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Abstract: Inflammatory bowel disease (IBD), characterized by an abnormal immune response, in-
cludes two distinct types: Crohn’s disease (CD) and ulcerative colitis (UC). Extensive research has
revealed that the pathogeny of IBD encompasses genetic factors, environmental factors, immune
dysfunction, dysbiosis, and lifestyle choices. Furthermore, patients with IBD exhibit both local
and systemic oxidative damage caused by the excessive presence of reactive oxygen species. This
oxidative damage exacerbates immune response imbalances, intestinal mucosal damage, and dys-
biosis in IBD patients. Meanwhile, the weaning period represents a crucial phase for pigs, during
which they experience pronounced intestinal immune and inflammatory responses, leading to severe
diarrhea and increased mortality rates. Pigs are highly similar to humans in terms of physiology and
anatomy, making them a potential choice for simulating human IBD. Although the exact mechanism
behind IBD and post-weaning diarrhea remains unclear, the oxidative damage, in its progression
and pathogenesis, is well acknowledged. Besides conventional anti-inflammatory drugs, certain
probiotics, particularly Lactobacillus and Bifidobacteria strains, have been found to possess antioxidant
properties. These include the scavenging of reactive oxygen species, chelating metal ions to inhibit
the Fenton reaction, and the regulation of host antioxidant enzymes. Consequently, numerous studies
in the last two decades have committed to exploring the role of probiotics in alleviating IBD. Here,
we sequentially discuss the oxidative damage in IBD and post-weaning diarrhea pathogenesis, the
negative consequences of oxidative stress on IBD, the effectiveness of probiotics in IBD treatment, the
application of probiotics in weaned piglets, and the potential antioxidant mechanisms of probiotics.

Keywords: inflammatory bowel disease; oxidative stress; probiotics; weaned piglets

1. Introduce

Inflammatory bowel disease (IBD) is an incurable chronic inflammatory gastroin-
testinal disease that primarily includes Crohn’s disease (CD) and ulcerative colitis (UC).
The global prevalence of IBD has rapidly increased in recent years, with approximately
6.8 million people suffering from IBD in 2022 [1]. IBD types are typically distinguished
by the location of inflammation and the histopathological characteristics of the gastroin-
testinal tract. Clinically, CD can occur in any region of the gastrointestinal tract, including
the ileum and colon, characterized by transmural inflammation. On the other hand, UC
specifically appears in the colon and rectum, with inflammation limited to the mucosa [2].
As an inappropriate immune response, the causes of IBD are considered multifaceted,
involving genetic predisposition, environmental factors (Western diet, poor sanitation, and
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smoking), damage to intestinal epithelial integrity, and dysbiosis in the gut microbiome [3].
The exact underlying mechanisms of IBD remain unknown; however, accumulated data
from animal experimental models and clinical studies suggest that oxidative stress (OS)
signaling occupies a dominant position in the pathogeny of IBD. In brief, OS leads to
damage to the gastrointestinal mucosal layer and dysbiosis, which are important features
of IBD patients. This, in turn, stimulates immune responses and triggers IBD [4]. Therefore,
relieving systemic oxidative stress becomes a crucial goal in treating IBD. Currently, the
supplementation of reactive oxygen species (ROS) production inhibitors, corticosteroids,
aminosalicylates, and substances that stimulate endogenous antioxidant enzymes have
gradually emerged as complementary and alternative therapies for IBD treatment [5]. In ad-
dition, probiotics are being developed as therapeutic strategies for IBD. Studies have shown
that probiotics, particularly Lactobacilli and Bifidobacteria, offer benefits for IBD patients by
improving intestinal microecology, protecting intestinal mucosal barrier integrity, and mod-
ulating immune responses [6]. These effects are associated with their ability to scavenge
ROS, chelate metals, and regulate the levels of host antioxidant enzymes [7]. Moreover,
evidence from clinical studies suggests that the transplantation of healthy donor-derived
microbiota to IBD patients promotes the recovery of their gut microbiota and the resolution
of inflammation [8]. Therefore, approaches such as gut microbiota transplantation or the
oral administration of probiotics hold potential as therapeutic interventions with which to
alleviate clinical symptoms in IBD patients.

In pork production, weaning and feed transition often lead to intestinal barrier dam-
age, intestinal villus atrophy, and an overload of proinflammatory factors (TNF-α, IL-6),
resulting in diarrhea, decreased feed intake, and compromised growth [9]. Post-weaning
diarrhea (PWD), caused by intestinal inflammation and oxidative stress, contributes to
significant economic losses. Traditionally, antibiotics have been used as a means to alle-
viate diarrhea and promote growth [10]; however, due to the rise in antibiotic resistance
among intestinal pathogens and concerns about drug residues, antibiotics are gradually
being banned in many countries. Currently, certain probiotics have been suggested as
alternatives to antibiotics in weaned piglets, exerting anti-inflammatory and antioxidant
effects, modulating the microbiome, enhancing intestinal epithelial barrier function, and
alleviating diarrhea [11,12].

In clinical research, difficulty in sampling, environmental limitations, and ethics often
hinder direct research on human diseases. For a long time, small rodents have been
important model animals for basic medical research, making significant contributions to
the understanding of the pathogenesis and treatment of human diseases; however, pigs are
more similar to humans in terms of physiology and anatomy than rodents, making them a
potential choice for simulating human diseases [13]. At present, there are pig models for
cardiovascular diseases, metabolic disorders, and neurological diseases, which provide
considerable support for the analysis and treatment of human diseases [14]. Therefore, we
take the intestinal inflammation of weaned piglets as an example with which to discuss
the following points sequentially: the relationship between oxidative stress and IBD, the
potential of probiotics in IBD treatment, the application of probiotics in weaned piglets,
and the possible mechanisms of probiotics in IBD treatment.

We conducted a thorough search using PubMed, Medline, and Web of Science databases
from 2010 to 2023, and found a total of 41 papers to include in this review. These papers
included in vitro cell tests, small rodents (mainly induced with dextran sodium sulphate
or 2,4,6-trinitrobenzenesulfonic acid), and piglets (induced with weaning stress) as IBD
models. In addition, we also searched for double-blind, placebo-controlled trials of adults
and children with active or quiescent CD or UC within the past 20 years. This review
provides valuable insights into the potential of probiotics, particularly lactobacillus, in
alleviating IBD symptoms.
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2. Oxidative Stress in Inflammatory Bowel Disease

OS is an imbalance between oxidants and antioxidants, with reactive oxygen species
(ROS) being the most common highly reactive molecules in organisms. ROS, including
superoxide (O2·−), peroxy radical (RO2·), hydroxyl radical (HO·), and hydroperoxy rad-
ical (HO2·), are natural byproducts of metabolism [15]. They are primarily produced by
organelles such as the endoplasmic reticulum, mitochondria, and peroxisome, as well as by
enzymes, such as peroxidase, NADPH oxidase, xanthine oxidase, lipoxygenase, glucose
oxidase, and epoxidase [16]. Antioxidant systems, on the other hand, consist of enzymatic
and nonenzymatic defenses. Enzymatic defenses, including catalase, superoxide dismutase
(SOD), and glutathione peroxidase (GP-x), are present in all cells. Nonenzymatic defenses
typically involve substances such as glutathione, ascorbic acid, vitamin E, C, A, and metal
elements (zinc, copper, manganese, and iron) [2]. At homeostatic levels, ROS have nu-
merous physiological functions, such as cell signal transmission, growth, differentiation,
apoptosis, and inflammation; however, under OS, overloaded ROS would damage cell
biomacromolecules, especially membrane lipids, DNA, and proteins [2].

2.1. Oxidative Stress Is the Trigger of IBD

Currently, OS is receiving increasing attention as a potential etiology or trigger of IBD.
Numerous studies have compared the levels of OS markers between healthy individuals
and IBD patients. The results have shown that the levels of antioxidant enzymes (including
PON1, SOD, CAT, and GP-x) and nonenzymatic antioxidant substances (vitamins A, C,
E, and β-carotene) are higher in healthy individuals compared to IBD patients [4,17].
Additionally, the most commonly evaluated index is the total antioxidant status (TAS)
or total antioxidant capacity (TAC), which reflects the overall antioxidant capacity of an
individual [18]. The study found that the TAS/TAC in the serum or plasma of adult
patients with IBD (including CD and UC) uniformly decreased [3]. Conversely, pro-
oxidases/agents, such as MPO, NO, spermine oxidase, COX2, NOX2, and NOS2, were all
raised in the intestinal mucosa and serum of IBD patients [19]. Moreover, the concentrations
of lipid peroxidation products (4-hydroxynonenal and malondialdehyde), DNA oxidation
products (8-OHdG), and oxidative protein products (hydroxylated or carbonylated proteins)
with proinflammatory properties have been shown to be positively correlated with the
severity of IBD [20–22]. Additionally, oxidative-damage-induced DNA strand breakage,
pyrimidine/purine loss, or abnormal pyrimidine and purine modification are considered
key factors in the occurrence of IBD [3,23]. Similarly, another index, the “Oxidative Stress
Index”, obtained by dividing the total oxidative capacity by the total antioxidant status, is
significantly higher in IBD patients compared to the healthy population [3].

OS is closely associated with the main pathological feature of IBD, which is inflam-
mation. Studies have found a positive correlation between indices of OS and levels of
C-reactive protein, an inflammatory marker in CD patients [24]. Similarly, clinical evidence
suggests that plasma free thiols, the main substrates of ROS, are inversely correlated with
inflammatory biomarkers [24,25]. Mechanistically, redox signaling stimulates NF-κB sig-
naling, which is intimately involved in the upregulation of inflammatory cytokines (IL-1,
IL-8) and inflammatory cell infiltration. During the immune response, polymorphonu-
clear leukocytes and monocytes infiltrate massively into the injured intestinal mucosa,
stimulating the ROS/RN-generating system to increase oxidative stress [24] (Figure 1).
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Figure 1. Oxidative stress is associated with the pathogenesis of IBD. Oxidative stress leads to the 
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pathogens to invade the mucosa, exacerbating the vicious cycle. Probiotics stimulate the expression 
of antioxidant enzymes and relieve IBD by activating the Nrf2 signaling pathway. Superoxide (O2·−

), peroxy radical (RO2·), hydroxyl radical (HO·), hydroperoxy radical (HO2·), NAD(P)H dehydro-
genase quinone 1 (NQO1), glutathione S-transferase (GST), heme oxygenase 1 (HMOX1), glutamate 
cysteine ligase (GCL), and glutathione (GSH). 
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ficial bacteria alongside an increase in pathogenic bacteria, is another prominent feature 
of IBD patients [26]. Accumulating evidence suggests that disharmony between the intes-
tinal flora and the immune response of the intestinal mucosa occupies a central role in IBD 
pathogenesis [27]. Some opportunistic pathogenic bacteria (E. coli and Helicobacter pylor) 
have been identified as the main sources of intestinal redox signals, which directly or in-
directly (stimulate neutrophils) produce ROS, leading to the development of IBD exacer-
bations [28,29]. Additionally, the differential structure of the gut microbiota in patients 
with IBD compared to healthy individuals has been extensively studied [30]. The abun-
dance of beneficial bacteria normally present in the gut of healthy individuals, such as 
Bacteroidetes and Firmicutes, is significantly reduced in patients with IBD, while harmful 
populations, such as Proteobacteria and Actinobacteria, are increased [31]. Among the ben-
eficial bacteria, Faecalibacterium, producing butyrate, with anti-inflammatory effects, is one 
of the most abundant species in the human gut [26]; however, the abundance of Faecali-
bacterium prausnitzii is decreased in the gut of IBD patients [32]. Similarly, levels of Rose-
buria spp., another butyrate-producing bacteria, are remarkably lower in populations at a 
high genetic risk for IBD [26]. Additionally, the abundance of Bifidobacterium is also de-
creased. In terms of pathogenic bacteria, the relative abundance of Proteobacteria (mainly 
Escherichia coli) and proinflammatory properties (Escherichia and Fusobacterium) is higher 
in IBD patients [33]. Similarly, a TNBS-induced murine model found raised populations 
of E. coli as well as Clostridium spp. and reduced populations of Bifidobacterium and Lacto-
bacillus [34]. Dysbiosis leads to damage of intestinal mucosal integrity, which causes op-
portunistic bacteria to invade the mucosa, leading to inflammatory cascades [35]. 

Additionally, oxidative stress and inflammation caused by ROS overload are tightly 
intertwined, leading to intestinal mucosal barrier damage in IBD patients. This, in turn, 

Figure 1. Oxidative stress is associated with the pathogenesis of IBD. Oxidative stress leads to the
overexpression of inflammatory factors, which destroy the intestinal barrier and cause opportunistic
pathogens to invade the mucosa, exacerbating the vicious cycle. Probiotics stimulate the expression
of antioxidant enzymes and relieve IBD by activating the Nrf2 signaling pathway. Superoxide (O2·−),
peroxy radical (RO2·), hydroxyl radical (HO·), hydroperoxy radical (HO2·), NAD(P)H dehydrogenase
quinone 1 (NQO1), glutathione S-transferase (GST), heme oxygenase 1 (HMOX1), glutamate cysteine
ligase (GCL), and glutathione (GSH).

2.2. Oxidative Stress Leads to Intestinal Dysbiosis

Notably, intestinal dysbiosis, marked by microbial diversity and a decrease in benefi-
cial bacteria alongside an increase in pathogenic bacteria, is another prominent feature of
IBD patients [26]. Accumulating evidence suggests that disharmony between the intestinal
flora and the immune response of the intestinal mucosa occupies a central role in IBD
pathogenesis [27]. Some opportunistic pathogenic bacteria (E. coli and Helicobacter pylor)
have been identified as the main sources of intestinal redox signals, which directly or
indirectly (stimulate neutrophils) produce ROS, leading to the development of IBD exacer-
bations [28,29]. Additionally, the differential structure of the gut microbiota in patients with
IBD compared to healthy individuals has been extensively studied [30]. The abundance of
beneficial bacteria normally present in the gut of healthy individuals, such as Bacteroidetes
and Firmicutes, is significantly reduced in patients with IBD, while harmful populations,
such as Proteobacteria and Actinobacteria, are increased [31]. Among the beneficial bacteria,
Faecalibacterium, producing butyrate, with anti-inflammatory effects, is one of the most
abundant species in the human gut [26]; however, the abundance of Faecalibacterium praus-
nitzii is decreased in the gut of IBD patients [32]. Similarly, levels of Roseburia spp., another
butyrate-producing bacteria, are remarkably lower in populations at a high genetic risk
for IBD [26]. Additionally, the abundance of Bifidobacterium is also decreased. In terms of
pathogenic bacteria, the relative abundance of Proteobacteria (mainly Escherichia coli) and
proinflammatory properties (Escherichia and Fusobacterium) is higher in IBD patients [33].
Similarly, a TNBS-induced murine model found raised populations of E. coli as well as
Clostridium spp. and reduced populations of Bifidobacterium and Lactobacillus [34]. Dysbiosis
leads to damage of intestinal mucosal integrity, which causes opportunistic bacteria to
invade the mucosa, leading to inflammatory cascades [35].

Additionally, oxidative stress and inflammation caused by ROS overload are tightly
intertwined, leading to intestinal mucosal barrier damage in IBD patients. This, in turn,
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increases mucosal permeability, allowing pathogen invasion, which further stimulates
proinflammatory factor and ROS production, creating a vicious cycle [36].

Currently, the focus of IBD therapy is on reducing inflammation, and mainstream
drugs include combinations of immunosuppressive and anti-inflammatory agents, such as
anti-TNF-α antibodies and corticosteroids [37]. Furthermore, many antioxidant therapies,
such as ROS production inhibitors, dietary interventions, and antioxidants, are being inves-
tigated as auxiliary therapies for IBD, exhibiting promising results [5]. Since gut microbiota
interfere with both local and systemic immune responses, and their dynamic changes
markedly depending on environmental factors and IBD treatment [38], supplementing IBD
patients with probiotics that have antioxidant capacity might be a potential new therapy.

3. Probiotics in the Treatment of IBD

The advantages of probiotics in the treatment of IBD have been extensively studied in
recent decades. The use of probiotics in patients with IBD has increased by 50% in recent
years. Accumulating evidence suggests that certain probiotic strains are beneficial for the
treatment and prevention of IBD, both in animal models and humans. The most commonly
used probiotics are Lactobacilli and Bifidobacteria, which have been reported to improve
the total antioxidant status of IBD patients. This improvement may be attributed to their
ability to scavenge reactive oxygen species (ROS), chelate metals, stimulate host antioxidant
enzyme levels (SOD, CAT, and GP-X), and modulate the gut flora [39–41].

3.1. Effect of Probiotics on Alleviating UC

The colon harbors the highest concentration of microbes in the human body. Several
probiotics that normalize the composition of the colonic microbiome have shown benefits
for patients with ulcerative colitis (UC). Currently, dextran sulfate sodium (DSS) and 2,4,6-
trinitrobenzene sulfonic acid (TNBS) are commonly used to induce experimental models
of UC and CD, respectively. In mouse model of DSS-induced colitis, Bifidobacterium lactis
A6, Bifidobacterium longum. infantis BB-02, and Bifidobacterium animalis lactis BB12 have been
shown to inhibit OS, reduce colonic inflammation, and improve intestinal permeability [42].
Similarly, Lactobacillus plantarum 2142 inhibited oxidative-stress-induced proinflammatory
cytokine overexpression in the IPEC-J2 cell line [43]. In human studies, Bifidobacterium and
Lactobacillus acidophilus have demonstrated benefits for UC patients, including reduced rec-
tal bleeding symptoms, improved endoscopic scores, and better redox statuses [44–46]. The
administration of Lactobacillus reuteri enemas to children with ulcerative proctitis effectively
improved their clinical scores [47]; however, some studies have not observed significant
differences with the supplementation of the same species, suggesting that the combined use
of multiple strains may be more effective. The De Simone formulation, consisting of eight
lactic-acid-producing species, has been extensively studied and shown to provide relief
for pediatric and adult UC patients [35,48]. Another effective probiotic mixture is VSL#3,
which includes Lactobacillus, Bifidobacterium, and Streptococcus thermophilus [49]. It has
demonstrated efficacy in mouse models of UC and mild to moderate UC patients, reducing
rectal bleeding, inflammatory markers, and improving mucosal antioxidant capacity. The
alleviating effect of probiotics on IBD has been summarized in Supplementary Table S1. It
is important to note that most patients in clinical settings receive anti-inflammatory drugs
as part of their routine care, and investigating the synergistic effects between conventional
drugs and probiotics is necessary. Combining VSL#3 with probiotics has shown reduced
rectal bleeding frequency [50]. Dual treatment with probiotic mixtures and mesalazine has
resulted in shorter recovery times and improved endoscopic images in UC patients [51],
whereas some studies have shown that probiotics (E. coli Nissle 1917 and VSL#3) have no
significant therapeutic effect on UC patients [48,50,52]. The controversial results might
be due to the differences in trial design, evaluation criteria, treatment duration, research
scale, and patient characteristics (such as age, disease development stage, geographical
location, and intervention type) [53]. Therefore, it is necessary to carry out a unified design
experiment on a larger patient group to correctly evaluate the beneficial effects of probiotics
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on UC; however, it is generally believed that a longer treatment with the combination of
VSL#3 and lactobacillus after surgery may have a better therapeutic effect on UC.

3.2. Effect of Probiotics on Alleviating CD

The effectiveness of probiotics in Crohn’s disease (CD) treatment remains disputed.
Some studies have shown positive outcomes, such as reduced colonic edema and improved
histological scores in CD mice treated with Bifidobacterium bifidum in addition to the relief
of symptoms in children with CD treated with Lactobacillus rhamnosus and Saccharomyces
boulardii [54,55]; however, other studies have not found significant benefits with the use
of probiotics in CD patients, including the effectiveness of Lactobacillus rhamnosus and
VSL#3 [34,56,57]. Overall, probiotics are not recommended for the treatment of CD patients
based on current evidence [47].

Given that IBD is a multifactorial disease, it is not reasonable to use the same probiotic
species for all patients to achieve the same efficacy. Personalized medicine should be con-
sidered in future studies, taking into account factors such as IBD subtype, the location of the
pathology, disease severity, the composition of the patient’s microbiota, and environmental
as well as genetic background, to determine the appropriate bacterial strains and doses for
individual patients.

4. Probiotics Inhibit Intestinal Oxidative Damage in Weaning Piglets

In pig farming, oxidative stress is one of the major causes of disease. The intestine
is a main target of ROS attack, which easily leads to intestinal inflammation, barrier
disruption, diarrhea, and microbial disorders, ultimately resulting in reduced feed intake
and slow weight gain, severely compromising farming benefits. Studies have shown that
MDA, protein hydroxyl, and ROS are significantly increased in the liver, intestine, and
blood of weaned piglets [58], whereas the activities of GSH-PX and SOD are significantly
inhibited [59]. Intestinal oxidative stress induces microbiome dysregulation, leading to
post-weaning diarrhea (PWD), and intestinal infections are a major problem facing pig
production [9].

Given its antioxidant properties, various strains of Lactobacillus have been reported
as potentially being able to alleviate piglets’ post-weaning diarrhea. Research shows that
an increased mean daily weight gain and a significant decrease in the rate of diarrhea
were observed when LPS-challenged piglets were fed Lactobacillus salivarius, and also
accompanied by decreased levels of proinflammatory mediators (IL-6 β, TNF- α, IL-2,
and IFN- γ) in serum and mesenteric lymph nodes [9]. Similarly, the alleviating effect
of Lactobacillus gasseri, Lactobacillus reuteri, and Lactobacillus acidophilus on diarrhea in
piglets was demonstrated in several reports, which was associated with a reduction in
enterotoxigenic Escherichia coli (ETEC) adhesion [11,60]. In addition, Lactobacillus acidophilus
and Lactobacillus casei alleviated the severity of PWD by decreasing systemic immune
responses and intestinal oxidative stress [11].

The intestine is the crucial place of nutrient digestion and absorption; thus, villus
health remarkably affects the growth conditions of livestock, and is usually evaluated
through villi height (VH), crypt depth (CD), and the villus-height-to-crypt-depth ratio
(VCR) [49], whereas the shortening of intestinal villi and increased crypt depth via ox-
idative stress impede nutrient absorption [61]. On the other hand, intestinal nutrient
absorption is mainly performed in a transmembrane or paracellular manner, closely related
to tight junction proteins [62]. Tight junctions mainly include occludin, claudin-1, and ZO-1
proteins, and their dynamic changes have a key role in regulating the intestinal barrier
and cell survival [63]. In addition to the function of digesting and absorbing nutrients,
the intestinal epithelium also serves as a barrier against harmful antigens and pathogens.
Intestinal barrier damage caused by oxidative stress is usually manifested by the disruption
of tight junction proteins and the release of diamine oxidase (DAO) into the serum [64].

Interestingly, research showed piglets fed with Lactobacillus plantarum have higher VH
as well as VCR and lower CD [65]. Additionally, dietary supplementation with Lactobacillus
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delbrueckii successfully reversed the LPS-induced increase in serum DAO and intestinal CD,
as well as raised occludin, ZO-1, and Claudin-1 levels in the ileum of piglets [66]. Pretreat-
ment with L. salivarius could stimulate the expression levels of SOD, GSH-PX4, and CAT in
the intestine of weaned piglets, but inhibited the immune response and oxidative stress
caused by LPS infection, thus restoring the intestinal integrity of the weaned piglets [9].
Furthermore, Lactobacillus delbrueckii supplementation alleviated an LPS-induced increase
in MDA in serum but decreased jejunal mucosa 8-hydroxy-2-deoxyguanosine levels of
piglets [67]. These results suggest that Lactobacillus maintains the intestinal epithelial
barrier integrity by reducing oxidative stress. Other similar reports are summarized in
Supplementary Table S2.

5. Potential Signaling Pathways Underlying the Antioxidant Actions of Probiotics

Nuclear factor erythroid 2–related factor 2 (Nrf2) is a member of the cap‘n’collar
transcription factor family and consists of seven NEH domains. Currently, Nrf2 has
emerged as a well established ubiquitin-dependent signaling system in response to OS [68].
High levels of ROS stimulate the separation of Nrf2 from its constitutive inhibitor: Keap1.
Subsequently, Nrf2 enters the nucleus and binds to antioxidant response element (ARE)
sequences, initiating the transcription of antioxidant genes such as NQO1, GST, HMOX1,
GCL, and GSH (Figure 2). A large body of investigation indicates that Nrf2 activation could
inhibit OS and inflammation, thereby preventing UC [69]. The activation of the Nrf2 system
by probiotics in a host is believed to be one of the important mechanisms through which
they exert antioxidant properties. In an in vivo UC rat model, Lactobacillus delbrueckii and
Lactobacillus fermentum play a protective role by upregulating the Nrf2/Ho-1 pathway [70].
Similarly, Lactobacillus helveticus has also been shown to activate the Nrf2 pathway, relieving
intestinal oxidative stress in mouse models [71]. Furthermore, the remission of LPS-induced
intestinal injury by Bacillus coagulans TL3 is also related to Nrf2 signaling activation [72].
In vitro, the activation of the Nrf2 pathway has also been shown to mediate the antioxidant
effect of Bifidobacterium infantis, Clostridium butyricum, and Lactobacillus casei Shirota in
intestinal injury [73–75]. The activation of toll-like receptors (TLRs) has been reported
to stimulate Nrf2-ARE signaling and HO-1, both in vivo and in vitro [76]. Additionally,
numerous studies have reported that the stimulation of TLR-Nrf2 signaling by Lactobacilli
might also be responsible for their antioxidant benefits in the piglets’ guts [77,78].
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Nuclear factor kappa-B (NF-κB) is another transcription factor that accounts for the
redox mechanism of probiotics. It has been found that NF-κB has a close relationship with
Nrf2. Specifically, the loss of Nrf2 can increase NF-κB activity, leading to more serious
inflammation, and NF-κB activation can also mediate the transcription of Nrf2 [50]. Lacto-
bacillus species, such as Lactobacillus johnsonii L531, Lactobacillus reuteri, Lactobacillus brevis,
and Lactobacillus fermentans, have been shown to activate the NF-κB pathway, relieving
intestinal OS and inflammation in rats [50,79,80]. Additionally, the artificial modification of
Lactobacillus expressing SOD showed similar results [81]. Moreover, Bifidobacterium down-
regulates ROS and inhibits NF-κB pathways to modulate the intestinal immune system
and protect the intestinal epithelium, as has been addressed in detail [82].

Silent information regulator factor 2-related enzymes (SIRTs) are highly conserved
NAD+-dependent class III histone deacetylases. Currently, there are seven recognized
members in the human SIRT family: SIRT1 to SIRT7.

The crosstalk between SIRT1 and Nrf2/ARE plays a key role in antioxidant defense. In
brief, SIRT1 prompts the nuclear translocation of Nrf2, thereby upregulating the expression
of antioxidant proteins and phase II detoxification enzymes [83]. In rats with aging-induced
colitis, Lactobacillus C29 treatment decreased the plasma levels of ROS, malondialdehyde
(MDA), and C-reactive protein, while increasing SIRT1 expression [84]. Furthermore, the
alleviation of high-fat-diet-induced UC by B. longum and L. plantarum is also associated with
the activation of SIRT1 [85]. It has also been shown that activated SIRT2 can deacetylate
the forkhead box proteins (FOXO1a and FOXO3a) to increase the expression of FoxO-
dependent antioxidant enzymes [86]. The activation of manganese superoxide dismutase
(Mn-SOD)/SOD2 by B. longum and L. acidophilus to reduce cellular ROS levels mediated by
SIRT2 has been reported [87].

Mitogen-activated protein kinases (MAPKs) pertain to the serine/threonine kinase
family and participate in numerous biological processes, including cell inflammation,
antioxidation, and cell death [88]. As of now, three MAPK types have been discovered:
ERK, JNK, and p38 MAPK. It is generally accepted that Nrf2 activation mediated by
ERK1/2, JNK, and p38 accounts for the expression of phase II detoxifying enzymes [52,89].
Lactobacillus rhamnosus GG prevents the H2O2-induced disruption of tight junctions in the
human intestinal epithelium, which may be mediated through ERK1/2 [90]. Additionally,
both heat-killed and active Lactobacillus brevis effectively ameliorated subtotal duodenal
and colonic injury caused by mercury poisoning or DSS by blocking oxidative stress and
inflammation through a p38-MAPK-mediated pathway [91,92].

6. Summary and Outlook

Taken together, IBD and post-weaning diarrhea are complex and multifactorial dis-
eases with unclear direct causes and pathological mechanisms; however, the significant
role of oxidative stress in their pathogenesis has been widely recognized. Currently,
anti-inflammation and anti-oxidation are important treatment targets for IBD and post-
weaning diarrhea.

Studies have shown that probiotics, particularly Lactobacillus and Bifidobacteria, possess
antioxidant properties in mammals. Therefore, providing probiotics appears to be a promis-
ing strategy for IBD treatment. Probiotics may improve various pathological aspects of IBD,
with mixed-species formulations being more effective than single-species ones. VSL#3 and
the De Simone formulation have emerged as the most effective microbial agents for treating
UC; however, probiotic formulations seem to be less effective in treating CD compared to
UC, potentially due to differences in inflammation location, disease severity, and duration.
Similarly, incorporating probiotics into the feed of weaned piglets can significantly re-
duce diarrhea, intestinal inflammation, and barrier disruption. The antioxidant properties
of probiotics mainly involve scavenging free radicals, chelating metal ions, modulating
antioxidant enzyme expression, and influencing gut microbiota. At the molecular level,
probiotics can impact signaling pathways, such as Nrf-2, NF-κB, MAPK, and SIRTs, to exert
antioxidant effects.
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It should be noted that animal IBD models do not fully replicate the human immuno-
logical profile, particularly in multifactorial diseases. Therefore, the efficacy of probiotics
should be tested in various models. Additionally, the lack of standardized evaluation
criteria for antioxidant capacity hampers the comparison of results between studies. More-
over, the appropriate dosage, species type, mixing ratio, and treatment duration of probi-
otic preparations have yet to be determined. Furthermore, chemical drugs and surgical
treatments remain preferred in current clinical practices, so the combination therapy of
conventional treatment approaches with probiotics should be further investigated. These
aforementioned issues should be the focus of future studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox12071342/s1. Table S1: The alleviating effect of probiotics
on IBD; Table S2: The therapeutic effect of probiotics on intestinal inflammation in weaned piglets.
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