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Abstract: Oxidative stress (OS), which arises through an imbalance between the formation of reactive
oxygen species (ROS) and antioxidant defenses, plays a key role in the pathophysiology of female
infertility, with the latter constituting just one of a number of diseases linked to OS as a potential
cause. The aim of the present article is to review the literature regarding the association between OS
and female infertility. Among the reproductive diseases considered are endometriosis and polycystic
ovary syndrome (PCOS), while environmental pollutants, lifestyle variables, and underlying medical
conditions possibly resulting in OS are additionally examined. Current evidence points to OS
likely contributing to the pathophysiology of the above reproductive disorders, with the amount of
damage done by OS being influenced by such variables as duration and severity of exposure and the
individual’s age and genetic predisposition. Also discussed are the processes via which OS may affect
female fertility, these including DNA damage and mitochondrial dysfunction. Finally, the last section
of the manuscript contains an evaluation of treatment options, including antioxidants and lifestyle
modification, capable of minimizing OS in infertile women. The prime message underlined by this
review is the importance of considering OS in the diagnosis and treatment of female infertility. Further
studies are, nevertheless required to identify the best treatment regimen and its ideal duration.

Keywords: oxidative stress; endometriosis; polycystic ovary syndrome; diminished ovarian
reserve; antioxidants

1. Introduction

Millions of women worldwide struggle with female infertility, which is a serious
public health problem. Oxidative stress (OS) has been identified as a major factor in the
pathophysiology of female infertility. In OS, reactive oxygen species (ROS) and antioxidants
are out of balance, resulting in cellular damage. An excess of pro-oxidants may cause OS
when their systemic expression surpasses the capacity of a biological system to rapidly
detoxify the reactive intermediates or to repair the damage they have caused [1]. This
mechanism may be altered if ROS, reactive nitrogen species (RNS), antioxidant defense
mechanisms, or else any combination of the latter arise [2]. In the case that all molecules
are reconverted to their reduced state after oxidation, a certain degree of ROS is needed to
enable normal cellular functioning [3]. However, in women, this antioxidant defense mech-
anism may be overwhelmed due to excessive formation of ROS, leading to an environment

Antioxidants 2023, 12, 1490. https://doi.org/10.3390/antiox12081490 https://www.mdpi.com/journal/antioxidants

https://doi.org/10.3390/antiox12081490
https://doi.org/10.3390/antiox12081490
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0003-4651-312X
https://orcid.org/0000-0002-5287-4450
https://orcid.org/0000-0003-1198-9144
https://doi.org/10.3390/antiox12081490
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox12081490?type=check_update&version=1


Antioxidants 2023, 12, 1490 2 of 22

unable to support normal physiological processes [4]. In other words, when the antioxidant
system is exhausted by an excess of ROS, the female genital tract will be negatively affected.
Oocytes and follicles are damaged by OS in the female reproductive system, which impairs
implantation, alters endocrine function, and damages the endometrium. The result is an
alteration in ovulation, steroidogenesis, and oocyte maturation, which in turn hastens the
natural process of apoptosis in granulosa cells. Some of the issues that may arise from the
above condition are endometriosis, polycystic ovarian syndrome (PCOS), and unexplained
infertility [3], while other possible consequences are such pregnancy complications as
preterm birth, hypertension, and intrauterine growth restriction (IUGR) [5]. Oxidative
abnormalities are associated with malnutrition, obesity, and negative lifestyle behaviors, in-
cluding alcohol consumption, smoking, and recreational drug use [3,6] while being exposed
to ovotoxins in the workplace and the environment can also adversely affect fertility [7–9].
Infertile couples frequently resort to assisted reproductive technology (ART) to increase
their chances of conception [3], while there are ongoing investigations into the addition
of antioxidants to the culture medium as a means of improving the success rate [10]. This
article examines the ways in which OS adversely affects the female reproductive system
while presenting a number of remedies that can halt or reduce the damage.

2. ROS in the Female Reproductive System
2.1. Source of ROS Production in the Female Reproductive System

The main components of the female reproductive system are the ovaries, fallopian
tubes, uterus, and cervix. Potential sources of ROS in the female reproductive system are
granulosa cells, oocytes, cumulus cells, and endometrial cells [11]. Granulosa cells play
an important role in the maturation and development of the oocyte by surrounding it
and it is during oocyte development and ovulation that these cells form ROS. ROS, which
are defined as oxygen free radicals, are produced as intermediates during the metabolic
process [12]. Among the ROS produced by granulosa cells during follicular growth and
that play a part in controlling ovulation and corpus luteum activity, are hydrogen peroxide
(H2O2), superoxide anions (O2−), and nitric oxide (NO) [13]. Because they contain many
mitochondria, these being the main generators of ROS, oocytes are particularly vulnerable
to OS. ROS are among the by-products of the electron transport cycle during ATP generation
in mitochondria [14]. In addition, oocytes generate ROS during meiosis, this being an
essential process for oocyte development and fertilization. During ovulation, cumulus cells
form in a circle around the oocyte, while during both ovulation and fertilization, these
cells release ROS. Laboratory studies have shown that during ovulation, the cumulus cells
secrete H2O2 and O2 which regulate fertilization and implantation [15]. The endometrial
cells which line the uterus play a crucial role in fertilization and implantation, while during
menstruation and pregnancy they produce ROS. It has been demonstrated that endometrial
cell production of H2O2 and O2 during the menstrual cycle contributes to the control of
endometrial receptivity and implantation [16,17].

2.2. The Physiological Role of OS in Female Reproduction

ROS set off a chain reaction that involves membrane lipids, DNA, RNA, proteins,
carbohydrates, and other macromolecules in the cell [18]. Cell damage can be attributed to
OS caused by a cascade of lipid peroxidation process, DNA damage, membrane disrup-
tion, protein formation disorders, and loss of adenosine triphosphate energy [19]. During
aerobic respiration, the mitochondrial electron transport chain, endoplasmic reticulum,
and nuclear membrane generate endogenous ROS [20]. Moreover, the formation of ROS
is also influenced by certain metabolic processes, including the activities of xanthine oxi-
dases, cytochrome P450, and nicotinamide adenine dinucleotide phosphate oxidases [20].
Higher levels of ROS are produced in response to psychological stress as well as to drug,
alcohol, and tobacco use and inactive lifestyle [21]. OS is caused by ROS, which includes
superoxide anion, hydrogen peroxide, hydroxyl radical, peroxyl, and hydroperoxyl [12].
Proliferation, differentiation, and apoptosis are just some of the cellular biological activities
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regulated by the expression of specific genes and proteins [22,23]. ROS play a role in the
menstrual cycle by influencing tissue remodeling, hormone signaling, and cyclic endome-
trial changes in the female reproductive system. ROS in the ovary regulate ovarian steroid
hormone production, follicle synthesis, maturation, ovulation, and tubal function [24].
Corpus luteum breakdown, implantation, and the normal birth process are all affected by
ROS [24,25]. ROS and antioxidants in the ovaries, follicular fluid, and peritoneal fluid
all play a role in oocyte quality, oocyte fertilization, implantation, and embryo devel-
opment [26]. Several in vivo and in vitro studies have shown that ROS are involved in
angiogenesis-promoting vascular endothelial growth factor signaling [27]. They also sug-
gest that ROS play a role in folliculogenesis and early embryonic development. ROS and
antioxidant levels regulate the microenvironment of the follicular fluid, which process
determines which follicle becomes dominant. ROS can trigger ovulation in mature Graaf
follicles, and any change in this ROS level can disrupt ovulation [28]. Increased catalase,
glutathione, and estrogen production in response to ROS prevents apoptosis in the mature
Graafian follicle during ovulation [3].

2.3. Mechanisms by Which OS Damages the Female Reproductive System

Cells are damaged by OS in many ways, including lipid peroxidation, protein oxida-
tion, DNA damage, and mitochondrial dysfunction [29]. Consequences of the destruction
by OS of oocytes and follicles in the female reproductive system include defective implanta-
tion, altered endocrine function, and endometrial damage. Lipid peroxidation is a process
via which lipids are degraded by oxygen, thus producing lipid peroxides [30], while lipid
peroxidation-induced damage to the cell membrane weakens the viability and function of
oocytes and follicles within the female reproductive system. Moreover, OS and cell damage
are exacerbated by proinflammatory cytokine formation that has also been induced by lipid
peroxidation. Oxidization of amino acid residues in proteins results in the disruption of
the original functions of the proteins, while protein oxidation diminishes the viability and
function of proteins in the developing oocytes and follicles within the female reproductive
system [31]. Protein oxidation, while causing OS and cell damage, additionally releases
proinflammatory cytokines. Oxidative alteration of DNA leads to its damage, resulting in
dysfunctional DNA and mutations [32], while in the female reproductive system, DNA
damage negatively impacts the viability and function of oocytes and follicles by damaging
their DNA. DNA damage, by increasing OS and cell damage, activates the production of
proinflammatory cytokines. Meanwhile, energy production is reduced when mitochondrial
activity is impaired so that ROS are released at elevated levels. In the female reproductive
system, mitochondrial dysfunction damages the viability and function of oocytes and
follicles [33], whereas OS and cellular damage are intensified due to the production of
proinflammatory cytokines induced by mitochondrial dysfunction (Figure 1).

2.4. What Are the Adverse Effects of OS on the Female Reproductive System?
2.4.1. Oocyte Quality

The degree of viability of the oocyte depends greatly on its quality, and this quality
may be reduced due to oxidative damage to DNA, lipids, and proteins caused by OS [34].
Meanwhile, chromosome abnormalities and problems with conception may arise if there is
ROS-induced DNA damage, including double- and single-strand breaks and nucleotide
alterations [35]. Lipid peroxidation, also potentially caused by OS, reduces fluidity and
permeability of the oocyte membrane and, therefore, its ability to be fertilized [36]. OS
can also cause protein oxidation, which may impede oocyte development and, therefore,
fertility [37] (Figure 1).
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2.4.2. Embryonic Growth

Embryonic development is a highly complex process capable of being affected by
many factors, one being OS, which can obstruct embryo development by altering gene
expression: This can generate mitochondrial dysfunction which, in turn, triggers DNA
damage [38]. ROS-induced DNA damage can even stop embryonic development by
producing chromosomal abnormalities. It is of note that diminished ATP generation and
stunted embryo development have been associated with OS [39], while, moreover, OS may
modify gene expression, causing cells to be more susceptible to death thus aggravating
aberrant development [40] (Figure 1).

2.4.3. Implantation

Implantation is a process that is crucial to establishing a healthy pregnancy. However,
due to its negative impact on endometrial inflammation, trophoblast invasion, and gene
expression, OS can play a role in implantation failure [41]. Notably, by altering the embryo’s
gene expression, OS can trigger aberrant development, this leading to a greater risk of
apoptosis [12]. The establishment of pregnancy is furthermore dependent on trophoblast
invasion, which is also susceptible to hindrance by OS. Meanwhile, ROS-induced endome-
trial inflammation may diminish the capacity of the endometrium to receive and nourish
the embryo [42] (Figure 1).

3. Factors Affecting Female Fertility Associated with OS
3.1. Age

Given that fertility decreases with age, maternal age is naturally a big factor in infertil-
ity. For example, by age 44, the woman experiences reduced estrogen levels and diminished
protection from oxidative damage to the endometrium [43]. Hormone replacement therapy
(HRT) is able to defend against OS by preventing the effects of the age-related reduction in
antioxidant levels, while it may be additionally capable of considerably slowing down loss
in infertility, although more studies are needed to support this hypothesis [44]. In addition
to maternal age, paternal age also plays a role in fertility, as aging negatively affects gamete
and semen quality and also causes oxidative DNA damage (Figure 1). In a word, the older
the father, the more greatly sperm DNA is exposed to OS [45].

3.2. Body Weight

(i) Obesity: Obesity poses significant threats to female fertility by interfering with
hormonal regulation and menstrual cycles [46–48]. The disease’s pathology includes the
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overproduction of ROS, leading to OS that damages reproductive cells and tissues in
women’s reproductive systems [46,49]. ROS production from obesity can interfere with
vasodilation and blood flow to reproductive organs, leading to fertility issues [49]. Further-
more, obesity often triggers hormonal imbalances that alter ovulation regularity leading to
conditions like PCOS which is the leading cause of female infertility [47,48]. The mecha-
nisms underlying the association between obesity and hormonal disturbances are complex
and multifactorial, involving alterations in adipokine secretion, insulin resistance, and
inflammation [50]. Furthermore, obesity-induced OS can directly damage female fertility
by damaging oocytes and impairing the functioning of the hypothalamic-pituitary-ovarian
axis [47]. Therefore, understanding the complex interactions among obesity, hormone
disruption and fertility outcomes for obese women is vital in order to increase fertility
outcomes.

(ii) Underweight: Malnourished reproductive women have impaired endothelium-
dependent vasodilation, which in turn causes OS [51].

3.3. Lifestyle Factors

(i) Cigarette smoking: It is well known that smoking during pregnancy increases the
risk of infertility, pregnancy problems, fetal loss, fetal developmental delay, preterm birth,
and miscarriage [52]. Toxic compounds and prooxidants in cigarettes cause the body to
release ROS, leading to OS in the microenvironment of follicles [53].

(ii) Alcohol usage: Alcohol consumption produces metabolites, such as acetyl and
methyl radicals, which are responsible for the formation of ROS. Alcohol consumption
during pregnancy increases ROS in maternal plasma, causes lipid peroxidation, and de-
creases antioxidant activity and glutathione (GSH) levels of superoxide dismutase (SOD).
Therefore, alcohol consumption during pregnancy can lead to IUGR, preterm birth, low
birth weight, increased risk of congenital diseases, miscarriage, and prematurity [3].

(iii) Recreational Drug usage: Tetrahydrocannabinol, the active ingredient in marijuana
(recreational drug), generates free radicals that can affect both the central and peripheral
nervous systems. Delta-9-tetrahydrocannabinol (THC) is another major substance con-
stituent that produces psychological effects in smokers. The induction of DNA damage
by this THC has been linked to the production of ROS [54]. Just as nicotine causes OS and
lipid peroxyl radicals via its metabolites, cocaine does so via its metabolites. Norcocaine,
another oxidative metabolite of cocaine, generates OS by depleting GSH reserves [55],
while formaldehyde (an oxidative metabolite of cocaine) generates ROS. In addition, ROS
causes apoptosis [56]. Research indicates that THC, the primary psychoactive component
of cannabis, can adversely impact oocyte maturation and early embryonic development.
Specifically, exposure to THC reduces the likelihood of oocytes reaching metaphase II and
causes lower cleavage rates post-fertilization. Additionally, while no notable changes are
seen in spindle morphology, there is an increase in apoptosis levels within the derived
blastocysts, suggesting a disruptive effect of cannabis on reproductive processes [57].

3.4. Environmental and Occupational Exposures

(i) Pesticides: Wives of male agricultural workers who come into close contact with
pesticide compounds such as DDT (organochlorine insecticides) have an increased risk of
miscarriage or spontaneous abortion according to extensive research [58]. Polychlorinated
biphenyls, often referred to as PCBs (a pesticide), are known to increase free radical produc-
tion by inducing OS through endothelial cell dysfunction and cell membrane disintegration.
Vitamin E levels decrease after PCB exposure [59], while exposure to organophosphate
pesticides leads to OS due to decreased GSH and increased ROS [60].

(ii) Endocrine-Disrupting Chemicals: The male reproductive system is negatively
affected by endocrine-disrupting chemicals (EDCs), including phthalates, which also con-
tribute to the development of OS. In addition, elevated concentrations of phthalate metabo-
lites in urine have been found in workers in the polyvinyl chloride industry [61]. Phthalate
metabolites in urine have been observed to cause sperm apoptosis and ROS formation,
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even after controlling for age, smoking status, and coffee consumption. Evidence shows
that bisphenol A (BPA) can cause OS, reducing a man’s ability to have children. Chemicals
like phthalates and BPA, which disrupt reproductive hormones, have been associated with
fertility challenges in women, including repeated miscarriages and unexplained infertility.
The risk appears to be exacerbated among individuals engaged in commerce-related occu-
pations due to heightened exposure, thereby indicating a potential occupational hazard for
reproductive health [62].

4. OS Has Been Implicated in a Variety of Reproductive Disorders
4.1. Polycystic Ovarian Syndrome

PCOS, one of the main endocrine disorders of reproductive-aged women affecting
approximately 18% of women of this age group, is characterized by hyperandrogenism,
inability for normal folliculogenesis, and polycystic ovaries [63], while menstrual irregular-
ities, e.g., absent or heavy periods, constitute typical PCOS symptoms. As a result, 90% of
PCOS women suffer from anovulatory infertility. PCOS is moreover often characterized by
insulin resistance, this disorder probably being a major factor in the development of the
condition. Insulin resistance arises when the cells cease to respond to the hormone insulin,
which is vital to controlling blood sugar levels: This results in an elevation of androgen
production in the ovaries, which, in turn, disrupts the regular menstrual cycle and causes
the development of ovarian cysts.

The presence of insulin resistance can make weight reduction more challenging, thus
exacerbating PCOS symptoms. Furthermore, it has been shown that insulin resistance
generates chronic low-grade inflammation, which is known to play a part in PCOS devel-
opment. An additional consequence of insulin resistance is the generation of ROS. Due to
the high blood glucose levels, ROS is generated, which causes oxidative damage [64]. The
association of PCOS with OS is likely due to the low levels of antioxidants found in this
condition [65], while mitochondrial dysfunctions in PCOS patients are mainly attributable
to patients’ reduced oxygen (O2) consumption, lower GSH levels, and elevated formation
of ROS [66]. In PCOS women, the above inflammatory state is characterized by increased
mononuclear cell production [67], presumed to be an outcome of an exaggerated response
to hyperglycemia and C-reactive protein (CRP).

4.2. Endometriosis

Endometriosis, a benign, estrogen-dependent, chronic gynecologic disorder, affects
6–10% of reproductive-aged women and can manifest via pelvic discomfort and infertility.
It is specifically characterized by the development of endometrial tissue in sites other than
the uterus. The most frequent areas where endometriosis lesions occur are the ovaries
and pelvic structures. Rarely, the lesions can also impact the lungs, the abdomen, and the
viscera. The exact causes of endometriosis, which appear to be multifaceted and complex,
remain uncertain [68]. It is thought to arise from a combination of factors, potentially
including inflammation, a weakened immune system, and genetic predisposition [69].

As concerns pelvic endometriosis, the most plausible explanation to date for its cause is
retrograde menstruation and implantation [70]. Although research results regarding the detec-
tion of OS markers in endometriosis patients are to date conflicting [71], a number of studies
have observed elevated levels of OS markers in endometriosis patients [72–76]. However,
others have reported no evidence of increased OS in the peritoneal fluid or bloodstream of
patients [77–79]. Of note, endometriosis cysts with frequent cyclic hemorrhage are often
observed to have higher free iron levels than other ovarian cysts, while endometriosis cysts
showing increased levels of lipid peroxides, 8-OHdG, and antioxidant indicators point
to the presence of OS and DNA damage, but also to an elevated antioxidant response,
the latter results demonstrating that endometrial cysts display an altered redox state [80].
Since iron promotes the production of ROS and DNA damage, several treatments are
recommended to counter this effect. Patients with endometriosis have less likelihood of
getting pregnant than women without the disorder. It is suspected that in endometriosis
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patients, low oocyte and embryo quality and spermatotoxic peritoneal fluid induced by
ROS could contribute to subfertility [81]. Moreover, low concentrations of ascorbic acid [75]
and of glutathione peroxidase (GPx) [74] have been observed in the peritoneal fluid of
these women, while lower GPx concentrations have been linked to decreased progesterone
response within endometriosis cells [82].

While endometriotic cells are observed to contain large amounts of ROS, the origin of
ROS is yet unknown. It is hypothesized that elevated cell proliferation and prevention of
apoptosis in endometriotic cells may be correlated with impaired detoxification systems,
which partially induce excess ROS and OS. There is a need for further examination of
dietary and supplemental antioxidant intake in different populations to establish whether
antioxidant status and/or intake can play a part in the development, maintenance, or
curing of endometriosis [71].

4.3. Unexplained Infertility

Unexplained infertility is characterized when couples have engaged in unprotected
intercourse for at least 12 months without successful conception, despite standard fertility
evaluations revealing no identifiable causes for infertility. While research indicates that
an imbalance of ROS and antioxidant defenses may contribute to its pathogenesis, it is
critical to recognize this is only one plausible explanation [83]. Other potential causes could
include peritoneal endometriosis, subtle tubal lesions, and chronic endometritis [84,85].
Another noteworthy potential explanation is a path anomaly in the methyl-tetra-hydrofolate
reductase (MTHFR) gene, which is involved in folate metabolism and, consequently, DNA,
lipid, and protein methylation. This polymorphism can disrupt homocysteine levels
and homeostasis, potentially affecting oocyte quality and endometrial development [86].
However, the precise role of these factors, including the potential benefits of antioxidant
supplementation, requires further investigation.

5. Pregnancy Complications
5.1. The Placenta

The placenta is a vital prenatal organ enabling the transport of oxygen, nutrients, and
hormones between mother and fetus, while it additionally protects and immunizes the
developing fetus, trophoblastic invasion of the maternal spiral arteries being the initiator of
these placental activities [5]. There are indications of morphological adaptation to hypoxia
in the placenta, while modifications to the placental vasculature occur to ensure sufficient
blood flow between the mother’s and the fetus’s systems. A number of placental disorders,
including chronic villitis and maternal or fetal vascular malperfusion, lower the levels
of oxygen that are exchanged between mother and fetus. Clinically speaking, several
indicators of OS are observed, such as MDA and reduced levels of thiols. Physiological
hypoxia is caused by the low O2 tension observed in early pregnancy before the trophoblas-
tic plugs dissipate [87]. The syncytiotrophoblast, having no antioxidants at this stage, can
easily be damaged by free radicals. In parallel to a significant increase in O2 tension [88],
the formation of full maternal arterial circulation to the placenta occurs, which, however,
is associated with an increase in ROS, eventually leading to OS [89]. ROS stimulates
both the proliferation of cells and the expression of genes in physiological quantities [90].
Towards the end of the first trimester, in response to increased O2 tension and OS, the
placenta upregulates antioxidant gene expression and activity, thereby protecting fetal
tissue against the damaging effects of ROS during all the critical stages of development and
organogenesis [91] (Figure 1). Antioxidants found in the placenta include heme oxygenase
(HO)-1 and -2, Cu, Zn-SOD, catalase, and GPx [92]. If placental OS begins prematurely,
the syncytiotrophoblast may degenerate, given that maternal blood flow will in this case
reach the intervillous gap too soon. Some of the possible adverse outcomes of this state are
miscarriage [88,93,94], recurrent pregnancy loss (RPL) [95], and preeclampsia [96].
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5.2. Spontaneous Abortion

Spontaneous abortion denotes the non-induced loss of pregnancy before 20 weeks of
gestation. Almost one-half of all miscarriages can be attributed to chromosome anomalies,
which point, to a large degree, to the underlying cause of the disorders. Additional reasons
are maternal factors, including uterine anomalies, congenital disabilities, various diseases
and infections, and idiopathic causes [97]. One theory attributes spontaneous abortion
mainly to high placenta OS. As described above, frequently between the 10th and 12th week
of pregnancy, an oxidative burst occurs in the placentas of healthy pregnancies: the elevated
antioxidant activity results in the OS returning to its baseline as placental cells steadily
adjust to their new oxidative environment [88]. By 8–9 weeks of gestation, miscarriages will
be seen to differ from regular pregnancies [88,94], with high levels of heat shock protein
70 (HSP70) and nitrotyrosine along with indicators of apoptosis being observed in the
villi of such placentas: all this strongly indicates oxidative damage to the trophoblast,
resulting in subsequent loss of pregnancy [91]. The production and activity of antioxidant
enzymes increase with gestational age, they are at this stage unable to counteract rises in
ROS. Premature onset of OS has been associated with impaired placental development
and/or accelerated syncytiotrophoblast degeneration, resulting in miscarriage [97].

Of interest, a link has been identified between deficiency in selenium (Se) and spon-
taneous abortion [98,99] and RPL loss [99], this is possibly due to a decrease in GPX’s
detoxifying abilities, which occurs in the setting of Se deficiency. Early pregnancy loss
has also been associated with a decline in biomarker serum prolidase activity, a marker of
the turnover of extracellular matrix and collagen. Moreover, serum prolidase levels have
been inversely correlated with better OS, possibly explaining the higher placental vascular
resistance and endothelial dysfunction seen in patients with diminished and dysregulated
collagen turnover [100]. It was observed that women who experienced a miscarriage during
the early stages of pregnancy exhibited decreased levels of the antioxidant enzyme serum
paraoxonase/arylesterase, while the same individuals also showed high vulnerability to
lipid peroxidatin, this indicated by a negative connection with lipid hyperoxide [101]. OS-
induced inflammatory mechanisms may, moreover, lead to apoptosis of placental tissues.
Though the cause has not been clarified, the excess or inadequate release of maternal blood
flow to the intervillous area has been linked to spontaneous and RPL to prevent miscar-
riage during the first trimester, several studies have been carried out using antioxidant
supplements to restore depleted levels and counter an excessively oxidative environment.
However, while antioxidant supplements could alleviate the problem, a meta-analysis of
the relevant studies failed to offer any support for the above theory [102].

5.3. Recurrent Pregnancy Loss

RPL, which affects 1–3% of all pregnancies, is defined as three or more consecutive
miscarriages. The causes of RPL may be found in only 50% of cases, since, notwithstanding
findings indicating the involvement of OS in the pathogenesis of RPL [103], the remainder
of cases lack any clear explanation [104,105]. Irregular placentation, which results in
syncytiotrophoblastic degradation and OS, is thought to be a major contributor to idiopathic
RPL [96], perhaps accounting for the increased susceptibility of the syncytiotrophoblast to
OS during the first trimester. In line with this hypothesis, it has been observed that patients
with RPL have increased plasma lipid peroxides and GSH along with decreased vitamin E
and beta-carotene [106]. Furthermore, plasma GSH levels were found to be significantly
elevated in women with a history of RPL, this pointing to a reaction to elevated OS [107].
On the other hand, although individuals with idiopathic RPL were reported in one study to
have higher amounts of MDA, another research study demonstrated that their antioxidant
enzymes, GPx, SOD, and catalase levels were considerably lower than the average. Yet other
researchers have reported a correlation between polymorphisms in antioxidant enzymes
and increased incidence of RPL [108–110], while some studies have linked certain null
genetic variants of GST enzymes to RPL [111–113].
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Amin et al. have observed that N-acetylcysteine (NAC) and folic acid enhances
pregnancy outcomes in women with unexplained RPL [114], proposing that, by decreasing
oxidative genotoxicity, inhibiting the release of proinflammatory cytokines, and preventing
endothelial apoptosis, NAC may be able to moderate OS-induced reactions and processes
which cause oxidative damage during complicated pregnancies [115]. It is hypothesized
that the intake of antioxidants could facilitate the restoration of antioxidant defenses as
well as the mitigation of placental apoptosis and inflammatory responses that are related
to severe OS. NAC is a particularly attractive potent antioxidant given that it contains
numerous sulfhydryl groups, while, thanks to its thiol properties, it is capable of increasing
GSH levels in cells as well as directly scavenging free radicals [116,117].

5.4. Preeclampsia

Even in the absence of hypertension before pregnancy, women may develop preeclamp-
sia, thus facing the risk of serious complications. The fact that the incidence of preeclampsia
is 3 to 14% of pregnancies means that it is a major source of maternal and fetal mor-
bidity and mortality [118,119]. In women with early-onset preeclampsia, indicators of
placental OS include protein carbonyls, lipid peroxides, nitrotyrosine residues, and DNA
oxidation [89,120]. It is hypothesized that preeclampsia is caused by inadequate spiral
artery conversion, which prevents placental perfusion resulting in moderate damage to
ischemia-reperfusion [121–123]. Alterations in gene expression observed in preeclampsia,
which could be attributed to ischemia-reperfusion damage in trophoblastic and endothe-
lial cells [124], might explain the association of preeclampsia with low birth weight and
inadequate implantation [5]. However, it is important to clarify that ovarian stimulation,
a procedure common in ART, is not a universal cause of preeclampsia in all pregnan-
cies. While ovarian stimulation may increase the risk of preeclampsia in ART pregnancies
possibly due to hormonal changes, it does not necessarily contribute to preeclampsia in
spontaneous pregnancies [125].

Preeclampsia has been associated with excessive apoptosis of villous trophoblasts,
ovarian stimulation being proposed as a likely cause. The maternal blood of women
with preeclampsia contains microparticles of syncytiotrophoblast microvillus membrane
(STBMs), which have been reported to induce endothelial cell damage in vitro [126].

To identify the presence of placental OS, quantitative determination of elevated levels
in the blood of ROS, including hydrogen peroxide [127], or lipid peroxidation indicators,
such as MDA [118,128–130], or thiobarbituric acid reactive substances (TBARS), is carried
out [118,127]. Since preeclampsia has been related to increased vasoconstrictor H2O2 and
reduced levels of the vasodilator NO, this might account for the vasoconstriction and
hypertension observed in this disorder. On the other hand, some studies have reported
elevated NO levels in the bloodstream [131,132] and the placenta [133], while other research
has shown that endothelial cell damage occurs in preeclampsia patients due to increased
generation of the SO anion and lower NO release because of neutrophil regulation [134].

Trophoblasts, vascular endothelial cells, and numerous other cells depend on NAD(P)H
oxidases to generate the SO anion. Activation of the enzymes, resulting in increased gen-
eration of SO anion, is associated with the pathophysiology of a number of vascular
disorders [135]. The increase may take place via several physiological pathways, including
the following. Angiotensin receptor (AT1) antibodies, particularly those directed against
the second loop (AT1-AA) [136], can boost ROS production by stimulating NAD(P)H
oxidase. Activated placental NAD(P)H produces more SO anion between weeks 6 and 8
of pregnancy than at term [137]; hence, NAD(P)H oxidase-mediated altered gene expres-
sion [23,138] can affect early placental development by means of dysregulated vascular
formation and function. Higher NAD(P)H expression and ROS production have been
observed in preeclamptic women than in those without the disorder [139]. It has also been
reported that women who develop preeclampsia at a younger age generate more of the
SO anion than those who are affected later [137]. Although the above findings shed some
light on the part played by OS in the pathophysiology of placental malfunction in such
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reproductive conditions as preeclampsia, the precise mechanism of placental NAD(P)H
activation is yet to be elucidated.

As has been demonstrated by Baker et al. [140], preeclamptic patients display elevated
levels of paraoxonase-1 (PON-1), a finding that is in accordance with the role of OS in
preeclampsia pathophysiology [140]. Preeclampsia patients have moreover exhibited
elevated levels of PON-1 during mid-pregnancy, this apparently representing a protective
mechanism against the potentially harmful impact of high OS seen in this syndrome [140].
In contrast, it has been reported that patients with severe preeclampsia and those presenting
with clinical symptoms have significantly lower PON-1 [141,142].

Affected women have also been shown to display poor total antioxidant status (TAS),
placental GPx, and depleted vitamins C and E [118,128,143]. A number of research studies
have demonstrated that preeclampsia risk may be lowered in normal-weight or under-
weight women who have additionally been prescribed multivitamins during the entire
periconceptional period [144,145], while other researchers have reported a higher risk
among women with C deficiency [146]. On the whole, however, most authors show no
reduction in preeclampsia incidence achieved via chronic antioxidant supplementation
during pregnancy [102,147,148].

5.5. Intrauterine Growth Restriction

Most cases of IUGR, also known as a failure of the fetus to develop to its genetic
development potential or fibroblast growth factor receptor, are attributable to complica-
tions involving the mother, the fetus, or both. The most common cause is uteroplacental
dysfunction, denoting reduced maternal placental blood flow to the fetus. A number of
studies have linked inadequate development of the spiral arteries to damage of placental
ischemia/reperfusion. Metabolic activity along with cell development and proliferation
produces ROS and OS; thus, the above process requires a high energy supply. Meanwhile,
the chorioallantoic villi may be damaged by stimuli or mediators, possibly resulting in an
inadequate trophoblastic invasion of the spiral arteries. OS is one of the chief triggers or
mediators. It is, therefore, evident that insufficient spiral artery development can lead to
ischemia/reperfusion, the latter exacerbating OS and contributing to the deterioration of
placental tissue [149]. Indeed, in women with IUGR, increased free radical activity and
indicators of lipid peroxidation are observed [150], while it has also been reported that
these patients display reduced levels of antioxidant concentrations in plasma, placenta, and
umbilical cords compared to controls, together with increased levels of MDA and xanthine
oxidase [149]. It has additionally been shown that at 12 and 28 weeks of pregnancy, the
DNA oxidation marker 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG) is significantly
elevated in pregnancies complicated by growth-restricted fetuses as compared to a control
group [150]. Ischemia and reperfusion injuries are major sources of ROS and OS. Reports
show that hypoxia-reoxygenation [151] induces greater apoptosis in villous trophoblasts
than does hypoxia alone [152]; also, that p53 [149], which regulates apoptosis, is highly
upregulated in response to hypoxia in villous trophoblasts [152–154]. The severity of OS in
IUGR placentas is exacerbated by low protein translation and signaling [155]. Since com-
plex cellular mechanisms vulnerable to intracellular and extracellular stimuli compose fetal
growth and development, it is plausible that cellular stress and programmed cell death play
a part in inducing metabolic disease in adult IUGR offspring. While cell stress and death
can often be protective processes, they can also be damaging, aiding in the development
of metabolic disorders. Several studies show that an adverse perinatal environment may
produce cell stress and cell death in the placenta, this impeding embryonic growth. This
process may furthermore lead to OS mitochondria malfunction, endoplasmic reticulum
(ER) stress inflammation, apoptosis, and autophagy in metabolic organs.

5.6. Preterm Labor

Globally, preterm births (PTBs), meaning those occurring before 37 weeks of gestation,
are the leading cause of neonatal morbidity and mortality, affecting a total of 5–12% of
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all births. Traditionally, term births and preterm labor are regarded as similar processes
following the same pathway. Romero et al. (2006) use the term “syndrome” to pinpoint the
possible pathogenic causes of the commencement of preterm labor, although what are the
specific causes and precipitating mechanisms of preterm labor are to date unknown [156].
PTB is physically challenging for neonates, given that they must adapt to a new environ-
ment for which they are not physiologically prepared, in particular as regards oxygenation
and feeding. They will also experience an imbalance between the synthesis of oxidants and
antioxidants which may induce OS: since the latter includes high concentrations of ROS,
it can produce oxidative damage. Possible causes of elevated OS in preterm neonates are
the following: oxygen resuscitation, preterm nutrition, blood transfusions, phototherapy
inflammation and infection, increased metabolic rate, and immune antioxidant system. The
majority of spontaneous preterm births are associated with several underlying conditions,
which might include infection or inflammation, maternal or fetal stress, decidual hemor-
rhage indicative of placental abruption, or conditions that lead to uterine overdistension
such as multiple pregnancies or polyhydramnios. It is also notable that endocrine disorders,
issues related to the cervix such as incompetency, and poor vascular supply to the uterus
(ischemia) could contribute to preterm labor. Understanding the specific cause in each case
could be challenging, as these conditions often overlap and can simultaneously contribute
to the onset of preterm birth [156]. While there are several potential causes of premature
delivery, infection and inflammation in the uterus are considered to be the most likely [157].
A woman may undergo a number of procedures simultaneously. Certain women may be
affected by genetics and inflammatory responses that constitute risk factors for preterm
labor. Mustafa et al., comparing the maternal blood of women with preterm labor to that of
women with term labor, observed notably more significant MDA and 8-OHdG and consid-
erably lower levels of GSH [158]. Their study thus suggested that antioxidant capacities are
decreased in preterm labor women, making them more susceptible to OS-induced damage.

Moreover, it has been demonstrated that women with preterm labor have exhibited
lower activity of FRAP, an assay that measures the capacity to overcome oxidative damage
and GST [158–161]. The latter results further support the belief that both mother and
neonate are more susceptible to ROS-induced harm in an environment with high levels of
OS and low antioxidant capacity. Both chorioamnionitis and histopathological infection
have been implicated in preterm labor, while a number of studies have determined that
preterm mothers’ elevated expression of Mn-SOD mRNA in the fetal membranes is linked
to this phenomenon [162]. Preterm labor is associated with increased levels of OS levels and
inflammation, and the higher expression of Mn-SOD mRNA observed in these cases may
comprise a protective response to the described conditions. The amnion and choriodecidua
of patients experiencing preterm labor have, for example, been shown to have notably more
significant levels of the proinflammatory cytokines IL-1 beta, IL-6, and IL-8 as compared
to those of women with spontaneous term labor [163]. Lower total antioxidant status
(TAS) levels noted in women experiencing preterm labor than in those with uncomplicated
pregnancies at a similar gestational age may point to increased OS [164]. It has also been
demonstrated that PON1 activity is much lower in women who give birth prematurely
than in controls [165]. The latter study suggests that the risk of preterm delivery may be
higher in a pro-oxidant environment, which is caused by increased lipid peroxidation and
diminished antioxidant activity of PON1.

It has additionally been reported that preemies’ GSH levels compared to those of
offspring of full-term mothers are significantly lower [166]. Low Se levels in pregnant
women’s blood have also been linked to preterm delivery [167]. Moreover, GST polymor-
phism was considerably higher in women who had experienced premature labor, pointing
to a greater risk of oxidative damage. Finally, a maternal illness can cause OS, the resulting
diminished antioxidant defenses being likely to increase the risk of premature birth.
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5.7. Ectopic Pregnancy

The fallopian tubes play a critical role in female fertility by assisting in the movement
of eggs from the ovaries to the uterus and serving as a site for fertilization. However,
several factors, including oxidative stress, can impair the function of the fallopian tubes,
which can have severe consequences for fertility and increase the risk of ectopic pregnancy.
Coordination between smooth muscle contractions and cilia is essential for the egg’s
passage through the fallopian tubes [168]. The egg is carried into the uterus by a directional
flow produced by the beating of the cilia. Oxidative stress can interfere with the normal
function of cilia, making tubal transfer difficult. Elevated ROS levels may impair the
frequency of cilia beating and reduce the effectiveness of oocyte migration. As a result,
altered fallopian tube transport may lead to a lower likelihood of pregnancy and impaired
fertilization.

An ectopic pregnancy occurs when the fertilized egg implants and grows outside the
uterine cavity, usually in the fallopian tubes. The pathophysiology of ectopic pregnancy has
been linked to oxidative stress [169]. Numerous factors, such as infection, inflammation,
and structural abnormalities, increase the susceptibility of the fallopian tube environment
to oxidative stress. Elevated levels of ROS can damage the fallopian tube epithelium,
impairing its normal function and disrupting the implantation process. The delicate balance
of signaling molecules involved in the contact between the embryo and the fallopian tube
wall may be disturbed by oxidative stress, increasing the likelihood of ectopic implantation.
Ectopic pregnancy is a severe problem for the mother’s health and the woman’s fertility [12].
Implantation outside the uterus is associated with an increased risk of issues such as tubal
rupture, bleeding, and loss of the affected fallopian tube. An ectopic pregnancy poses
immediate dangers and has implications for future fertility. Surgical removal of the ectopic
pregnancy or damaged fallopian tube can lead to adhesions and scarring of the fallopian
tubes, further impairing their function and increasing the possibility of further ectopic
pregnancies [170]. Managing oxidative stress is critical to maintaining good tubal function
and reducing the risk of ectopic pregnancy.

5.8. Gestational Diabetes

Impaired glucose tolerance is a feature of the disease known as gestational diabetes
mellitus (GDM), which occurs during pregnancy. New research suggests a possible link
between oxidative stress and the development of GDM [171]. Insulin resistance, beta cell
dysfunction and poor glucose metabolism during pregnancy have been linked to oxidative
stress, defined as an imbalance between the formation of ROS and the antioxidant defense
system. Insulin resistance, a significant aspect of GDM, has been linked to oxidative stress.
Elevated ROS concentrations can cause oxidative damage to cells and disrupt insulin
signaling pathways. Oxidative stress can lead to mitochondrial dysfunction, increase
adipose tissue dysfunction, and activate proinflammatory signaling pathways. These
signaling pathways interact to cause insulin resistance, which impairs glucose uptake and
utilization in maternal tissues. GDM also exhibits beta cell dysfunction [172]. Pancreatic
beta cell survival and function can be directly affected by oxidative stress. Elevated levels of
ROS have been associated with the induction of apoptosis, disruption of insulin production
and secretion, and oxidative damage to beta-cell components. Since insulin production is
insufficient to meet the increasing demand in pregnancy, beta cell dysfunction contributes
to hyperglycemia and the development of GDM. Because of the potential role of oxidative
stress in the pathophysiology of GDM, antioxidant therapies have become increasingly
popular as possible therapeutic approaches [173].

6. Possible Therapies to Treat the Harmful Effects of OS on the Female
Reproductive System

Antioxidants, lifestyle modification, and drug interventions are possible therapies for
OS-induced damage to the female reproductive system.
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6.1. Lifestyle Changes

Lifestyle changes like a healthy diet, regular exercise, and stress management can
protect the female reproductive system from the adverse effects of OS. Regular physical
activity improves mitochondrial function and reduces OS levels, thus improving fertility.
Antioxidants in diet, sourced from fruits and vegetables, can neutralize ROS and prevent
cellular damage [174]. Body mass can significantly influence fertility, with both obesity and
underweight conditions linked to hormonal abnormalities affecting fertility. Obesity can
also lead to increased OS and inflammation [175]. Conversely, being underweight can result
in irregular menstrual periods, difficulty ovulating, and higher OS levels, thus reducing
a woman’s ability to conceive and carry a child to term. Hormonal and/or menstrual
abnormalities caused by underweight and obesity seriously affect fertility [176]. Therefore,
maintaining a healthy weight through a balanced diet and regular exercise is vital for
supporting fertility and reproductive health. Specific health issues such as eating disorders
or illnesses disrupting the ovulatory cycle can contribute to infertility and may require
medical attention [177].

6.2. Antioxidants

Antioxidants scavenge reactive radicals to counteract the formation of ROS and pro-
mote the repair of oxidative damage to cell architecture [178]. Vitamins A, C, and E [179]
and other natural chemicals such as polyphenols [180] are examples of non-enzymatic
(supplemental/nutritional) antioxidants. In contrast, enzymatic (endogenous) antioxidants
include, inter alia, glutathione, SOD, and glutathione peroxidase (GPx). Cofactors in enzy-
matic antioxidant systems, such as MnSOD and Se-GPX [4], are trace elements that include
copper (Cu), zinc (Zn), manganese (Mn), and Se, most of which are consumed in the diet.
Endogenous glutathione helps maintain exogenous antioxidants (vitamins A, C, and E)
in their reduced form by neutralizing free radicals and ROS [26]. Throughout the female
reproductive process, the antioxidant balance must be maintained and the harmful effects
of ROS must be stabilized, which is why the dietary intake of exogenous antioxidants is
crucial [181] (Figure 2).
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Different mechanisms of action have been postulated for supplemental antioxidants.
Improved endometrial blood flow, decreased hyperandrogenism, decreased insulin resistance,
fertile cervical mucus, and an effect on prostaglandin production and steroidogenesis [182–184]
all boost a woman’s ability to conceive. A review of the available scientific literature found that
antioxidant intake improves oocyte and follicle quality, increases embryo implantation rates,
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and reduces pregnancy loss in women undergoing assisted reproductive technology [185–187].
The ideal dose and duration of antioxidant supplementation are not yet known, and further
research is needed to determine the most effective treatment plan.

Antioxidants can destroy ROS while protecting cells, proteins, and DNA from ox-
idative damage. Several studies have linked OS to female infertility and have moreover
shown that supplementation with antioxidants can increase the chances of pregnancy [186].
Of note, vitamin E, a fat-soluble antioxidant, has the capacity to protect cell membranes
from oxidative damage. Pregnancy rates in women using ART therapies have shown
improvement with vitamin E supplementation [188]. Vitamin C can neutralize ROS and
restore vitamin E because it is a water-soluble antioxidant. Fertility in women with PCOS
has been shown to improve when they take vitamin C supplements [189]. Glutathione
peroxidase and other antioxidant enzymes cannot function adequately without Se, and,
notably, it has been observed that the pregnancy rate in infertile women increases when
they take Se supplements [190].

6.3. Medical Interventions

Numerous medical therapies seek to deal with the issue of OS-induced damage to
the female reproductive system. Natural cycle IVF, minimal stimulation IVF, as well as
the use of anti-inflammatory and antioxidant drugs like metformin and melatonin, are
all procedures aimed at ovarian stimulation that reduce OS [191,192]. However, the full
scope of benefits and potential risks associated with these therapies are not yet completely
understood, necessitating further research for a more comprehensive investigation.

6.4. Assisted Reproductive Technology

Since the introduction of assisted reproductive technology (ART) several decades ago,
thousands of infertile couples have been able to conceive children, a major advance for
humanity. ART can be a beneficial recourse for couples grappling with various fertility is-
sues. These include female infertility stemming from conditions like endometriosis or tubal
infertility, male infertility, or fertility problems with causes that remain undetermined [193].
Intrauterine insemination, In vitro fertilization, and ICSI are examples of such methods.
There are women who sidestep ART and merely take antioxidant supplements to increase
their fertility, while others follow both paths simultaneously. Among the antioxidants that
play a major role in infertility are the following: Coenzyme Q10 (CoQ10) is a powerful
antioxidant required for the body to produce energy. It is shown to increase ovarian reserve,
oocyte quality, and ovulation rates in women who undergo reproductive treatments [194].
The fat-soluble antioxidant vitamin E which, as mentioned, aids in the prevention of ox-
idative cell damage, has been shown among women using fertility treatments to boost
the woman’s chances of getting pregnant as well as reduce the risk of miscarriage [195].
However, it remains uncertain whether it can help women with unexplained subfertility to
increase their fertility.

7. Conclusions

OS, arising from an imbalance between ROS overproduction and the body’s an-
tioxidant defenses, can be triggered by age and diseases impacting female reproduction.
Conditions like endothelial dysfunction, early or recurrent pregnancy loss, IUGR, high
blood pressure, premature birth, ectopic pregnancy and gestational diabetes are linked to
OS. Adverse lifestyle habits and environmental pollutants may worsen OS, hinting at a
potential role for antioxidants in mitigating these effects and improving fertility. However,
current evidence regarding the effectiveness of antioxidants is inconclusive. Future research
should prioritize understanding the role of antioxidants in managing female infertility, in
order to deepen our knowledge and develop more effective treatments.
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