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Abstract

:

Heat shock proteins (HSPs) encompass both extrinsic chaperones and stress proteins. These proteins, with molecular weights ranging from 14 to 120 kDa, are conserved across all living organisms and are expressed in response to stress. The upregulation of specific genes triggers the synthesis of HSPs, facilitated by the interaction between heat shock factors and gene promoter regions. Notably, HSPs function as chaperones or helper molecules in various cellular processes involving lipids and proteins, and their upregulation is not limited to heat-induced stress but also occurs in response to anoxia, acidosis, hypoxia, toxins, ischemia, protein breakdown, and microbial infection. HSPs play a vital role in regulating protein synthesis in cells. They assist in the folding and assembly of other cellular proteins, primarily through HSP families such as HSP70 and HSP90. Additionally, the process of the folding, translocation, and aggregation of proteins is governed by the dynamic partitioning facilitated by HSPs throughout the cell. Beyond their involvement in protein metabolism, HSPs also exert a significant influence on apoptosis, the immune system, and various characteristics of inflammation. The immunity of aquatic organisms, including shrimp, fish, and shellfish, relies heavily on the development of inflammation, as well as non-specific and specific immune responses to viral and bacterial infections. Recent advancements in aquatic research have demonstrated that the HSP levels in populations of fish, shrimp, and shellfish can be increased through non-traumatic means such as water or oral administration of HSP stimulants, exogenous HSPs, and heat induction. These methods have proven useful in reducing physical stress and trauma, while also facilitating sustainable husbandry practices such as vaccination and transportation, thereby offering health benefits. Hence, the present review discusses the importance of HSPs in different tissues in aquatic organisms (fish, shrimp), and their expression levels during pathogen invasion; this gives new insights into the significance of HSPs in invertebrates.
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1. Introduction


Due to the poikilothermic nature of aquatic animals, minor changes in the environment might lead to stress in fish. Fish are often exposed to various environmental stressors, such as pathogens, toxic gases, trauma, temperature fluctuations, and hypoxia. These factors, often referred to as stressors or stress factors, hold significant importance in determining the sequence of events that unfolds after encountering adverse consequences such as microbial infections, toxic exposure, traumatic injury, radiation, or nutritional deficiencies [1]. According to Selye’s [2] original definition from 1950, a normal metabolism is the objective that an animal strives to maintain or restore in the presence of chemical or physical stimuli. Easton [3] further proposed that stress occurs when an environmental or associated factor pushes an animal’s adaptive responses beyond its standard parameters or severely disrupts the animal’s proper functioning, ultimately reducing the probability of survival. This definition closely aligns with the circumstances observed in aquatic species. The term “general adaptation syndrome” (GAS) is used to describe the changes that occur in response to stress. It encompasses a sequence of biochemical and physiological changes that unfold in three stages: the alarm reaction (stage of resistance), during which adaptations are made to achieve homeostasis under the new conditions; the stage of exhaustion, where adaptations fail to restore homeostasis; and, if homeostasis is not achieved, it leads to a further decline in the probability of survival. The components of GAS are not specific to particular species or stressors, but the overall response to each stressor may vary significantly [4].



Research on the general adaptation syndrome in fish has primarily focused on hormonal and nervous responses. The role of the hypothalamic–pituitary internal axis in the GAS in fish has been extensively reviewed by Sumpter (1997) [5]. The impact of stress-mediated hormonal changes on the immune responsiveness of the animal, leading to increased susceptibility to infection, has been extensively discussed by Wedemeyer (1997) [6]. For further information on this aspect of GAS, readers are referred to these authors. Although the cellular stress response has received less attention in higher animals, fish, and shellfish, it is an important feature of the GAS (Locke, 1997) [7]. Cells typically respond to stress by altering gene expression, resulting in the upregulation of highly conserved proteins, collectively known as heat shock proteins (HSPs). These HSP molecules, produced in response to stressful conditions, not only play a crucial role in the early response to stressors but also contribute to host defenses against neoplasia and chronic pathogens. They may even hold potential as a primary avenue for the development of new vaccines, while being fundamental to evolution and all forms of life. Considering the growing interest in harnessing the induction of HSPs for clinical purposes in human medicine [8], methods for their induction are also emerging for veterinary purposes [9,10]. This review aims to explore the nature of the HSP response, its relevance to aquatic animals and their welfare, and recent research on methods of inducing HSPs in aquaculture, particularly concerning health and welfare issues.




2. Different Types of Stress Factors Involved in the Expression of HSPs


2.1. Desiccation, Temperature, and Hypoxia/Anoxia Stress


The impact of temperature on organisms is well recognized, as it can influence their physiology [11,12,13], behavior [14], and interactions with other species [15,16]. Thermal fluctuations are considered crucial factors that can disrupt physiological systems at the cellular and molecular levels [17]. Temperature affects molecular and physiological processes, influencing an organism’s activity patterns [18,19]. Aquatic organisms can exhibit physiological responses to acute temperature fluctuations before exhibiting behavioral responses [20]. Studies on marine species have shown that their thermal tolerance limits are determined by the onset of hypoxemia, which triggers the activation of anaerobic metabolic pathways [21]. In rocky shores, temperature and desiccation are recognized as key factors that set the upper limits of species distribution, with extreme desiccation stress leading to the diapause of crustacean eggs. However, organisms have developed adaptive mechanisms, including thermal tolerance, heat shock protein expression, and protein thermal stability, to counteract environmental extremes and minimize cell damage. The cellular stress response is activated to maintain cellular function and enhance the organism’s ability to cope with challenging situations [22]. This response involves the activation of cellular pathways such as proteolysis through the ubiquitin–proteasome pathway and the increased production of heat shock proteins [23].




2.2. Osmotic Stress


Osmotic stress is a prevalent environmental factor that affects aquatic organisms. Osmoregulation, which is vital in maintaining osmotic homeostasis, plays a crucial role in response to this type of stress. The influence of stressors such as temperature or salinity on organisms has been studied extensively [24,25]. These stressors can impact the osmoregulation capability of organisms by affecting Na+-K+ ATPase activity or inducing heat shock protein production [26], both of which contribute to maintaining relative osmotic hemolymph homeostasis [27]. Numerous studies have investigated the expression patterns of heat shock proteins (HSPs) under salinity stress. For example, the expression of HSP90 was induced in Crassostrea hongkongensis [28] and Eriocheir sinensis [26,29] under osmotic stress. High salinity stress led to the significant upregulation of HSP70 expression in the hemocytes of Scylla paramamosain [30]. In the hepatopancreas of Portunus trituberculatus, HSP60, HSP70, and HSP90 showed either downregulated or upregulated expression profiles when exposed to low salinity (4 ppt) [31]. These findings suggest that HSPs play a role in mediating the effects of salinity stress in aquatic crustaceans.




2.3. Ultraviolet Radiation Stress


Ultraviolet (UV) radiation, an abiotic factor, can have detrimental effects on organisms, both directly and indirectly. Direct exposure to UV radiation can lead to changes in protein synthesis and DNA due to the absorption of high-energy photons. Indirectly, UV radiation can generate reactive oxygen species that cause damage to proteins, nucleic acids, and lipids [32,33,34]. The impact of UV radiation on aquatic organisms has become a significant concern in recent years. Research conducted on calanoid copepods has shown that UV-induced stress can impair feeding mechanisms and digestion and disrupt the entire food chain [35]. UV radiation directly and indirectly influences the survival, growth, and reproduction of organisms, and it led to the increased expression of antioxidant enzymes and heat shock protein (HSP) genes in the copepod Paracyclopina nana [34].




2.4. Heavy Metal Stress


Heavy metals pose a significant problem as a cause of pollution in water, soil, and plants. They enter water sources through seepage from household or industrial waste, resulting in serious risks to aquatic ecosystems and aquaculture animals. In laboratory studies focusing on crustaceans, the impact of heavy metals on gene expression changes has been extensively examined. Commonly tested heavy metals include copper (Cu), silver (Ag), zinc (Zn), lead (Pb), manganese (Mn), arsenic (As), and cadmium (Cd) [36,37,38]. Heavy metal stress is closely linked to the induction of oxidative stress. In seawater, heavy metals can trigger oxidative stress in various organisms, including the marine crab Portunus trituberculatus [39]. This type of oxidative stress disrupts the cellular redox balance, prompting a protective stress response. Numerous studies on aquatic organisms, particularly crustaceans, have demonstrated that heavy metal stress significantly stimulates the synthesis of antioxidant enzymes [40] and heat shock proteins [26,38]. Heat shock proteins (HSP) appear to play a crucial role in the innate immune systems and stress responses of crustaceans [36,37,38].




2.5. Effect of Endocrine Disruptor Chemicals in Heat Shock Proteins


Endocrine disruptor chemicals (EDCs) are compounds that imitate natural hormones, inhibiting their activity or altering their normal regulatory function within the immune, nervous, and endocrine systems [41]. These chemicals are ecotoxicologically significant as they have a tendency to be absorbed onto humic material or accumulate in aquatic organisms, persisting in water or the food web for extended periods. Consequently, their effects can induce prolonged stress in aquatic organisms. Various EDCs, including pesticides, bisphenol A, phthalates, dioxins, and phytoestrogens, have been shown to interact with the female reproductive system and cause endocrine disruption [42]. Endosulfan and deltamethrin, commonly used pesticides in shrimp farms [43], are particularly noteworthy. Endosulfan is widely employed as a broad-spectrum insecticide, primarily in agriculture, and is highly toxic to aquatic organisms [44,45,46]. Studies investigating the stress response induced by EDCs have indicated the significant induction of heat shock protein (HSP) family proteins [47,48,49], detoxification enzymes such as glutathione S-transferases [50], and superoxide dismutase. These proteins are considered to potentially contribute to the protection of aquatic organisms against stress.




2.6. Other Toxicants


Apart from the previously mentioned primary chemicals, there exist a significant number of other toxic substances in the habitats of aquatic organisms. These toxicants include hydrocarbons, diatom toxins, emamectin benzoate, nitrite, and prooxidant chemical hydrogen peroxide (H2O2), among others. They accumulate in aquatic and/or terrestrial environments through the release of household and/or industrial waste. Research studies have demonstrated that these toxicants can have harmful effects on crustaceans [51,52]. In a study conducted by Lauritano et al. [41], it was observed that feeding on a diatom species (Skeletonema marinoi) that produced strong oxylipins for only two days led to the significant downregulation of heat shock proteins (HSP40 and HSP70) in the copepod Calanus helgolandicus. Diatom oxylipins are known to induce the generation of free radicals, including reactive oxygen species, which can cause oxidative stress and cellular damage. Furthermore, nitrite is considered one of the most prevalent pollutants in aquaculture due to its numerous integrated effects. A study on shrimp demonstrated that oxidative stress was one of the mechanisms of nitrite toxicity [53]. Guo et al. [53] confirmed that exposure to nitrite induced the expression of apoptosis-related genes in hemocytes, while also upregulating the expression levels of HSP70 and antioxidant enzymes to protect against nitrite-induced stress.





3. The Role of Heat Shock Proteins in Aquaculture Disease Management


3.1. Immunology and Stress Response


The identification of heat shock proteins (HSP) initially occurred in Drosophila busckii as a response to stress [54]. Since then, their roles as chaperones in protecting cellular proteins from denaturation have garnered significant interest [55,56]. In aquaculture animals, HSPs have been the focus of numerous studies due to their crucial function in mitigating the stress-induced denaturation of client proteins, as well as their involvement in protein folding, assembly, degradation, and gene expression regulation [57,58]. Physiological and environmental stressors, including high thermal shock, heavy metals, free radicals, desiccation, and microbial infection, can induce the synthesis of HSPs. This induction is considered a vital protective response that is conserved across organisms, enabling them to adapt to environmental challenges. Recent research has revealed the involvement of heat shock chaperonins in autoimmune and innate immune responses in various species, including crustaceans. HSPs play a crucial role in mounting protective immune responses against bacterial and viral diseases [59,60]. In the crustacean aquaculture industry, which faces substantial economic losses due to environmental stressors, investigations into heat shock proteins have gained popularity. These proteins play vital roles in conferring resistance to diverse stressors. Extensive research has been conducted to understand the structures, functions, cross-talk, immune response mechanisms, and innate immune pathways of HSPs in crustaceans when exposed to various environmental stressors or xenobiotics. Exploiting HSPs as a means of preventing and treating aquaculture diseases in commercially cultured aquatic organisms is crucial as it provides an alternative to the use of antibiotics and therapeutic drugs [61]. Furthermore, previous studies have aimed to identify effective strategies for the management of environmental stressors in aquaculture settings for aquatic organisms [62].




3.2. Crustaceans: Exploring the Link between Environmental Stresses and Disease


Crustacean aquaculture plays a significant role in the economies of several countries worldwide. However, the expansion and intensification of aquaculture farms have led to the emergence of various new diseases in commercially cultivated species. Disease outbreaks caused by viruses, bacteria, and environmental stressors pose a serious threat to the global crustacean aquaculture industry, resulting in substantial economic losses. Unlike vertebrates, invertebrates lack true adaptive immunity and have developed defense systems that respond to physiological and environmental stresses [16,63]. During crustacean aquaculture, organisms are constantly exposed to environmental stimuli and a range of natural and anthropogenic stressors (Table 1). Numerous studies have demonstrated that physical stressors such as temperature, salinity, and UV radiation, as well as chemical stressors such as endocrine disruptor chemicals, heavy metals, hydrocarbons, and other toxicants, can be detrimental to crustacean cells. Moreover, in natural ecosystems, multiple environmental forces interact, resulting in situations of combined stress [64,65]. Crustaceans possess an innate immune system, which serves as their first line of defense and responds to natural and anthropogenic stimuli, pollutants, and toxins [41,66]. Studies have indicated that certain metabolic enzymes (such as cytochrome P450, glutathione S-transferase, superoxide dismutase, etc.), heat shock proteins, and immune-related proteins in crustaceans play a role in enhancing disease tolerance and aiding the elimination of harmful compounds from their bodies [41,67].



Shellfish Diseases and the Role of Pathogens


Shellfish diseases are prevalent and frequently observed in various commercially exploited crustacean species. Currently, a range of pathogens, including Vibrio, chitinoclastic bacteria, Aeromonas, Spiroplasma, Rickettsia-like organisms, Chlamydia-like organisms, Rhodobacteriales-like organisms, white spot syndrome virus (WSSV), yellow head virus (YHV), infectious myonecrosis virus (IMNV), Enterocytozoon hepatopenaei (EHP) microsporidian parasites, and covert mortality nodavirus (CMNV), have been identified as causes of disease in crustaceans [93]. Vibrio species, found in various marine and freshwater crustaceans, are widespread worldwide. Vibrio infections commonly result in bacteremia and shell diseases [94]. For instance, Vibrio parahaemolyticus infection caused acute hepatopancreatic necrosis disease (AHPND) and led to significant mortality in a penaeid shrimp aquaculture [95]. Chitinolytic or chitinoclastic bacteria are often associated with shellfish diseases, leading to unsuccessful molting in crustaceans [96] or septicemic infections caused by opportunistic pathogenic bacteria [97]. Infections by other pathogens, such as Rickettsia-like organisms, Chlamydia-like organisms, spiroplasma, and Rhodobacteriales-like organisms, have caused severe stress or fatal diseases in crustaceans. Efforts have been made by numerous researchers to find effective methods to control bacterial diseases. Recent studies have shown that synbiotics can induce penaeid shrimp immunity and promote the growth of aquatic animals [98]. Oxytetracycline has been found to be highly effective in treating spiroplasma disease [99]. Several immune-related genes and proteins, including tachylectin-like genes and proteins and heat shock proteins [67], have been identified as being involved in shrimp tolerance to AHPND-causing strains. Crustacean fibrinogen-related proteins have also been found to participate in the innate immune response during AHPND or other pathogen infections [100]. Additionally, viruses continue to pose a significant challenge to crustacean aquaculture. Recent research has highlighted several new and emerging diseases in shrimp, including hepatopancreatic microsporidiosis, hepatopancreatic haplosporidiosis, aggregated transformed microvilli, covert mortality disease, white spot disease, yellow head disease, infectious myonecrosis, and white tail disease, which represent major viral threats to commercially cultivated shrimp [93].





3.3. Expression of Heat Shock Proteins in Fish


The presence of heat shock proteins (HSPs) in fish has been extensively documented, emphasizing their importance in responding to stress and safeguarding cellular integrity. HSPs are a group of highly conserved proteins that serve as molecular chaperones, aiding in the folding, assembly, and breakdown of other proteins. Fish exhibit increased HSP production when exposed to various stressors, such as elevated temperatures, exposure to heavy metals, oxidative stress, and infection by pathogens. Numerous studies have observed the heightened expression of HSPs in different fish species, including zebrafish (Danio rerio), rainbow trout (Oncorhynchus mykiss), and gilthead seabream (Sparus aurata), in response to stressors [101,102] (Table 2). These HSPs play a vital role in maintaining cellular balance, facilitating fish survival, and enabling adaptation to adverse environmental conditions. Furthermore, HSPs have been implicated in fish immune responses, enhancing their ability to defend against bacterial and viral infections [103]. The monitoring of HSP expression in fish serves as a valuable method to assess environmental stress levels and evaluate the overall health of fish populations in aquatic ecosystems (Figure 1).




3.4. Expression of Heat Shock Proteins in Mollusk


The expression of heat shock proteins (HSPs) is associated with important developmental processes in various species, including gametogenesis, embryogenesis, and metamorphosis. In marine invertebrates with a biphasic life cycle, where pelagic larvae undergo settlement and metamorphosis, research has revealed interesting findings. For instance, studies on Eastern oyster C. virginica larvae and early spat have shown the presence of three HSP70 isoforms: HSC77, HSC72, and HSP69. The expression of constitutive and inducible forms of HSP70 differs among the larval and early juvenile stages and in response to thermal stress. Interestingly, the low expression of HSP69 during early larval and spat development may contribute to their vulnerability to environmental stress. In another investigation, Gunter and Degnan examined how the marine gastropod Haliotis asinine expresses HSP90, HSP70, and the heat shock transcription factor (me) during development (Table 3). HSP70, HSP90, and HSF are first expressed in this species by maternal contribution, before being gradually confined to the micromere lineage after cleavage (Figure 2). These proteins are expressed in distinct ways in the prototroch, foot, and mantle during larval morphogenesis. When cells are differentiating and undergoing morphogenesis, their expression is at its highest; however, after morphogenesis is complete, it starts to decline.




3.5. Heat Shock Protein Expression in Insects


A group of conserved polypeptides collectively known as heat shock proteins (HSPs) are rapidly increased in synthesis by insects in response to high temperatures and a variety of chemical and physical stimuli. Hspshave molecular-weight-based names, such as Hsp10, Hsp40, Hsp60, Hsp70, Hsp90, and Hsp100. Small Hsps (sHsp) are a subclass of Hsps that play a role in the folding and unfolding of other proteins (Table 4). In the fruit fly Drosophila busckii, Ritossa was the first to note that heat and the metabolic uncoupler dinitrophenol caused a distinctive pattern of puffing in the salivary gland chromosomes [54]. This discovery ultimately helped to identify the Hsps that these puffs were representing. The first observation of the increased production of certain proteins in Drosophila cells in response to stressors such as heat shock was made in 1974 [170]. There is currently a vast body of research that describes the extensive spectrum of action taken by cells in response to a wide range of biotic and abiotic stressors in a variety of insects [171,172].




3.6. Heat Shock Proteins in Myxozoan Parasites (Cnidaria)


Heat shock proteins (HSPs) are expressed by parasites as a response to various stimuli, such as heat and oxidative stress. These HSPs provide parasites with resistance to these harsh conditions, which is crucial for their survival. The genes associated with protein refolding, including HSP60, HSP70, and HSP80 family members, express these heat shock proteins. Apart from their role in protein refolding, HSPs also show significant involvement in other processes, such as maintaining protein balance and stability. They have the ability to bind to abnormal forms of proteins and facilitate their folding into their natural conformations. T. bryosalmonae, a parasite, faces the challenge of overcoming the robust immune responses mounted by both brown trout and rainbow trout [185]. This challenge potentially affects various physiological processes of T. bryosalmonae, including protein structure and function. Moreover, HSPs found in several parasites, such as T. cruzi [186] and Schistosomes [187], have been discovered to elicit an immune response in their respective hosts and are immunogenic in nature. In a recent study, it was found that myxozoan parasites such as Ceratonova shasta, Myxobolus cerebralis, and Sphaerospora molnari from the intestine and abdominal cavity (ascitic fluid) of rainbow trout expressed HSP70 when exposed to oxidative stress [188].





4. Defense Mechanisms of Heat Shock Proteins


The heat shock protein family, such as HSP70, are primarily studied for disease control purposes, but other members, such as small heat shock proteins (sHSPs), including HSP60 and HSP90, alongside HSP40/co-chaperone, have shown potential in treating pathogen infections. sHSPs act as oligomeric platforms, binding structurally perturbed proteins without requiring ATP, thereby preventing their irreversible denaturation under cellular stress. HSP90, HSP70, and HSP60 are stress-induced and provide protection against irreversible protein denaturation. However, their primary function involves binding and folding newly synthesized proteins through allosteric rearrangement, which is driven by ATP, although the mechanisms of action and the molecular structure differ among the chaperone families. In cooperation, these HSPs form intracellular networks with accessory proteins and other co-chaperones. sHSP monomers are a group of conserved α-crystallin domains flanked by carboxyl- and amino-terminal sequences and assemble into oligomers. The α-crystallin domain facilitates monomer dimerization and substrate binding, with the efficiency depending on the terminal region. During stress, sHSP oligomers may undergo structural rearrangement or disassemble, which promotes substrate protein interactions and increases surface hydrophobicity. Upon stress resolution, proteins released from sHSPs have the ability to spontaneously refold with the assistance of HSP70, which is an ATP-dependent HSP [189]. The key role of sHSPs is to prevent protein denaturation, which is irreversible during infection and stress.



In aquatic organisms, such as the white shrimp (L. vannamei) and Scrippsiella trochoidea, various HSP genes (e.g., LvHSP40, LvHSP60, LvHSP70, LvHSC70, and LvHSP90) are significantly induced under acute thermal stress, highlighting their sensitivity to temperature fluctuations. Shrimp HSPs are also highly expressed in response to pathogen infections, as demonstrated by the upregulation of LvHsp60 in the gills, hemocytes, and hepatopancreas after challenge with Gram-negative or Gram-positive bacteria. Furthermore, the use of plant-based polyphenolic compounds such as phloroglucinol and carvacrol has been shown to result in the induction of HSP70 and protection against bacterial infection in brine shrimp and freshwater prawns [190]. These findings suggest that HSPs may play a role in crustaceans’ immune system regulation, which triggers immune defense against diseases, as evidenced by the modulation of immune-related genes. Overall, the investigation of HSPs in aquatic organisms provides insights into their involvement in combating stress and infection, offering potential avenues for disease control and enhancing the immune responses in these organisms.



Biotic stress factor bacteria induce HSP20 expression in fish [191,192]. Similarly, some sHsp cDNA have been isolated and characterized in an expression analysis performed in fish [117,128,193,194,195]. Following this, the HSP expression level was detected in Ictalurus punctatus [196], Paralichthys olivaceus [197], and Epinephelus coioides [198]. However, the expression patterns of fish sHsp under environmental stress are still limited with regard to biotic stress factors. Another type of HSP21 transcript was induced after 24 h exposure to Vibrio harveyi in shrimp P. monodon [158]; this was found to be entirely different in WSSV infection with P. monodon [199]. M. rosenbergii showed upregulated expression of HSP37 mRNA in the hepatopancreas under an infectious hypodermal and hematopoietic necrosis virus challenge [200]. In disk abalone Haliotis discus, HSP20 expression reached its highest peak in V. parahemolyticus with the VHSV virus [201]. Although some sHsp cDNA have been isolated and characterized in fish, there is little research on their roles in the immune response [117,128,193,194,195]. Recently, it was validated that, when infected with Singapore grouper iridovirus (SGIV) and V. alginolyticus, Epinephelus coioides hsp22 mRNA expression was significantly increased, and HSP22 could significantly inhibit the SGIV-induced cell apoptosis [202].



Importantly, abiotic factors also interact with the expression levels of HSPs in aquatic organisms, among which temperature can influence the growth, reproduction, and survival of aquatic organisms (fish and shellfish) and result in serious losses in aquaculture (Figure 3) [203,204]. In a study, the existing HSP20 gene expression was regulated by heat stress [191,192,200,205]. However, few reports provide information about the temperature regulation of HSP20 in fish, and the HSP expression levels in fish under stress factors are poorly understood. Therefore, it is necessary to discuss the findings regarding HSP expression in a range of aquatic organisms with regard to biotic and abiotic stress factors, as the gene expression profile can reveal the importance of their enhancement against foreign stimuli/invaders.




5. Conclusions


Our understanding of the chaperone system of HSPs and its significance in farmed aquatic organisms is still limited, but progress is being made in medical and veterinary research. There have been rapid advances in comprehending the fundamental aspects of HSP genes and the effects of their products and their regulation on cell maintenance, as well as cell signaling, inflammation, and the immune response. This knowledge has been applied to various veterinary and human clinical situations, and promising results have been obtained during the initial development of HSP vaccines derived from pathogens. These advancements indicate the potential value of HSPs in numerous areas of aquatic science. Further exploration of the HSP chaperone system and its applications could have significant implications for the health and wellbeing of farmed aquatic animals, providing opportunities for advancements in aquaculture practices, disease prevention, and overall aquatic ecosystem management.
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Figure 1. Redox signaling mechanisms and inhibitory effects of HSPs in fish. 
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Figure 2. Expression and molecular mechanisms of HSP and HSF in Mollusca. 
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Figure 3. Types of heat shock proteins involved in folding and misfolding mechanisms. 
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Table 1. Expression of HSPs in crustaceans under varying stress conditions and their responses.
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Species

	
Stress Factor

	
Type of HSP

	
Protein Response

	
References






	
Tigriopus japonicus

	
Environmental toxicants (heat, heavy metals, and endocrine disrupting chemicals (EDCs)

	
Hsp70

	
Upregulation

	
[37,47,68]




	
Heavy metal stress

	
Hsp105/Hsp90/Hsp70

	
Upregulation




	
Endocrine disruptors

	
Hsp20

	
Upregulation




	
Penaeus monodon

	
Heat treatment

	
Hsp90

	
Upregulation

	
[48,69]




	
pH challenge, osmotic stress, and heavy metal exposure

	
Hsp60 and Hsp10

	
Upregulation




	
Salinity stress

	
Hsp21

	
Upregulation




	
Oxidative stress: endosulfan and deltamethrin

	
Hsp90

	
-




	
Litopenaeus vannamei

	
Thermal

	
Hsp70

	
Upregulation

	
[53,70,71]




	
Nitrite-N stress

	
Hsp70

	
Upregulation




	
Cold shock at 13 °C

	
Hsp70

	
Upregulation




	
WSSV infection

	
LvHSP70

	
Tenfold upregulation




	
Daphnia magna

	
Environmental stresses

(cyanobacteria, predation from fish, toxic compounds,

temperature)

	
Hsp60s

	
Upregulation

	
[72,73]




	
Cadmium and heat

stress

	
Hsp70

	
Upregulation




	
Environmental

	
Hsp70

	
Upregulation




	
Portunus trituberculatus

	
Salinity stress

	
Hsp90, Hsp60

	
Upregulation

	
[31]




	
Salinity stress

	
Hsp70

	
Upregulation




	
Macrobrachium malcolmsonii

	
Hg and Cu

	
Hsp70

	
Upregulation

	
[36]




	
Macrobrachium rosenbergii

	

	
Hsp70/Hsc70

	
Upregulation

	
[74]




	
Amphipods

	
Cadmium chloride and temperature stresses

	
Induced by both

temperature and toxic stresses

	
Upregulation

	
[75]




	
Palaemon elegans

	
Thermal stress

	
No significant result

	

	
[23]




	
Palaemon serratus




	
Paracyclopina nana

	
UV radiation

	
Hsp60

	
Upregulation

	
[34]




	
Porcellio scaber

	
Metals

	
Lower hsp70 levels

	
Downregulation

	
[76]




	
Homarus americanus

	
Acute thermal stress, osmotic stress, molting stress

	
Significant induction of heat shock, hypo-, and hyper-osmotic responses

	
Upregulation

	
[77]




	
Nephrops norvegicus




	
Homarus americanus

	
Equivalent temperature shift

	
Hsp70

	
Upregulation

	
[77,78]




	
Thermal shifts

	
Hsp90/Hsp70/Hsc70

	
Upregulation




	
Procambarus clarkii

	
Extreme light

	
Hsp70

	
Upregulation

	
[79]




	
Help medial giant axons to maintain essential structures and functions

	
Hsp70

	
Upregulation

	
[80]




	
Artemia franciscana

	
Long-term anoxia

	
Substantial amounts of p26 translocated into nuclei of anoxic brine shrimp embryos

	
Upregulation

	
[81]




	
Cd and Zn acute exposure and non-lethal heat shock

	
Hsp production

	
Upregulation

	
[38]




	
Artemia sinica

	
CO2-driven seawater acidification

	
Upregulated in all treatments

	
Upregulation

	
[82]




	
Gammarus pulex

	
Thermal stress

	
Hsc70

	
Upregulation

	
[83]




	
Dissolved humic substances (HSs)

	
Significantly increased expression of Hsp70

	
Upregulation

	
[84]




	
Gammarus lacustris

Eulimnogammarus cyaneus E. verrucosus

	
Involved in stress defense system

	
Hsp70/sHsp

	
Upregulation

	
[75]




	
Calanus finmarchicus

	
Diapause

	
Hsp70

	
Upregulation

	
[85]




	
Neohelicegranulatus

	
Food

	
Hsp70

	
Upregulation

	
[86]




	
Portunus trituberculatus

	
Salinity

	
Hsp70

	
Upregulation

	
[31]




	
Pachygrapsus marmoratus

	
Temperature, salinity, and pH

	
Hsp70

	
Upregulation

	
[23]




	
Antarctic krills

(Euphausia superba and

E. crystallorophias)

	
Thermal shock

	
Hsp70

	
Upregulation

	
[87]




	
E. verrucosus and E. cyaneus

	
Acute thermal stress

	
Hsp70

	
Upregulation

	
[20]




	
Scylla serrata

	
Temperature,

pathogen, salinity, nitrite stress

	
Hsp70

	
Upregulation

	
[30]




	
Niphargus virei and

N. rhenorhodanensis

	
Thermal stress

	
Hsp70

	
Upregulation

	
[88]




	
Eriocheir sinensis

	
Both low and high salinity

	
Hsp70

	
Upregulation

	
[26]




	
Oniscus asellus

	
Organic chemicals, metals

	
Hsp70

	
Upregulation

	
[76]




	
Metapenaeus ensis

	
Exogenous estradiol-17β

	
Hsp90

	
Upregulation

	
[89]




	
Marsupenaeus japonicus

	

	
Mjhsp60, Mjhsp70, Mjhsp90

	
Upregulation

	
[90]




	
Exopalaemon carinicauda

	
pH and ammonia-N stresses

	
Hsp90

	
Upregulation

	
[91]




	
Eriocheir sinensis

	
Glyphosate

	
Hsp20, Hsp60, Hsp70, HSP90

	
Upregulation

	
[92]




	
Deltamethrin

	
Hsp60, Hsp70, Hsp90

	
Upregulation
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Table 2. Expression of HSPs in various parts of fish under stress conditions.
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Species

	
Tissue

	
Stressor

	
HSPs

	
References






	
Catla catla

	
Larvae

	
UV-B radiation

	
Hsp70

	
[104,105]




	
Muscle

	
Hsp27, Hsp47, Hsp60, Hsp70, Hsp90, Hsp110




	
Channa striata

	
Gill, muscle

	
Heat stress

	
Hsp27, Hsp47, Hsp60, Hsp70, Hsp78, Hsp90, Hsp110

	
[106]




	
Cirrhinus mrigala

	
Liver, gill, brain, kidney

	
Heat stress

	
Hsp70

	
[107,108]




	
Danio rerio

	
Embryo

	

	
Hspb1, Hspb2, Hspb3, Hspb4, Hspb5a, Hspb5b, Hspb6, Hspb7, Hspb8, Hspb9, Hspb11, Hspb12, Hspb15

	
[109]




	
Labeo rohita

	
Liver

	
Arsenic

	
hsp47, hsp60, hsp70, hsc71, hsp78, hsp90

	
[107,108,110,111]




	
Liver

	
Starvation/fasting

	
Hsp70




	
Liver, anterior kidney, spleen

	
Aeromonas hydrophila infection

	
Hsp30, Hsp70, Hsp90




	
Pethia sophore

	
Liver, gill, muscle

	
Heat stress

	
Hsp27, Hsp47, Hsp60, Hsp70, Hsp78, Hsp90, Hsp110

	
[112]




	
Rita rita

	
Liver, gill

	
Pollution

	
Hsp27, Hsp47, Hsp60, Hsp70, Hsp90, Hsp110

	
[113]




	
Salmo salar

	
Skeletal muscle

	
Starvation/fasting

	
Hsp90α1a, Hsp90α1b, Hsp90α2a, Hsp90α2b, Hsp90ß1a

	
[114]




	
Garra rufa

	
Muscle

	
Naturally living in a hot spring temp. (34.4 °C)

	
Hsp70, Hsp60, Hsp90, Hsc70, Grp75

	
[115]




	
Squalius torgalensis and Squalius carolitertii

	
Pectoral, pelvic, upper caudal fins, muscle

	
20, 25, 30, and 35 °C for 1 °C per day

	
Hsp70, Hsc70

	
[116]




	
Larimichthys crocea

	
Muscle, brain, liver, spleen, kidney, gill, and blood

	
Low temp. (19 °C) and high temp. (27 and 31 °C)

	
Hsp27

	
[117]




	
Gadus morhua

	
Plasma

	
Increased temp., 2 °C (2 °C/h) and control 10 °C

	
Hsp70

	
[118]




	
Fundulus heteroclitus

	
Whole organism

	
Thermal stress from 2 to 34 °C

	
Hsp70 and Hsp90

	
[119]




	
Carassius auratus

	
Cells derived from caudal fin

	
4 h heat shock form 20 to 40 °C

	
Hsp30, Hsp70 mRNA

	
[120,121]




	
Brain

	
2 h heat shock from 22 to 32 °C

	
Hsp72, hsp90




	
Oncorhynchus mykiss

	
Red blood cell

	
8 h heat shock from 10 to 30 °C

	
Hsp70 mRNA

	
[122,123,124]




	
Gill, liver, spleen, heart, and head kidney

	
18 °C were exposed to an elevated temp. (25 °C)

	
Hsp60 mRNA




	
Liver and heart tissues

	
8 h heat shock from 13 to 25 °C with 18–24 h recovery

	
Hsp70, Hsp90




	
Acipense medtrostrs

	
Whole larvae

	
3 day heat shock from 17 to 26 °C at 1.5 °C/h

	
Hsp72, Hsp78, Hsp89

	
[125]




	
Labeo rohita

	
Kidney, gill, liver, and brain

	
30 day heat shock at 31, 33, and 36 °C

	
Hsp70

	
[107]




	
Penaeus monodon

	
Tail muscle

	
24 h heat shock from 29 to 35 °C

	
Hsp70

	
[126]




	
Ictalurus punctuatus

	
Muscle

	
Exposure to low temp. from 25 to 10.5 °C for 14 and 28 days

	
Hsp70 mRNA

	
[127,128]




	
Tissue

	
Bacterial infections

	
Hsp90, hsp60, and shsp families




	
Macrobrachium

malcolmsonni

	
Gill and heart

	
3 h heat shock from 25 to 32–34 °C and 30 to 36–38 °C with 1 h recovery

	
Hsp70

	
[129]




	
Macrobrachium

rosenbergii

	
Hepatopancreas and thoracic glands

	
2 h heat shock form 25 to 30 and 35 °C

	
Hsp70 mRNA

	
[74]




	
Ostrea conchaphila

	
Gill

	
1 h heat shock from 12–15 to 33–38 °C

	
Hsp70

	
[130]




	
Ostrea edulis

	
Gill

	
1 h heat shock from 18 to 34 °C with 24 h recovery at 18 °C

	
Hsp70

	
[57]




	
Channa striata

	
Gill

	
Heat shock treatment at 36 °C for 4/15/30 days

	
Hsp60, Hsp70, Hsp78

	
[106]




	
Clarias gariepinus

	
Embryos

	
Heavy metals

	
HSP70

	
[131]




	
Rainbow trout

	
Cultured trout cell line

	
Heat shock and sodium arsenite

	
Rapid synthesis of trout Hsp70 mRNA

	
[132]




	
Danio rerio

	
Brain

	
37 °C heat stress

	
Hsp47

	
[133]




	

	
Embryos

	
Environmental stress

	
Hsp70

	
[134,135,136]




	
Early-stage embryos

	
Heat shock

	
Hsp90α and Hsp90β genes




	
Embryonic development

	
Hsp47, Hsp70, and Hsp90




	
Embryonic development

	
Hsp90 alpha and Hsp90 beta genes




	
Oreochromis niloticus

	
Liver, head kidney, spleen, and gill

	
Streptococcus agalactiae

	
Hs70 family, Hsc70-1, Hsc70-2, and Hsc70-3

	
[137,138,139]




	
Liver, brain, and gill

	
Cortisol

	
Hsp70




	
Muscle, gill, and liver

	
Different degrees of heat (10, 15, 35, 39 °C)

	
Hsp70




	
Oreochromis niloticus fingerlings

	
All organs

	
Hyperthermal-induced stress

	
HSP70

	
[140]




	
Garra rufa

	
Liver

	
Elevated water temperature

	
Hsp70, Hsp60, Hsp90, Hsc70, and Grp75

	
[115]




	
Oreochromis niloticus

	

	
Anoxia stress

	
Hsp70

	
[141]




	
Sarotherodon melanotheron

	
Gills

	
Environmental salinity

	
Hsp70

	
[142]




	
Anguilla marmorata

	
Liver, intestine, muscle, and heart

	
Aeromonas hydrophila

challenge

	
Amhsp90, Amhsp70

	
[143]




	
Oncorhynchus mykiss

	
Gill, liver, spleen, heart, and head kidney

	
Elevated temperature

	
Hsp60

	
[123]




	
Oreochromis niloticus

	
Gonad, liver, and muscle

	
Elevated water temperature

	
Hsp90

	
[144]




	
Miichthys miiuy

	
Liver, spleen, and kidney tissue

	
Bacterial infection

	
Heat shock protein 90b isoform

	
[145]




	
Boleophthalmus pectinirostris

	
Gill, liver tissues

	
Heat stress conditions

	
Hsp90AB

	
[146]




	
Dreissena polymorpha and midge larvae

Chironomus tentans

	

	

	
Hsp70

	
[147]




	
Fenneropenaeus chinensis

	

	
Microbial pathogens

	
Hsp70

	
[148]




	
Heat shock and hypoxia

	
Hsp70




	
Portunus trituberculatus

	

	
Different environmental conditions

	
Hsp90 genes

	
[39]




	
Chinook salmon

	

	
Heat shock

	
Hsp90 genes

	
[149]




	
Cyprinus carpio

	
Gill

	
Ammonia stress

	
Hsp70

	
[60]




	
Trematomus bernacchii

	

	
Cold shock

	

	
[150]




	
Pimephales promelas

	
Gill, muscle, and brain

	
28, 31, and 33 °C

	

	
[151]




	
Palaemonetes pugio

	
Muscle

	
Heat, cadmium, atrazine, and bunker fuel

	

	
[152]




	
Salmo salar L.

	

	
Anesthesia, formalin exposure, hypoxia, handling, crowding, and cold shock

	
Hsp70

	
[153]




	
Oncorhynchus kisutch

	
Kidney and liver

	
Renibacterium salmoninarum

	
Hsp70

	
[154]




	
Rainbow trout

	
Anterior kidney

	
Vibrio anguillarum

	
Hsp70

	
[155]




	
Sparus sarba Forsskål

	
Kidney and liver tissue

	
Vibrio anguillarum

	
Hsp90 and Hsp60

	
[156]




	
Brine shrimp/Vibrio model

	

	
Heat shock at 37 °C Vibrio campbelli or Vibrio proteolyticus

	
Hsp70

upregulation

	
[157]




	

	
Hypothermic shock or acute osmotic

	
Hsp70

No change




	
Penaeus monodon

	

	
WSSV

	
Hsp21

	
[158]




	
Vide supra

	

	

	
Hsp gene downregulation

	
[156]




	
Salmonids

	

	
Piscirickettsia salmonis

	
Hsp60 and HSP70

	
[159]




	
Oncorhychus mykiss (Walbaum)

	

	
Fish pathogen Flavobacterium psychrophilum

	
Hsp60 and Hsp70

	
[160]




	
Brine shrimp

	

	
Vibrio infection

	
Hsp70

	
[157]




	
Xiphophorus maculates

	

	
Escherichia coli

	
Hsps

	
[157]




	

	
Heat-shock-stimulated bacteria

	
Hsps

	
[161]
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Table 3. Mollusk expression of heat shock proteins in different organs with varying stress conditions.
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	Species
	Tissue
	Stressor
	HSPs
	Expression
	References





	Corbicula fluminea
	-
	High thermal
	HSP70, HSP90, and HSP60
	Upregulation
	[162]



	Mya truncata
	-
	Chronic heat shock
	
	Upregulation
	[163]



	Codringtonia
	Foot, digestive gland, and genitalia
	Short-term heat
	HSP70
	Upregulation
	[164]



	Crassostrea virginica and

Mercenaria mercenaria
	-
	-
	HSP60, HSP90, and HSP70
	Upregulation
	[165]



	Cyclina sinensis
	Hemocytes, hepatopancreas
	Cd Vibrio anguillarum
	HSP70
	Upregulation
	[166]



	Crassostrea gigas
	
	Long-term thermal waste
	HSP70 and HSP90
	Upregulation
	[167]



	Mid-intertidal limpet Cellana toreuma
	
	Thermal conditions
	HSP70 and HSP90
	Upregulation
	[158]



	B. koreanus
	
	Environmental stressors were reported in copper and UV-exposed
	HSP
	Upregulation
	[168]



	Haliotis tuberculata
	
	Thermal stress
	HSP70
	Upregulation
	[169]
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Table 4. Roles of different stressors in the responses and expression of heat shock proteins in insects.






Table 4. Roles of different stressors in the responses and expression of heat shock proteins in insects.





	
Species

	
Stress Factor

	
Type of HSP

	
Protein Response

	
References






	
Tetraselmis suecica

	
Redox- and non-redox-active metals

	
Small TsHSP20 and large TsHSP70 and 100

	
Fluctuations

	
[173]




	
Chironomus riparius

	
Cadmium

	
Seven sHSP genes (HSP17, HSP21, HSP22, HSP23, HSP24, HSP27, HSP34)

	
Downregulation

	
[174,175]




	
Temperature variations

	
HSP27

	
Upregulation




	
Cadmium

	
HSP27

	
Upregulation




	
Musca domestica

	
Thermal and heavy metal

	
MdomHSP10, MdomHSP27, MdomHSP27.1, MdomHSP27

	
Downregulation

	
[176,177,178,179,180]




	
Starvation, unsuitable temperatures, bacterial and hazard metal challenge

	

	
upregulation




	
Insecticide dimethoate and alkylbenzene sulfonate heat shock, Cd stress, and bacterial challenge

	
HSP70 and HSP60

	
Upregulation




	
Development and maturation of eggs

	
HSP60

	
upregulation




	
Stress conditions

	
Small HSPs

	
Upregulation




	
Drosophila melanogaster

	
Expressed highly in gonads and nervous system

	
HSP23, HSP26, and HSP27

	
Upregulation

	
[181]




	
Sarcophaga crassipalpis

	
Cold-induced diapause

	
HSP23

	
Upregulation

	
[182]




	
Plutella xylostella

	
Heavy metals

	
sHSPs

	
Upregulation

	
[183]




	
Galleria mellonella

	
Conidiobolus coronatus-induced infection

	
HSP90, HSP70, HSP60, HSP27

	
Upregulation

	
[184]
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