lactoglobulin Phe105 [30].

Electrostatic interactions occur as an attraction force that is created between two
completely or partially ionized species with opposite charges. Electrostatic interactions
between proteins and phenolics usually involve the deprotonation of some phenolic acids
with low pKa values (e.g., cinnamic acid derivatives such as ferulic acid) under neutral
conditions. At this point, positively charged protein groups, such as the ε-amino group
of lysine, would react with the hydroxyl groups with a high electronegativity of the
polyphenol [3,23]. For instance, ferulic acid has been found to interact electrostatically
with sites containing positively charged amino acid residues in BSA since ferulic acid
(pKa = 4.58) is a negatively charged molecule at pH 7.4 [31]. Similarly, the electrostatic
interactions are more important for the binding of caffeic acid, ferulic acid, and chlorogenic
acid (pKa = 3.45, 3.58, and 3.33, respectively) to β-casein since they are more readily ionized
in aqueous solution under physiological pH conditions [32].

Van der Waals forces relatively attract the weak forces between molecules arising from
electron fluctuations and the interaction of dipole moments. Van der Waals forces are usually
generated in combination with other interactions [3,7]. Rosmarinic acids interacted with
β-lactoglobulin or α-lactalbumin with the driving forces of hydrogen bonds, hydrophobic
forces, and van der Waals force [29]. The binding of ferulic acid/quercetin/vanillic acid to
β-lactoglobulin involved various non-covalent interactions such as hydrogen bonds, van der
Waals interactions, and hydrophobic interactions [25]. Ovalbumin-isoquercitrin complexes
are formed by hydrophobic interactions, van der Waals forces, and hydrogen bonding [33].
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2.2. Covalent Interactions

When covalent binding between polyphenols and proteins occurs, it is an irreversible
interaction because of the chemical reactions involved [34]. The process mainly concerns
the oxidation of polyphenols to strongly electrophilic quinones. Then, the interaction of
the quinones with nucleophilic amino acid (cysteine, lysine, methionine, and tryptophan)
residues on proteins or peptides via Michael addition forms covalent cross-linking [35].
Quinones can interact with sulfhydryl, amino, guanidinium, or imidazole groups on
proteins or peptides [35], where free sulfhydryl groups have been identified as being more
susceptible to covalent cross-linking than other groups [36].

Enzymatic and non-enzymatic methods are applied to mediate the covalent bind-
ing of polyphenols to proteins [6,37]. Enzymatic methods are environmentally friendly
and highly specific methods that synthesize complexes with intense free radical scav-
enging activity. However, the preparation procedures are complex and expensive [38].
In this scheme, firstly, phenolase (monophenolase or cresolase) induces the oxidation of
polyphenols to o-diphenols. Subsequently, under oxygen conditions, o-diphenolase (lac-
case or catecholase) converts the o-diphenols to o-quinones, and the active quinones can
interact with nucleophilic amino acid residues in the protein chain to form cross-linked
proteins or polymers [39,40]. For instance, Temdee and Benjakul [41] used laccase oxidized
gallic acid and catechuic acid covalently cross-linked with gelatin from cuttlefish (Sepia
pharaonis) skin to improve its gel functional properties. Velickovic and Stanic-Vucinic [39]
et al. used tyrosinase and laccase to achieve covalent binding of caffeic acid to β-casein
or β-lactoglobulin, and the reduced solubility and in vitro digestibility of the complexes
were found.

The alkaline reaction is one of the common non-enzymatic methods for binding polyphe-
nols and proteins. The oxidation of polyphenols leads to the formation of semiquinones,
which are rearranged into quinones under alkaline and aerobic conditions. These intermedi-
ates can form covalent crosslinks between proteins and polyphenols (C-N or C-S) [7,20,40].
Parolia et al. [18] obtained the conjugate of lentil protein and quercetin/rutin /ellagic acid
prepared by the alkaline reaction, and the enhanced antioxidant properties of the conjugates
were observed. Xu et al. [42] formed the conjugates by the binding of chlorogenic acid, gallic
acid, and caffeic acid with zein under alkaline conditions and investigated the effects of
covalent interactions on the structural and functional properties of the proteins.

For non-enzymatic methods, free radical grafting with ascorbic acid and hydrogen
peroxide as radical inducers is considered an effective synthetic method for the preparation
of protein–polyphenol complexes with high bioactivity, low cost, and non-toxic chemicals
involved [38,43]. The process mainly involves the oxidation of amino acids located on the
side chains of proteins by free radical initiators to form free radicals, which then react with
polyphenols through covalent bonds to form polyphenol–protein conjugates with strong
interactions as well as high stability [44,45]. The wheat gluten hydrolysate-chlorogenic acid
conjugate was obtained via the free radical method to explore the potential application in
improved functional properties of the conjugates [46]. A camel whey–quercetin conjugate
was prepared using the redox pair consisting of ascorbic acid and H2O2 by Baba et al. [47].

In addition to the above methods, some chemical cross-linking agents were also
applied to prepare polyphenol–protein conjugates [20]. The conjugates prepared from
zein assembled with chlorogenic acid or gallic acid via the chemical method obtained
by Xu et al. [48] had high polyphenol content and grafting efficiency. 1-ethyl-3-(30-
dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) were ap-
plied to achieve caffeic acid binding with β-lactoglobulin for the development of adding
functionality to milk-based protein [49].

According to the mechanism of interaction between polyphenol and protein pre-
sented above, the polyphenol–protein complexes can be prepared by physical mixing
(non-covalent interaction), enzyme reaction, alkaline reaction, and free radical grafting
(Figure 3). In general, different combination modes will be selected according to the vari-
ous research purpose or the functional characteristics and biological activities intending
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to be improved. On the one hand, the preparation of non-covalent polyphenol–protein
complexes (i.e., simple physical mixing under appropriate extrinsic conditions) is more
conveniently prepared than covalently combined complexes [4]. Since the non-covalent
interaction of the complexes is reversible, it is possible to achieve the binding of polyphe-
nols to proteins during preparation and release of polyphenols during digestion [3,37].
Therefore, this combination mode is generally used to explore the digestion or release
characteristics of the combined polyphenols, especially the protective effect of protein
on antioxidant or other bioactive properties of polyphenols in the process of storage,
intake, or digestion [12,30,50]. On the other hand, the covalent interaction between
polyphenol–protein complexes is irreversible, which makes the complexes more stable. At
the same time, covalent binding can mediate the high grafting rate of polyphenol binding
to proteins so that polyphenol–protein complexes with higher antioxidant properties can
be obtained [38,42,48]. Therefore, the complexes of covalent graft complexes are mainly
used to prepare protein-based emulsifiers, delivery carriers, etc. Notably, the safety and
potential hazard of the generated “new complexes” should also be considered, especially
the conjugated complexes prepared via the irreversible chemical reaction. Therefore, re-
searchers should consider the investigation purpose and application aspects to select the
binding mode of polyphenol–protein complexes.
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3. Assessment of Antioxidant Properties of Polyphenol–Protein Complexes

The methods used to assess antioxidants are abundant, and here is a summary and
review of the methods commonly used to evaluate the antioxidant properties of polyphenol–
protein complexes. The various assessment methods and their principles are summarized
in Figure 4 and Table 1.
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Figure 4. Assessments and principles of Antioxidant Capacity of polyphenol–protein complex.
DPPH: 2,2-diphenyl-1-picrylhydrazyl radical; ABTS: 2,2′-azinobis (3-ethylbenzthiazoline-6-sulfonic
acid) radical; ORAC: Oxygen radical absorbance capacity; β-PE: β-phycoerythrin; AAPH: 2,2′-Azobis
(2-amidopropane) dihydrochloride; HRSA: Hydroxyl radical scavenging activity; MDA: Malondialde-
hyde; TBA: Thiobarbituric acid; ·O2−: Superoxide anion radical; SOD: Superoxide dismutase; FRAP:
Ferric ion reducing antioxidant power; TPTZ-Fe3+: Tripyridine triazine ferric; TPTZ-Fe2+: Tripyri-
dine triazine ferrous; LDL: Low-density lipoprotein; DPPP: Diphenyl-1-pyrenylphosphine; AAPH:
2,2’- azobis (2-amidinopropane) dihydrochloride; DPPP = O: Diphenyl-1-pyrenyl phosphine oxide;
CAA: Cellular antioxidant activity; ABAP: 2,2′-azobis(2-amidinopropane) dihydrochloride; DCFH:
Dichlorofluorescin probe; DCF: Dichlorofluorescein; POV: Peroxide value; TBARS: Thiobarbituric
acid reactive substances; CD: Conjugated dienes.
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Table 1. Measurement methods and changes in antioxidant activity of polyphenol–protein complex.

Measurement
Methods

Proteins Polyphenols Reaction Conditions Influence on Antioxidant Activity of
Polyphenol–Protein Complexes

Mechanism Explanations Ref.

DPPH method
ABTS method

β-lactoglobulin Ferulic acid pH 9.0 at 20 ◦C for 24 h The free radical scavenging ability of the
complexes was significantly improved

The introduction of hydroxyl groups was
the reason for the enhanced antioxidant
activity of the complexes

[51]

Zein Chlorogenic acid, gallic acid,
and caffeic acid

pH 12.0 at 25 ◦C under
atmospheric air for 24 h

The antioxidant activity changes of control
zein and zein–polyphenol complexes

The synergistic antioxidant effect
of polyphenols

[42]

Zein Chlorogenic acid and
gallic acid

pH 6.5 cross-linked by EDC
and NHS

The antioxidant activity of zein was
enhanced by covalent grafting
of polyphenols

The hydroxyl groups in polyphenols were
still available after conjugation and
terminate the radical chain reaction

[48]

Whey protein Gallic acid, ferulic acid, and
tannic acid

pH 9.0 at 25 ◦C under
atmospheric air for 24 h

The phenolic compounds contributed to the
increase in the antioxidative activity of the
modified whey protein

The antioxidative activity of the complex is
dependent on the type and concentration of
phenolic compounds

[52]

β-lactoglobulin Chlorogenic acid 25 ◦C for 24 h The addition of chlorogenic acid improved
the free radical scavenging ability
of β-lactoglobulin

The protein combined with polyphenols
showed better antioxidant capacity

[30]

β-lactoglobulin Cyanidin-3-O-
glucoside(C3G)

pH 9.0 at 20 ◦C for 2 h The free radical scavenging capacities of
complexes were improved

C3G conjugation imparted excellent
antioxidant properties to the complexes

[53]

Wheat gluten hydrolysate Chlorogenic acid H2O2/ascorbic acid, under
atmospheric air at 25 ◦C
for 2 h

The radical-scavenging activity of
conjugates increased significantly

The structure changed, and consequently,
some antioxidant amino acids exposed after
forming conjugates

[46]

Camel whey Quercetin H2O2/ascorbic acid, under
atmospheric air at 25 ◦C
for 24 h

The radical scavenging activity of the
conjugates produced was enhanced

The quercetin contributed OH groups
after conjugation

[47]

Protein isolate from large
yellow croaker roe

EGCG H2O2/ascorbic acid, under
atmospheric air at 25 ◦C
for 24 h

the conjugation significantly increases the
antioxidant capacity of native protein

The better antioxidant capacity of the
conjugate may be a result of the addition of
EGCG to increase the hydroxyl content

[54]

ORAC method Mung bean globulin Mung bean polyphenol At 25, 70, 85 or 100 ◦C for 2 h With increased addition of polyphenols, the
antioxidant capacity of the system showed a
trend of first increasing and then
decreasing slightly

The combination of polyphenols with
globulins led to the introduction of phenolic
hydroxyl groups that can scavenge free
radicals. When the interaction ratio was
larger, the sites that could supply hydrogen
and electrons to free radicals were masked

[55]

Whey protein Caffeic acid and EGCG pH 3.5 or 7.0 at 25 ◦C for 60
min in the dark

The complexation suppressed the
antioxidant capacity compared to the
isolated compounds

The suppression may be due to
hydrophobic interaction and H-bonding
between these compounds

[56]

Ovalbumin Catechin H2O2/ascorbic acid, under
atmospheric air at 25 ◦C
for 24 h

The antioxidation ability of ovalbumin was
improved via its conjugation with catechins

The conjugation introduced a large amount
of phenolic hydroxyl groups

[43]

Whey protein EGCG H2O2/ascorbic acid, under
atmospheric air at 25 ◦C
for 24 h

The conjugate exhibited stronger
antioxidation ability than whey protein

The presence of EGCG resulted in the
increase of hydroxyl groups in whey protein

[57]
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Table 1. Cont.

Measurement
Methods

Proteins Polyphenols Reaction Conditions Influence on Antioxidant Activity of
Polyphenol–Protein Complexes

Mechanism Explanations Ref.

HRSA method β-lactoglobulin Caffeic acid pH 2.5, 6.0, or 8.5,
cross-linked by EDC
and NHS

The activity of the complex significantly
higher than the un-derivatized
β-lactoglobulin

- [49]

β-lactoglobulin Curcumin pH 6.0 or 7.0 at 25 ◦C In the presence of β-lactoglobulin, the
antioxidant capability of complexes is
remarkably higher than curcumin alone

The high activity of complexes may be
contributed by both curcumin and
β-lactoglobulin

[58]

Myofibrillar protein Hydrophilic and
hydrophobic

pH 9.0 at 25 ◦C The incorporation of polyphenol enhanced
the antioxidation activities

The enhanced antioxidation activities were
related to the hydroxyl groups substituents
in a polyphenol ring

[59]

FRAP method β-casein Chlorogenic acid pH 7.0, at 25 or 65 ◦C for
30 min, 100 or 121◦C for
15min

Complexes showed a synergetic effect on
FRAP activity

The reducing groups originally buried in
β-casein are exposed and enhance the
FRAP of the complexes

[60]

β-lactoglobulin Chlorogenic acid pH 7.0, at 25, 65 or 85 ◦C for
30 min, 100 for 15min, or
121◦C for 10 min

The addition of β- lactoglobulin could
enhance chlorogenic acid′s ability to resist
thermal oxidation

The complexes protected the chlorogenic
acid from oxidation reaction

[61]

β-lactoglobulin EGCG pH 7.0, at 25, 65 or 85 ◦C for
30 min, 100 for 15min, or
121◦C for 10 min

The addition of β- lactoglobulin inhibits the
antioxidation ability of EGCG

The formation of complex leads to the
occupation of active hydroxyl group
in EGCG

[62]

Whey protein isolation EGCG, quercetin, apigenin,
and naringenin

H2O2/ascorbic acid, under
atmospheric air at 25 ◦C
for 24 h

The complexes showed higher antioxidant
activity, especially whey protein
isolation-EGCG complex

A large number of phenolic hydroxyl
groups were introduced into whey
protein isolation

[13]

Lentil protein Quercetin, rutin and
ellagic acid

pH 9.0, at 25 ◦C under
atmospheric air for 24 h

The combination of polyphenols and
proteins synergistically improves their
antioxidant capacity

Coupling of polyphenols to lentil protein
imparted protein reduction ability

[18]

α-lactalbumin Hydroxy safflower yellow A,
neohesperidin
dihydrochalcone and
naringin dihydrochalcone

pH 7.0, at 25 ◦C FRAP of the complex is significantly lower
than that of its corresponding phenolic
acid alone

The hydrogen bond between α-lactalbumin
and chalcone is formed through hydroxyl,
thus occupying hydroxyl

[11]

Metal-Chelating
method

Porcine plasma protein
hydrolysates

Tannic acid and oxidized
chlorogenic acid

pH 9.0, at 25 ◦C under
atmospheric air for 24 h

Improved metal chelating activity by
trapping transition metals

The incorporation of phenolic compounds
improves the antioxidant activity

[63]

Silk sericin Hydroquinone and
pyrogallol

pH 9.0, at 25 ◦C under
atmospheric air for 24 h

The metal chelating activity of the
conjugates was improved

The hydroxyl groups of phenolic
compounds can quench oxidants by
providing hydrogen atoms

[64]

·O2− scavenging
activityLDL
oxidation

Gelatin Catechin Laccase, pH 7.0, at 20 ◦C for
24 h, under atmospheric air

Conferred the SOD-like antioxidant activity
on gelatin, improved antioxidant activity of
inhibiting oxidation of LDL

- [65]
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Table 1. Cont.

Measurement
Methods

Proteins Polyphenols Reaction Conditions Influence on Antioxidant Activity of
Polyphenol–Protein Complexes

Mechanism Explanations Ref.

CAA method Zein and bovine
serum albumin

Resveratrol and caffeic acid H2O2/ascorbic acid, under
atmospheric air at 25 ◦C
for 24 h

Resveratrol-loaded complexes exhibited
higher antioxidant ability than
free resveratrol

The complex nanoparticles improved
chemical stability of the delivery system

[17]

wheat protein, chickpea
protein and soy
protein isolate

Blueberry polyphenol Protein-rich substrates were
added to blueberry extract,
and then spray drying or
freeze-drying

Improved cellular antioxidant activity - [66]

Wheat gluten hydrolysate Chlorogenic acid H2O2/ascorbic acid, under
atmospheric air at 25 ◦C
for 2 h

The conjugates showed significantly
synergistically increased effect cellular
antioxidant activity

The covalent binding enhanced the ability
to promote the entry of chlorogenic acid
into cells

[46]

Wheat gluten hydrolysate Chlorogenic acid Interaction during
in vitro digestion

The CAA of the mixture was higher than
that of chlorogenic acid or hydrolysate alone

The interaction enhanced the cell entry and
the stability of chlorogenic acid

[67]

POV methodTBARS
method

Anchovy protein
hydrolysate

Catechin, gallic acid and
tannic acid

pH 9.0, at 25 ◦C under
atmospheric air for 24 h

The POV level exhibited a remarkable
reduction with the addition of conjugates

The conjugates could serve as the electron
or hydrogen atom donors, leading to the
break of free radical chain and reacting with
certain peroxide precursors to prevent the
formation of peroxides

[68]

Ovalbumin Procyanidin pH 7.4, at 25 ◦C for 1 h The oxidation degree of ovalbumin–
procyanidin emulsion was lower than that
of ovalbumin emulsion

The interaction altered the sensitivity of
oxidation on ovalbumin and improved the
ability to scavenge free radicals

[26]

Soy protein isolate EGCG pH 9.0, at 4 ◦C under
atmospheric air for 24 h

the Emulsions stabilized by the complexes
exhibited better antioxidant capacity

EGCG delayed oil oxidation by donating a
hydrogen from the hydroxyl groups and
reduce the reactivity of the transition metal
ions and oil by metal chelation

[69]

Soy protein isolate EGCG pH 9.0, at 4 ◦C under
atmospheric air for 24 h

The complexes provided superior oxidation
resistance compared to pure protein

The proteins adsorbed at the oil–water
interface is more sensitive to oxidation than
unabsorbed proteins

[70]

Oleosin EGCG pH 9.0, at 25 ◦C under
atmospheric air for 12 h

The emulsion with the complexes shows
high oxidative stability

the complexes had the ability to scavenge
free radicals and chelate metal ions

[71]

CD method Whey protein isolates lotus seedpod
proanthocyanin

H2O2/ascorbic acid, under
atmospheric air at 25 ◦C
for 24 h

The conjugate exhibited stronger
antioxidant effects than then WPI alone

— [72]

Pea protein Tannic acid pH 7.0, at 25 ◦C under
atmospheric air for 30 min

The lipid oxidation rate decreased with
increasing tannic acid concentration in the
emulsions

Tannic acid endowed the complexes with
antioxidant activity and led to the formation
of a thicker and denser coating around the
oil droplets

[73]

DPPH: 2,2-diphenyl-1-picrylhydrazyl radical; ABTS: 2,2′-azinobis (3-ethylbenzthiazoline-6-sulfonic acid) radical; ORAC: Oxygen radical absorbance capacity; HRSA: Hydroxyl
radical scavenging activity; FRAP: Ferric ion reducing antioxidant power; ·O2−: Superoxide anion radical; LDL: Low-density lipoprotein; CAA: Cellular antioxidant activity; POV:
Peroxide value; TBARS: Thiobarbituric acid reactive substances; CD: Conjugated dienes; EGCG: (−)-Epigallocatechin-3-gallate; EDC: 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
hydrochloride; NHS: N-hydroxysuccinimide.
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3.1. Assessment of Free Radical Scavenging Capacity

The method to determine the antioxidant capacity of the complexes by assessment of
free radical scavenging capacity is the most popular and used method at present because
it is simple and fast. Among them, assessments of 2,2-diphenyl-1-picrylhydrazyl (DPPH)
radical and 2,2′-azinobis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scaveng-
ing capacities are the most widely used methods. DPPH· ethanol solution is purple and
has strong ultraviolet absorption at 517 nm. After adding antioxidants, the antioxidant
reacts with DPPH·, making the reaction system lighter in color, and the absorbance value
decreases [74]. In the ABTS method, ABTS, as the chromogenic agent, produces a stable
blue-green cationic radical ABTS+· after oxidation, and then the reaction system is discol-
ored by adding antioxidants. The absorbance was measured at 734 nm, and a decrease
in absorbance was observed [75]. The results of the DPPH or ABTS radical scavenging
capacity of the antioxidants were mostly expressed in terms of the equivalent concentration
of Trolox [76]. It is reported that the combination of chlorogenic acid and the proteins (zein,
β-lactoglobulin, wheat gluten hydrolysate) showed enhanced capacities of scavenging
DPPH and ABTS free radicals [30,42,46,48].

In addition to DPPH and ABTS methods, the oxygen radical absorbance capacity
(ORAC) method, hydroxyl radical scavenging activity (HRSA) method, and superoxide
anion radical (·O2−) scavenging activity method is also used to evaluate the free radical
scavenging capacity of polyphenol–protein complexes.

In the ORAC method, β-phycoerythrin (β-PE) or fluorescein (3′,6′-dihydroxyspiro
[isobenzofuran-1[3H], 9′[9H]-xanthen]-3-one) are used as the fluorescent indicator protein,
and the 2,2′-Azobis (2-amidopropane) dihydrochloride (AAPH) and Cu2+-H2O2 system
are used as the sources of lipid peroxidation free radicals or hydroxyl free radicals, with
the Trolox as the reference in general. When β-PE is attacked by free radicals, the flu-
orescence decreases continuously at a certain wavelength. The free radical scavenging
ability of the sample is calculated according to the change in its fluorescence intensity
attenuation curve [77,78]. In the HRSA method, one is to generate hydroxyl radicals to
initiate the Fenton reaction. The oxidation degree of the system is evaluated by measuring
the amount of Fenton reaction products. The other is evaluated by measuring the amount
of hydroxyl radicals produced by the Fenton reaction. In the former, deoxyribose, iron,
and EDTA produce hydroxyl radicals to induce the Fenton reaction. When heated under
acidic conditions, malondialdehyde (MDA) is produced, and thiobarbituric acid (TBA)
will interact to form a pink chromophore with absorption at 532 nm. The degree of oxi-
dation of the system is evaluated by measuring the absorbance at 532 nm. In the latter,
H2O2 /Fe2+ system generates hydroxyl radicals through the Fenton reaction and produces
purple compounds with salicylic acid addition. After adding antioxidants, the reduction of
absorption at 510 nm was measured to reflect its hydroxyl radical scavenging ability [79]. In
·O2− scavenging activity method, O2− produced in the xanthine/xanthine oxidase system
can reduce a certain amount of oxidized cytochrome c to reduced cytochrome c, which has
the maximum light absorption at 550 nm. In the presence of superoxide dismutase (SOD)
or SOD-like antioxidants, due to their catalytic disproportionation of a part of O2−, the
amount of reduced cytochrome c is correspondingly reduced, and the absorbance at 550
nm is reduced so as to evaluate the SOD-like O2− scavenging activity of antioxidants [65].

Fan et al. [57] prepared whey protein isolate-(−)-epigallocatechin-3-gallate (EGCG)
conjugate by free radical grafting and used it as an emulsifier to stabilize menhaden oil.
The results showed that the ORAC of the conjugate was enhanced compared with whey
protein isolate alone. The results of the HRSA of Abd El-Maksoud et al. [49] showed that
the covalently conjugate formed by β-lactoglobulin and chlorogenic acid has a more robust
antioxidant capacity than the non-covalent complex. Chung et al. [65] found that gelatin
did not have superoxide anion scavenging activity, while the enzyme synthesized gelatin
catechin conjugate gave SOD-like activity.
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3.2. Other Assessment of Antioxidant Properties

The ferric ion-reducing antioxidant power (FRAP) method is widely used to determine
the antioxidant activity indirectly (i.e., the ability of the tested substance to reduce ferric iron
to ferrous iron) [80]. Yin et al. [60] found that after β-casein was combined with chlorogenic
acid, the FRAP value of the complex was significantly higher than the sum of β-casein alone
and chlorogenic acid alone, indicating a synergistic effect. Another report showed that
the FRAP values of chlorogenic acid in the presence of β-lactoglobulin were significantly
increased at high temperatures (85–121 ◦C) compared to the values of chlorogenic acid
alone [61].

The antioxidant activity can also be evaluated by measuring the ability of antioxidants
to chelate metal ions, which are one of the essential sources of free radicals [81]. It has been
reported that the metal-chelating activity of silk sericin increased after modification by
hydroquinone and pyrogallol, thus systematically reducing the degree of oxidation [64].

In the low-density lipoprotein (LDL) oxidation method, LDL is labeled by diphenyl-1-
pyrenylphosphine (DPPP), a fluorescent probe that can reflect hydrogen peroxide produced
by lipid oxidation [65]. Antioxidants can inhibit the oxidation of LDL, thereby reducing the
fluorescence intensity. The method was applied to prove that the gelatin-catechin conjugate
showed more potent inhibitory activity on LDL oxidation than unconjugated catechin [65].

To better reflect the effects of antioxidants in physiological conditions, the cellular
antioxidant activity (CAA) method is created to evaluate the intracellular reaction of an-
tioxidants to establish a better biological correlation with the bioavailability, absorption,
and metabolism of antioxidants in cells. The pre-treated cells contained dichlorofluorescin
(DCFH) probes. Through the action of 2,2′-azobis (2-amidinopropane) dihydrochloride
(ABAP) on cells to generate peroxy radicals, DCFH is oxidized to dichlorofluorescein
(DCF) with fluorescence, whose absorption and emission wavelengths are 485 nm and
583 nm respectively. Antioxidants can block the oxidation of DCFH to DCF. Therefore, the
antioxidant capacity of antioxidants can be evaluated by reducing cell fluorescence [82].
Fan et al. [17] proved that resveratrol loaded by zein-BSA nanoparticles has higher antioxi-
dant capacity than free state by using the CAA method, indicating that the nanoparticle
delivery system improved the absorption and bioavailability of encapsulated antioxidant
components into human colon carcinoma cell monolayers (Caco-2 cells). Hoskin et al. [66]
found that blueberry polyphenol–protein particles maintained the cellular antioxidant
activity of the blueberry extract in mouse macrophage RAW 264.7.

3.3. Assessment of Capacities against Lipid Peroxidation

At present, the emulsifier or stabilizer used as a lipid system has become one of the
crucial applications of polyphenol–protein complexes. For this purpose, in addition to the
above methods for determining antioxidant activity, it is necessary to assess the antioxidant
activity of the complex to inhibit the oxidation of the lipid system.

Peroxide is the main primary product of the automatic oxidation of lipids [83]. The
peroxide formed by lipid oxidation can oxidize Fe2+ to Fe3+ under acidic conditions. Then
Fe3+ and thiocyanate ions form the red complex, which has the maximum absorption
in 480~515 nm. By comparing the peroxide value (POV) of the lipid system with or
without antioxidants in a storage time (during the process of lipid oxidation), the effect of
antioxidants on inhibiting lipid oxidation can be obtained [84,85]. The second product of
lipid oxidation is malondialdehyde (MDA). In the thiobarbituric acid reactive substances
(TBARS) method, thiobarbituric acid (TBA) reacts with MDA under acidic conditions to
form red compounds with absorption at 532 nm. Thus, the activity of inhibiting lipid
oxidation can be evaluated by measuring the amount of MDA via the TBARS method in
the lipid system containing antioxidants. By measuring the POV and TBARS value of the
emulsion, Wen et al. [26] found that at 6-day, the oxidation degree of ovalbumin emulsion
and ovalbumin–procyanidins complexes emulsion was 5.90% and 1.78%, respectively,
reflecting that the addition of procyanidins improved the oxidation stability of the emulsion.
The results of Zhao et al. [68] showed that the POV and TBARS values of the emulsion



Antioxidants 2023, 12, 1577 13 of 24

added with the conjugate of anchovy protein hydrolysate and phenols (catechin, gallic acid,
and tannic acid) decreased significantly during storage time. The ability of the conjugate to
inhibit oxidation was consistent with the trend of the antioxidant activity of polyphenols.

In addition, the activity of maintaining the oxidative stability of the lipid system can
be evaluated by measuring the number of conjugated dienes (CD) formed by unsaturated
fatty acids in the lipid system [86]. Chen et al. [72] evaluated the antioxidant activity of the
whey protein isolates-lotus seedpod proanthocyanin conjugate in the emulsion. The results
showed that the conjugates had a lower CD value than whey protein isolates alone during
the 15-day storage period, reflecting the higher antioxidant stability of the conjugates.

3.4. Effects of Assessment Methods on Antioxidant Properties of the Complexes

As described above, various methods exist for evaluating the antioxidant properties
of polyphenol–protein complexes. Researchers often use various ways to determine the
antioxidant activity of the complexes. Generally, the determination results of different
methods are consistent. However, due to the different principles of the methods, sometimes
the results are inconsistent. Yin et al. [60] observed that the antioxidant activity of β-
casein-chlorogenic acid complexes determined by FRAP and ABTS had opposite results.
The results of FRAP showed that the complex has a synergistic effect. That is, the FRAP
value of the complex was higher than the sum of β-casein and chlorogenic acid alone.
On the contrary, ABTS free radical scavenging ability showed an antagonism effect of the
complexes. Another study showed that although the complexes formed by whey protein
isolate and EGCG, quercetin, apigenin, or naringenin, all showed higher antioxidant activity
than natural whey protein isolate, the antioxidant capacity of the complexes combined
with different polyphenols was observed in different orders in the ABTS and DPPH radical
scavenging methods and the FRAP method [13].

It should be noted that most of the evaluation of the antioxidant activity of the com-
plexes formed by the binding of polyphenols and proteins needs to be compared with
natural proteins or phenolic acids alone to show the enhanced antioxidant activity of the
complexes [13,61,87] or the masking effect of phenolic acids [11,50,62]. Sometimes, the
antioxidant capacity of the complexes will be compared with the sum of the antioxidant
activities of individual proteins and phenolic acids to judge the synergistic or antagonistic
effect of the forming complexes in terms of antioxidant capacity [60,88,89]. The scholars also
pointed out that although pure polyphenols showed more potent antioxidant activity than
complexes, if the degree of combination or grafting rate of polyphenols in the complexes
were considered in the calculation, it would be found that the combination of proteins and
polyphenols synergistically enhanced their antioxidant activity [18].

To sum up, the assessment methods and comparison or calculation methods for evalu-
ating the antioxidant capacity of polyphenol–protein complexes have an essential impact on
the results. The choice of methods should take into consideration the experimental purpose
or the characteristics of the composite, and the results of the determination should be
compared. However, there are relatively few studies on the in vivo antioxidant properties
of the complex, which should be given greater attention and more abundant studies in the
future to demonstrate better the digestive properties, oral stability, bioaccessibility, and
bioavailability of the complexes.

4. Factors Affecting the Antioxidant Properties of Polyphenol–Protein Complexes

As mentioned earlier, when preparing the polyphenol–protein complexes, different
conditions were applied to obtain the complexes according to various research or appli-
cation purposes (Figure 3 and Table 1). Therefore, the combination mode involved in the
preparation process, the type and concentration of protein or polyphenol selected, and
the extrinsic conditions for preparation will all affect the antioxidant properties of the
polyphenol–protein complexes (Table 1).
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4.1. Combination Mode

Among the interactions between polyphenols and proteins, covalent conjugates and
non-covalent complexes usually show different antioxidant activities. The literature reveals
that the antioxidant capacity of covalently bound polyphenol–protein conjugates is more
potent than that of non-covalent ones in most cases. Xu et al. [48] found that the antioxidant
activity of the zein–polyphenol covalent complex was stronger than that of the non-covalent
complex, possibly due to the difference in protein secondary structure and hydrophobic
group exposure. Gu et al. [38] clarified that covalently bound complexes showed better
free radical scavenging activity than non-covalent complexes due to the low grafting rate
caused by the removal of polyphenol molecules by dialysis when preparing non-covalent
polyphenol–protein complexes.

In addition, even if polyphenol protein complexes are covalently bound, different
preparation methods will also lead to differences in their antioxidant activities. The con-
jugates prepared by free radical induction have higher antioxidant activity than those
prepared by alkaline reaction [19]. Due to the different processes and mechanisms formed
by the two paths, the conjugates formed under free radical conditions have more sites avail-
able for polyphenol conjugation, resulting in the polyphenol–protein complexes showing
better antioxidant capacity [19,38].

4.2. Polyphenols and Proteins

As the main subjects forming the complexes, polyphenols and proteins are the main
factors affecting the antioxidant properties of the complexes. The type or structure of the
polyphenols/proteins makes a difference in the binding affinity between them. Moreover,
the concentration (ratio) of the two also affects the antioxidant properties of the complexes.

For polyphenols, there is a wide variety of structures, ranging from small individual
phenolic acid molecules to polymeric polyphenols. This leads to differences in their
binding when interacting with proteins and therefore affects the antioxidant properties of
the complexes [4,90]. Liu et al. [13] observed that the antioxidant capacities of whey protein
isolate-EGCG conjugates were the most potent, followed by whey protein isolate–quercetin,
while the antioxidant capacity of whey protein isolate–apigenin and whey protein isolate-
naringenin was the weakest, reflecting that the antioxidant capacity of the conjugates
was related to the number of phenolic hydroxyl groups of the polyphenols introduced
into the protein. Xu et al. [48] revealed that zein-gallic acid conjugate exhibited more
effective free radical scavenging activity than zein-chlorogenic acid conjugate obtained
via chemical cross-linking agents (EDC/NHS), reflecting that the number and position of
hydroxyl groups on the aromatic ring of polyphenols affected the antioxidant activity of
polyphenol–protein complexes. From another point of view, the differences in polyphenol
structure, especially the number and position of hydroxyl groups, will lead to different
binding modes with proteins, thus affecting the antioxidant activity of the complexes.
If the polyphenols and proteins have a strong affinity, the grafting ratio between them
will increase [42,90,91]. That is, the polyphenol content introduced in the complexes will
increase so that the complexes have higher antioxidant capacity. Xu et al. [42] found that
the covalent zein-chlorogenic acid complex obtained by the alkaline reaction exhibited the
most potent antioxidant capacity compared with gallic acid and caffeic acid, probably due
to the high grafting rate and more hydroxyl groups of the zein-chlorogenic acid complex.
However, if the binding with protein involves more hydroxyl groups in polyphenols, the
masking effect of the antioxidant activity of the complexes will enhance. For example,
the interaction of α-lactalbumin and hydroxy safflower yellow A may involve the most
hydroxyl groups. Thus hydroxy safflower yellow A showed the most extensive FRAP
loss in the interaction of α-lactalbumin and three similar chalconoids (hydroxy safflower
yellow A, neohesperidin dihydrochalcone and naringin dihydrochalcone) compared to
pure polyphenols [11]. Stojadinovic et al. [91] also observed a good correlation between the
binding affinity of different dietary polyphenols-β-lactoglobulin and the total antioxidant
activity of the formed complexes.
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A polyphenol–protein complex’s antioxidant capacity is also affected by the structure
and type of proteins like that of polyphenols. It has been reported that the ABTS·+ scav-
enging ability of the BSA-resveratrol complex is more potent than that of α-lactalbumin–
resveratrol and β-lactoglobulin–resveratrol [89]. At the same time, resveratrol and its
products may bind to the hydrophobic cavity of BSA, thus providing better protection
for the antioxidant capacity of the complexes compared with the other two proteins
under irradiation [89]. In addition, different antioxidant activities of α-lactalbumin/β-
lactoglobulin/lactoferrin–EGCG complex [92] and whey protein isolate/casein-chlorogenic
acid complex [87] were observed, respectively.

The concentration (ratio) of the polyphenols and proteins also affects the antioxidant
properties of the complexes. Generally, the higher the concentration of polyphenols, the
stronger the antioxidant capacity of the polyphenol–protein complexes formed [52,60,90,93].
Thongzai et al. [52] observed that the antioxidant activity of the whey protein-phenolic
complex was affected by the concentration of phenolic acids. In the range of 0.5–5% of
phenolic acid concentration, the antioxidant activity of the complexes increased with the
increase of phenolic acid concentration. Yin et al. [60] also found that the antioxidant
activity of the complexes of β-casein-chlorogenic acid showed an increasing trend in a
dose-dependent manner. However, excessive polyphenol concentration would destroy the
protein structure, so it harmed the antioxidant properties of the complexes [55,94].

4.3. Extrinsic Conditions
4.3.1. Temperature

With the increase in temperature, the binding mode of polyphenols to proteins may
change from non-covalent binding to covalent binding, which may lead to changes in
the antioxidant capacity of the complexes [60–62]. According to the report, the covalent
bonding β-lactoglobulin-chlorogenic acid complex was formed at higher temperatures
(above 85 ◦C) and showed better antioxidant activity [61]. However, at a higher heating
temperature, the closer combination of polyphenols and proteins would lead to the occu-
pation of active hydroxyl groups in the polyphenol molecules, reducing the antioxidant
activity [62]. At the same time, high-temperature lead to the degradation or isomerization
of polyphenols, which weakens antioxidant capacities [55,61,95].

4.3.2. pH

The binding of polyphenols to proteins can occur at a specific range of pH (4.0–10.0) [96].
As mentioned above, polyphenols are oxidized to quinones under alkaline conditions and
then covalently bound to proteins. This leads to changes in the antioxidant activity of the
complexes. It has been reported that pH affects the stability of phenolic compounds, the
structural characteristics of proteins, and other factors, thus affecting the antioxidant properties
of the complex [56]. Wang et al. [95] observed that at pH 8.0, EGCG modified α-lactalbumin
covalent complex was formed, and its antioxidant properties were significantly enhanced. In
addition, it has been reported that when coupling polyphenols with proteins by carbodiimide
crosslinker chemistry method, the highest amount of phenolic acid was introduced to the
protein at pH 6, thus obtaining the complex with the best antioxidant activity under this
condition [49].

4.3.3. Other Extrinsic Factors

Other extrinsic conditions such as ultrasonic, irradiation, and solvent will affect the
antioxidant capacity of polyphenol protein complexes. The changes in protein structure
induced by ultrasonic treatment enhanced the affinity between protein and polyphenols.
Thus, the more potent antioxidant activity of the complex after ultrasonic treatment was
observed [30,50]. The isomerization of polyphenol molecules caused by irradiation also
caused changes in the antioxidant activity of polyphenol–protein complexes [89]. Moreover,
since the polarity of polyphenols is different, improving the solubility of the complex in
different solvents enhanced its free radical scavenging capacity [18].
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5. Potential Applications of the Polyphenol–Protein Complexes with
Antioxidant Properties

Complexes with polyphenols and proteins have enhanced their functional properties
and antioxidation activities. The complexes may be used for delivery systems, emulsions,
protein-based films, and gels. (Figure 5).
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5.1. Delivery Systems

The amphiphilic nature of proteins is widely considered an excellent carrier for bioac-
tive compounds, especially for improving the bioaccessibility and stability of some poorly
soluble polyphenols (e.g., curcumin, resveratrol, quercetin) [14,97,98]. When delivering
polyphenols, polyphenols will form complexes with the protein carriers and enter the
digestive system. At this time, the formation of the complexes helps to protect polyphenols
from degradation so that the antioxidant activity of polyphenols and other biological ac-
tivities still exist when they reach the intestinal tract [3,99]. Tong et al. [50] confirmed that
the antioxidant activity of protein fibril and EGCG complex was significantly increased,
and EGCG could be prevented from degradation under the protection and slow-release
function of the protein, so it had higher biological accessibility. Jiang et al. [87] observed
that the digested products of the complex have the effect of synergetic scavenging free
radical capacity through the simulated gastrointestinal digestion experiment. The quercetin
and resveratrol delivered by zein–carboxymethyl cellulose nanoparticles had enhanced
oxidation resistance and storage stability [100]. Meanwhile, some protein delivery systems
for polyphenols have been developed. For example, as a low-cost, safe, and effective carrier,
zein nanoparticles improved the oral bioavailability of resveratrol [101] and helped to
retain the antioxidant activity of resveratrol [102]. Alternatively, composite carriers formed
by combining proteins and polyphenols are also highly promising as carriers for active
substances. Zein cross-linked EGCG nanoparticles were developed for the co-delivery
of curcumin and resveratrol. The delivery system showed better stability and improved
biological accessibility for the delivered nutrients due to its antioxidant and encapsula-
tion effects [103]. Similarly, since BSA-caffeic acid covalently bound nanoparticles had
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higher antioxidant activity than BSA alone, resveratrol in the composite nanoparticles
showed better heat and ultraviolet resistance stability and had better cell antioxidant
activity [17]. Therefore, the orientation of polyphenol–protein complexes as delivery sys-
tems has essential application value in medicine and in vivo therapy.

5.2. Emulsions

The excellent emulsifying and antioxidant properties of polyphenol–protein complexes
have been observed and applied to food emulsion systems [6]. The proteins modified by
polyphenols show higher emulsifying activity and emulsion stability due to the increase in
surface hydrophobicity and the decrease in particle size [6]. Fei et al. [104] found that the
thermal stability, antioxidant capacity, solubility, and emulsion stability of whey proteins
were improved after cross-linked with gallic acid/protocatechuic acid through covalent
bonding. Furthermore, polyphenols significantly improve the oxidation resistance of the
emulsions, which improves their antioxidation and storage stability [7]. Wang et al. [105]
showed that 0.03% EGCG-modified chicken wooden breast myofibrillar protein retarded
phase separation by preventing droplet and protein aggregation, significantly reduced the
particle size of the emulsion, and improved emulsion stability and emulsion activity. Also,
the inhibition of protein oxidation and lipid oxidation by 0.03% EGCG was recorded during
storage at 50 ◦C for 96 h.

Lipid oxidation has been a pressing difficulty for oil–water emulsion systems in food
applications. The contact area between lipids and water is the crucial area for the de-
velopment of oxidation. The complexes can form a tighter interface facial mask in this
area as the result of the decrease of the interfacial tension after the conjugation of the
proteins and polyphenols, which can effectively prevent the penetration and diffusion
of oxidation initiators. At the same time, the potent antioxidant property of polyphe-
nols can capture the oxidants at this interface to avoid lipid oxidation [6]. In addition,
the complexes also inactivate the transition metals and other oxidants at the oil–water
interface, thus preventing the decomposition of lipid hydroperoxide (LOOH) into alkoxy
(LO·) and peroxy (LOO·) radicals [6,43] (Figure 6). Based on this, polyphenol-modified
protein complexes were used to develop emulsifiers with anti-lipid oxidation properties.
The combination of whey protein isolate and lotus seedpod proanthocyanin significantly
enhanced antioxidant activity, and the conjugated diene production of flaxseed oil encap-
sulated by the complex is lower, showing better antioxidant stability [72]. Studies have
shown that anchovy protein hydrolysate–polyphenol (catechin, gallic acid, tannic acid)
conjugates effectively improved the physical stability and oxidative stability of fish oil
emulsion during storage [68]. The reduced thiobarbituric acid reactive substances and
peroxide value proved that EGCG-conjugated egg albumen hydrolysate improved the
oxidative stability of fish oil emulsion [106]. Similarly, the enhanced emulsification ability,
the free radical scavenging activity, and the antioxidant effect of linoleic acid oxidation
exhibited by the oyster water-soluble protein–EGCG conjugate during storage in the linolic
acid emulsion system suggested that the conjugate possessed both emulsification and
antioxidant abilities [107]. Moreover, the chickpea protein isolate combined with gallic
acid by alkali treatment contributed to the accumulation of higher gallic acid at the droplet
interface, and the reduction of primary and secondary oxidation products reflected the
chemical stability of the emulsion [108]. It was reported that the soybean protein 7S/11S-
rutin covalent conjugates formed an interfacial barrier and exhibited excellent free radical
scavenging properties while inhibiting lipid oxidation in the algae oil-enriched emulsions
during storage [109].
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5.3. Films

Due to the characteristics of environment-friendly and degradable regeneration, pro-
teins have become a good source of food packaging films [110]. Polyphenols can not
only be used as a cross-linking agent between protein molecules to make up for the poor
mechanical and barrier properties of protein-based films but also as an antioxidant to en-
hance the antioxidant capacity of protein-based films [20,111]. The incorporation of ferulic
acid was reported to result in denser film microstructure, lower water vapor permeability,
and significantly improved antioxidant activity of the gelatin nanocomposite packaging
films [112]. It was observed that the high antioxidant properties of fish gelatin-based
film incorporated with mangrove extracts (rich in polyphenols) were favorable to inhibit
oxidation and showed first potential as active packaging materials [113]. More importantly,
the ability of polyphenol-grafted protein-based films to improve the storage stability of
foods has also been demonstrated. Nilsuwan et al. [114] found that chicken protein iso-
late/fish gelatin blend film added with gallic acid or tannic acid had enhanced mechanical
properties. The film containing 0.75% gallic acid had high ultraviolet-light barrier prop-
erties and antioxidant activity. The oxidation of chicken skin oil sealed with the forming
pouches was delayed. Similarly, a fish gelatin–EGCG composite film was developed for
packaging pouches of chicken skin oil [115]. The results showed that the chicken skin oil
in the pouches showed a low oxidation level, and EGCG added to the gelatin pouches
could retain the unsaturated fatty acids in chicken skin oil [115]. A new type of fish glue
film incorporated with protocatechuic acid was developed, and it was found that it had
improved flexibility, ultraviolet, and water resistance. In terms of food preservation, the
composite film has antioxidant and antibacterial activities, which improves the security of
beef preservation and extends the shelf-life [116].
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5.4. Gels

Proteins can form gel networks triggered by certain environmental conditions (tem-
perature, pressure, pH, mineral antiparticles, crosslinkers, etc.) [40]. Polyphenols added as
protein cross-linking agents can enhance the gel properties of proteins [7]. Man et al. [117]
reported that samples of 0.002 and 0.01 g/g CA-modified soy protein isolate had signifi-
cantly enhanced gel strength due to greater crosslink density, and the covalent interactions
facilitated the development of the gel network. Xue et al. [118] also reported that the
water-soluble polymer of tea polyphenol–egg white had improved gel strength under
thermal treatment, and therefore, tea polyphenol could be used as an excellent gel modifier
in egg white products. In addition, the protein conjugated with polyphenols imparted
antioxidant properties to the gel, expanding its functional scope and application scenarios.
For example, a gel of gelatin covalently modified with gallic acid exhibited enhanced
antioxidant activity and antimicrobial activity, demonstrating its potential for relevant
food and medical applications [119]. Furthermore, proteins can also play a role in the
controlled release of polyphenols [120]. More importantly, the combination of the two can
better play the role of antioxidation under the slow release of polyphenols created by the
enhanced gel characteristics [4]. The mixture of catechin and gelatin has the potential to
become an effective antioxidant biomaterial since its enhanced antioxidant activity and
slow release of catechin obtained from more robust gel properties have been observed [121].
Polyphenol-containing gelatin/chitosan hydrogels cross-linked by laccase have shown that
their structural stability is enhanced by the polyphenols. In particular, the composite hydro-
gel had better antioxidant activity and inhibition of chronic wound enzymes in biological
activity [122].

6. Conclusions and Perspectives

Generally, polyphenols and proteins interact to change their functional properties.
The improvement of antioxidant capacity is one of the most concerning aspects. The
combination of the two can be formed by covalent or non-covalent methods. The antiox-
idant activity of the complexes can be assessed by measuring their ability to scavenge
free radicals or their ability to protect lipids from oxidative damage. Due to the type of
protein and polyphenol, binding mode, determination method, environmental conditions,
and other factors, differences in the antioxidant properties of the complexes have been
observed. Improved antioxidant activity can be achieved using polyphenols combined
with proteins applied in emulsions, films, gels, and active substance delivery systems.
However, the necessary cellular and animal experiments should be more widely used to
provide evidence for the biological activity, more importantly, toxicity and safety of the
complexes. More types and sources of proteins and polyphenols for forming complexes
should also be studied to expand their applications in food engineering.
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