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Abstract: Glaucoma is the leading cause of irreversible blindness and visual impairment, affecting
more than 80 million individuals worldwide. Oxidative stress and inflammation-induced neurode-
generative insults to retinal ganglion cells are the main pathogenesis of glaucoma. Retinal ganglion
cells, the retinal neurons transmitting the visual signals to the visual cortex in the brain, have very
limited regeneration or recovery capacity after damages. Apart from intraocular pressure-lowering
treatments, there is still no clinically effective treatment to rescue the degeneration of retinal ganglion
cells in glaucoma. Dietary antioxidants are easily accessible and can be applied as supplements
assisting in the clinical treatments. Catechins, a chemical family of flavonoids, are the phenolic
compounds found in many plants, especially in green tea. The anti-oxidative and anti-inflammatory
properties of green tea catechins in vitro and in vivo have been well proven. They could be a potential
treatment ameliorating retinal ganglion cell degeneration in glaucoma. In this review, the chemistry,
pharmacokinetics, and therapeutic properties of green tea catechins were summarized. Research
updates on the biological effects of green tea catechins in cellular and animal experimental glaucoma
models were reviewed. In addition, clinical potentials of green tea catechins for glaucoma treatment
were also highlighted.

Keywords: green tea; EGCG; glaucoma; retinal ganglion cells; anti-oxidation; anti-inflammation

1. Green Tea Catechins: Chemistry and Pharmacokinetics
1.1. Chemistry of Green Tea Constituents

Tea is the most commonly consumed beverage worldwide. It comes from the leaves
of the tea plant, Camellia sinensis. Different harvesting, manufacturing, and fermentation
processes result in different types of tea, such as white, black, green, or oolong tea. Green
tea is obtained by steaming and roasting fresh tea leaves under strictly controlled con-
ditions so as to preserve the polyphenols from oxidation by polyphenol oxidase. Many
constituents are present in the green tea infusion, including polyphenol polymers, amino
acids, polysaccharides, saponins, alkaloids, and polyphenols (Figure 1). The compositions
depend on the Camellia species, harvesting process, storage conditions, and processing
methods. Polyphenol polymers, including theaflavins, thearubigins, and proanthocyanidin
polymers, are oxidized and polymerized products of catechins monomers. Their anti-
inflammatory and hepato-protective properties have been reported in experimental rodent
models [1,2]. The concentrations of polyphenol polymers, theaflavins, and thearubigins
are about 3–6% in green tea, 12–18% in black tea, and 8 to 20% of catechins in oolong tea,
respectively. Amongst the tea amino acids, L-theanine is known to possess relaxation and
cognitive improvement properties for humans [3]. Polysaccharides of glucose, galactose,
rhamnose, and arabinose in tea are conjugated with different chemical groups resulting in
diversified biological activities, including anti-oxidative and anti-diabetic activities [4,5].
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Tea saponins, the natural non-ionic surfactants extracted from the aqueous layer, have
displayed anticancer, antimicrobial, and cardiovascular protective properties in animal
studies [6]. Benefits to human have also been shown [7]. Tea alkaloids, including caffeine,
theobromine, and theophylline could improve cognition with antioxidative, anti-diabetic,
and anti-obesity effects according to animal studies [8,9]. Polyphenols in tea have been the
most extensively studied among the tea constituents due to their strong biological activity
and high abundance [10]. Polyphenols in green tea are mainly flavonoids. Based on their
nuclear structures, green tea flavonoids can be classified into flavanones, isoflavanones,
flavones, flavonols, flavan-3-ols (catechins), and hydroxycinnamic acid. Amongst the
polyphenols, catechins (flavan-3-ols) possess the most beneficial biomedical properties
for human health [11]. The main catechins in green tea are as follows: (+)-catechin (C),
(−)-epicatechin (EC), (−)-gallocatechin (GC), (−)-epigallocatechin (EGC), and their gallate
derivatives, (−)-catechin-3-gallate (CG), (−)-epicatechin-3-gallate (ECG), gallocatechin-
3-gallate (GCG), and (−)-epigallocatechin-3-gallate (EGCG), respectively (Figure 1). The
flavan-3-ol concentration is about 50% in green tea and 10% in black tea, respectively.
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Figure 1. Structures of polyphenols, amino acids, and alkaloids that are present in green tea.

EGCG is the most abundant and biologically active catechin with proven health-
promoting properties [12,13]. Its biochemical activities are attributed to its structural moiety
and hydroxyl groups [14]. EGCG has eight hydroxyl groups that contribute hydrogen
radicals to reactive oxygen species and form stable resonance structures (Figure 2). Unlike
the other flavonoids of green tea polyphenols, the pro-oxidant activity of catechins is
relatively low as they do not have any double bonds in C2–C3, nor any ketone groups in C4
to form further resonance structures in the C ring [15]. Therefore, catechins can cross-link
with each other to form stable polymers, such as thearubin [16]. Consequently, catechins
are lower in toxicity compared toother tea polyphenols.
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Figure 2. Resonance structures of epigallocatechin-3-gallate after reaction with reactive oxygen species.

The standard reduction potential (E◦) is correlated to the cellular antioxidant activity
(CAA). Green tea catechins all have a lower reduction potential than the endogenous anti-
oxidant glutathione (GSH), thereby being indicative of a higher antioxidant activity. GSH
(0.310 V) < C (0.281 V) = EGC (0.287 V) < EC (0.277 V) < EGCG (0.104 V) < ECG (0.098 V) [17].

Besides its intrinsic antioxidative properties, the anti-inflammatory and antioxidative
activities of EGCG have been attributed to its interaction with the cellular membrane
protein receptor (Figure 3). It binds to 67 kDa laminin receptors (67 LR) to upregulate the
Toll-interacting protein (Tollip). Increased Tollip expression induces negative effects of
inflammatory associated Toll-like receptor (TLR) signaling, leading to the deactivation of
the NF-kB and MAPK pathways, which act on anti-oxidant response elements (AREs) in
the nucleus for both anti-inflammatory and anti-oxidant responses [18]. The subsequent
lowering of inflammatory mediators, such as inducible nitric oxide synthetase (iNOS)
decreases the production of reactive oxidative species. As the EGCG molecule possesses
multiple hydroxyl groups, it is potent in binding through hydrogen bonding with amino
acid residues including serine and tyrosine on the active sites of the membrane receptor to
change the structural conformation and exert various signaling and biological activities.
It interacts with the serine residue at the N-terminal domain of tumor suppressor p53,
which is a sensor of oxidative stress, to change the structural conformation and inhibit the
ubiquitination of p53 by murine double minute 2 (MDM2). The stabilized p53 can thus
be retained for anti-tumor activities [19]. The pleiotropic effects of EGCG have also been
attributed to its multiple binding properties. It can moderate the redox, inflammation,
and cell cycle status through its multiple receptor affinities. It activates the epidermal
growth factor (EGF) receptor in the absence of EGF but inhibits EGF-induced EGF receptor
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activation by affecting the topology of the EGF receptor transmembrane domain [20]. EGCG
can also inhibit the activation of the wild-type and some mutants of the EGF receptor in
non-small cell lung cancer cell lines [21].
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Apart from binding to specific receptors, such as to 67LR for anti-inflammation,
pro-oxidation of catechins generate reactive oxygen species (ROS) to act as secondary
messengers to stimulate various signaling pathways, which may be mediated by receptors
from the cell surface to the nucleus. For example, EGCG can bind to the active sites of
thioredoxin (Trx) to inhibit the Trx/Trx receptor, which facilitates anti-oxidation to increase
the ROS level [22]. ROS in turn can serve as an anti-bacterial agent [23]. EGCG activates
calcium/calmodulin-dependent protein kinase β (CaMKKβ) to increase energy metabolism
and elevate cytosolic calcium levels, thereby contributing to increase NO production [24].
It increases cyclic adenosine 5′ monophosphate (cAMP) in endothelial cells and platelets to
promote the phosphorylation of eNOS and vasodilator=stimulated phosphoprotein [25]
to cause vaso-relaxation [26]. Furthermore, it activates adenosine 5′ monophosphate-
activated protein kinase (AMPK), which reduces endothelin-1 expression [27,28] to improve
vasodilation [29] (Table 1).
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Table 1. Summary of the biological properties of green tea catechins.

Biological Properties Mechanisms References

(1) Pro-oxidation Electron resonance within the phenolic moiety following abstraction
of proton by ROS. [15,16]

(2) Antioxidation/-reduction
High reduction potential of catechins compared to endogenous

antioxidants; reducing and recycling the oxidized
endogenous molecules.

[17]

(3) Anti-inflammation Binding to 67LR to increase Tollip expression, which negatively
regulates TLR signaling to suppress inflammatory mediators. [18]

(4) Anti-tumor, antioxidation, and
anti-inflammation

Binding to the active sites of p53 and changing the structural
conformation to prevent ubiquitination by MDM2; retaining the

biological level and activities of p53.
Inhibiting the activation of the wild-type and some mutant EGF

receptors in non-small cell lung cancer cell lines.

[19,21]

(5) Moderate redox, inflammation,
and cell cycle

Binding to the EGF receptor to change the topology and block EGF to
activate the receptor for subsequent inflammation activities. [20]

(6) Generation of secondary
messengers for vasodilation

Inhibiting anti-oxidative molecules, including the Trx/Trx receptor to
increase ROS, which acts as a secondary messenger for

various pathways
Activating CaMKKβ to increase energy metabolism; elevating

cytosolic calcium to increase nitric oxide production.
Increasing cAMP to promote the phosphorylation of eNOS and
vasodilator-stimulated phosphoprotein to cause vaso-relaxation.

Activating AMPK to reduce endothelin-1 expression for vasodilation.

[22,24–29]

67 LR: 67 kDa laminin receptors; AMPK: adenosine 5′ monophosphate-activated protein kinase; cAMP: cyclic
adenosine 5′ monophosphate; CaMKKβ: calcium/calmodulin-dependent protein kinase beta; EGF: epidermal
growth factor; eNOS: endothelial nitric oxide synthetase; MDM2: murine double minute 2; ROS: reactive oxygen
species; TLR: Toll-like receptor; Tollip: Toll-interacting protein; and Trx: thioredoxin.

1.2. Pharmacokinetics of Catechins in the Eye

Following oral administration, tea catechins are first absorbed by the small intestine,
where they are conjugated with glucuronic acid, sulfate, or O-methylation before passing to
the liver tissue cells for metabolism. Excess catechins are either secreted with the bile into
the small intestine for the enterohepatic recirculation or pass into the colon for degradation
by the resident microorganisms. The catabolites are either reabsorbed into plasma and
excreted into the urine or passed out through the feces. The catechins, conjugates, and
catabolites are distributed to various organs and tissues to exert various biological activities.
As the bioavailability of catechins depends on its absorption and metabolism, the extensive
metabolic processes render the levels of catechins to be very low, which is a limitation for
antioxidative treatment.

The absorption efficiency of the catechins depends on the physicochemical properties,
including molecular size, steric configuration, solubility, hydrophilicity, pKa, the presence
of galloylated derivatives, and the presence of food matrix [30]. As the absorption involves
efflux transporters, such as multidrug resistance-associated protein 2 (MRP2) in the small
intestine [31], this results in a low bioavailability [32,33] and variability of the absorption
rate. Co-administration of food and drugs can interact with the absorption of catechins [34].
The maximum plasma levels of free EGCG and EGC can increase more than 3.5-fold in
the fasting condition [35]. When food is co-administrated with catechins, the time of
maximum concentration (Tmax) of catechins would be prolonged for two times due to the
gastric emptying rate slowing down. This rendered the maximum concentration (Cmax)
of catechins to decrease by 3.5 times with breakfast. However, when catechins were co-



Antioxidants 2023, 12, 1320 6 of 23

administrated with carbohydrates, the oral bioavailability (AUC) of flavanol was found
to have increased by 140% [36], which was deemed to be possible by suppressing the
intestinal efflux and stabilizing the catechins in the lumen.

Catechin absorption is sterically and structurally dependent [37]. The levels of epi-
isomers are higher than its enantiomers, EGC > GC, EC > C, and EGCG > GCG, respectively
in the plasma of SD rats after oral administration. The plasma levels of non-gallated
catechins, including EGC, GC, EC, and C, are higher than the gallated catechins, EGCG,
GCG, and ECG. However, when green tea extract (GTE), with a higher proportion of EGCG
is administered, the relative AUC of C was higher than that of EC, suggesting an unknown
interaction between C and EGCG during absorption [38]. Although EGCG is a dominant
component of green tea extract, its relative AUC level is low, indicating that the absorption
ability of EGCG is poor.

After a single dose administration of 550 mg/kg GTE into the SD rats, the ingested
catechins are distributed across various ocular tissues, including aqueous humor, vitreous
humor, choroid–sclera, retina, lens, and the cornea (Figure 4) [37]. The Cmax of GC and ECG
can reach a hundred micromolar levels in the choroid–sclera and retina, but only 1.5 µM in
the lens, respectively (Table 2). These were the effective doses used in many in vitro studies.
GTE can exert antioxidative, anti-inflammatory, and anti-apoptotic effects on the ocular
tissues, especially for the retina [37–39]. Steric selectivity of distribution was also found in
different ocular compartments. Vitreous humor was selective to non-epimer catechins but
did not show a preference to the non-gallate derivatives preference as the plasma. Other
ocular tissues did not show any steric and structural specificity except for the finding that
GC was dominated. Catechins could also pass into various fetal tissues, including the
eye [40]. However, the Cmax levels of catechins were at the nanomolar level which may not
be biologically effective. On the other hand, the Cmax of EGCG in the fetal eye could reach
to 0.83 µM which may therefore affect or benefit various tissue developments.

Catechins are mainly eliminated through urine and biliary excretion. More water-
soluble non-gallated catechin derivatives, such as parent and conjugated compounds are
mainly excreted in the urine, while major gallated catechins, which are less water-soluble,
are excreted through the bile to the colon. A few epi- or gallocatechin-O-sulfate conjugates,
but not the gallated catechin conjugates from ECG and EGCG, have been found in the
urine [41]. This suggests that the gallated derivatives that undergo phase II metabolism
are minimal. The levels of flavan-3-ol metabolites, mainly from (−)-epigallocatechin and
(+)-gallocatechin, excreted into urine was calculated to be about 8.1–28.5% of the intake [42].
EGCG was excreted through the bile and eliminated through the feces but not through the
kidneys [43], possibly due to the hydrophobic gallated catechins bound to plasma protein
that limited renal excretion as a result [44,45].

The elimination rates of catechins in the ocular tissues were found to be higher than
in the humors and plasma of SD rats [38]. The elimination rate of GC was from 0.2 h−1

to 2.4 h−1 in the retina, whereas the elimination rate of ECG in the vitreous humor was
0.04 to 0.2, respectively. On the other hand, the EGCG level can affect the elimination rates
of other catechins in the ocular tissues (Table 2). Doubling the level of EGCG present can
lower the elimination rates of other catechins, particularly in the retina, and aqueous and
vitreous humors (Figure 4) [39]. Some active elimination or metabolic mechanisms, which
can be affected by EGCG, could also arise in the ocular tissues. This mechanism could be
associated with aqueous and vitreous humor elimination.

The elimination rates of catechins in the maternal plasma were faster than the fetal
tissue. The elimination rates of GC and EC were 0.26 and 0.3 h−1 for the maternal plasma
and 0.08 and 0.1 h−1 for the fetal kidney, respectively [41]. The fetal organs were not
well developed for the elimination process. Similarly, the levels of GC and EGCG in the
fetal eye were sustained at relative high levels (about 50 ρmol/g) without an apparent
elimination during the studying period, while the elimination rate of EC was very slow
(0.06 ± 0.06 h−1). It has been suggested that catechins can perfuse into the fetal eye and
remain there for a long time.
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Figure 4. The exposure level, maximum concentration, and elimination of total catechins in the
plasma, ocular fluid, and tissues of Sprague–Dawley rats. (A) Relative area under the curve (AUC)
levels of different catechins in the plasma after normalization by the corresponding input catechin
dose in the GTE. Non-gallated levels were higher than of the gallated derivatives while epimers were
higher than the non-epimers. (B) Relative AUC levels of catechins in vitreous and aqueous humor.
Vitreous humor was selective to non-epimer but showed no selectivity on gallated and non-gallated
catechins. No particular trend of catechin selectivity appeared in the aqueous humor. (C) Relative
AUC levels of catechins in the retina, lens, cornea, and choroid–sclera. (D) Maximum concentration
of catechins in the plasma, aqueous and vitreous humors, and (E) eye tissues after a single dose of
550 mg/kg of Sunphenon DCF-1 green tea extract administrated orally to rats. Star: the level of
an epimer was significantly higher than the corresponding non-epimer or vice versa in the same
ocular compartment (p < 0.05); Droplet: the level of a catechin was higher than the corresponding
gallate derivative or vice versa in the same compartment; Oval: the level of one of the catechins was
significantly higher in one compartment than the other compartment (p < 0.05). GC: (−)-gallocatechin;
EGC: (−)-epigallocatechin; C: (+)-catechin; EC: (−)-epicatechin; EGCG: (−)-epigallocatechin-3-gallate;
GCG: gallocatechin-3-gallate; and ECG: (−)-epicatechin-3-gallate.



Antioxidants 2023, 12, 1320 8 of 23

Table 2. Pharmacokinetics of the catechins of different green tea extracts in different ocular compartments.

Maximum
Concentration GTE GC EGC C EC EGCG GCG ECG

Cmax (nM)

Plasma Sunphenon DCF-1 91.5 ± 57.4 754.9 ± 235.8 139.0 ± 57.0 1258.4 ± 294.0 310.4 ± 59.9 50.8 ± 10.4 159.1 ± 33.9

Theaphenon® E 530.8 ± 200.2 13718.0 ± 4948.0 2990.0 ± 1990.0 9143.0 ± 1912.0 6687.0 ± 4437.0 131.3 ± 91.7 443.8 ± 352.3

Aqueous humor Sunphenon DCF-1 - 602.9 ± 116.7 127.4 ± 62.8 138.9 ± 58.5 13.2 ± 5.1 33.5 ± 20.4 47.8 ± 8.1

Theaphenon® E 246.9 ± 34.9 911.3 ± 250.5 98.3 ± 19.2 708.1 ± 127.8 284.4 ± 58.4 0.57 ± 0.98 26.5 ± 10.3

Vitreous humor Sunphenon DCF-1 110.6 ± 22.1 15.9 ± 7.0 96.5 ± 23.3 20.5 ± 10.6 15.4 ± 2.7 20.9 ± 9.9 14.0 ± 5.1

Theaphenon® E 4492.0 ± 443.5 404.1 ± 102.5 321.7 ± 69.5 436.8 ± 102.5 2224.4 ± 805.4 33.9 ± 31.0 369.6 ± 74.0

Cmax (ρmol/g)

Choroid–sclera Sunphenon DCF-1 11461.8 ± 5168.7 1506.3 ± 941.1 477.6 ± 346.9 283.5 ± 66.5 184.4 ± 39.0 220.5 ± 69.7 10.7 ± 4.3

Theaphenon® E 188.28 ± 111.3 542.2 ± 335.1 294.7 ± 32.8 1818.0 ± 563.0 1183.0 ± 611.0 59.0 ± 54.8 518.0 ± 292.0

Retina Sunphenon DCF-1 22729.4 ± 4229.4 8020.8 ± 1658.5 492.7 ± 235.2 608.0 ± 112.0 259.1 ± 67.2 3.2 ± 1.9 -

Theaphenon® E 61.0 ± 43.5 118.2 ± 55.6 35.7 ± 15.0 174.5 ± 45.8 784.4 ± 195.9 59.0 ± 54.8 64.0 ± 16.0

Lens Sunphenon DCF-1 1558.1 ± 318.4 1172.3 ± 207.8 300.0 ± 151.5 72.3 ± 19.1 149.1 ± 26.5 18.0 ± 6.6 90.3 ± 45.8

Theaphenon® E 1.9 ± 3.0 10.9 ± 8.9 4.1 ± 4.8 4.6 ± 6.9 43.9 ± 25.8 0.4 ± 0.6 1.0 ± 3.0

Cornea Sunphenon DCF-1 - 359.4 ± 66.8 58.5 ± 15.4 30.6 ± 5.7 25.2 ± 15.5 10.7 ± 3.9 91.1 ± 18.7

Theaphenon® E 10.8 ± 16.7 59.5 ± 26.7 61.7 ± 17.5 536.4 ± 61.1 634.6 ± 122.9 18.8 ± 24.2 101.8 ± 43.1

Elimination GTE GC EGC C EC EGCG GCG ECG

λz (h−1)

Plasma Sunphenon DCF-1 0.107 ± 0.010 0.213 ± 0.015 0.104 ± 0.038 0.371 ± 0.000 0.236 ± 0.007 0.171 ± 0.013 0.211 ± 0.010

Theaphenon® E 0.270 ± 0.030 0.390 ± 0.040 0.370 ± 0.080 0.400 ± 0.050 0.230 ± 0.020 1.250 ± 0.380 0.210 ± 0.040

Aqueous humor Sunphenon DCF-1 - 0.045 ± 0.001 0.209 ± 0.012 0.093 ± 0.062 0.304 ± 0.012 0.111 ± 0.033 0.124 ± 0.043

Theaphenon® E 0.110 ± 0.020 0.240 ± 0.020 0.130 ± 0.030 0.210 ± 0.040 0.090 ± 0.020 - 0.130 ± 0.120
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Table 2. Cont.

Vitreous humor Sunphenon DCF-1 0.166 ± 0.010 0.041 ± 0.001 0.106 ± 0.030 0.067 ± 0.004 0.058 ± 0.012 0.042 ± 0.006 0.224 ± 0.035

Theaphenon® E 0.020 ± 0.010 0.110 ± 0.090 0.110 ± 0.060 0.100 ± 0.030 0.080 ± 0.020 - -

Choroid–sclera Sunphenon DCF-1 0.057 ± 0.001 0.461 ± 0.015 0.220 ± 0.014 0.488 ± 0.007 0.267 ± 0.019 0.929 ± 0.049 -

Theaphenon® E - 0.250 ± 0.090 0.220 ± 0.090 0.370 ± 0.060 0.080 ± 0.040 - 0.150 ± 0.070

Retina Sunphenon DCF-1 0.188 ± 0.045 0.203 ± 0.050 0.245 ± 0.010 2.432 ± 0.154 0.413 ± 0.040 - -

Theaphenon® E - 0.040 ± 0.030 0.040 ± 0.010 0.060 ± 0.020 0.040 ± 0.020 - 0.090 ± 0.030

Lens Sunphenon DCF-1 0.302 ± 0.049 0.084 ± 0.020 0.234 ± 0.032 0.049 ± 0.004 0.269 ± 0.011 3.160 ± 0.130 -

Theaphenon® E - - - - 0.130 ± 0.060 - -

Cornea Sunphenon DCF-1 - 0.170 ± 0.031 0.116 ± 0.007 0.043 ± 0.012 0.125 ± 0.001 0.372 ± 0.006 0.477 ± 0.021

Theaphenon® E - - 0.220 ± 0.100 0.220 ± 0.100 0.090 ± 0.020 - 0.100 ± 0.090

GTE: green tea extract; GC: (−)-gallocatechin; EGC: (−)-epigallocatechin; C: (+)-catechin; EC: (−)-epicatechin; EGCG: (−)-epigallocatechin-3-gallate; GCG: gallocatechin-3-gallate; and
ECG: (−)-epicatechin-3-gallate.
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Steric structures of catechins also affect the metabolism [46]. Equal quantities of (−)-EC,
(−)-C, (+)-EC, and (+)-C fed to human males resulted in different bioavailabilities. Differ-
ent levels of stereoisomers, including (−)-EC > (+)-EC > (+)-C > (−)-C, non-methylated
conjugations, and 3′- and 4′-O-methylation of epimers were found in the plasma and urine.
Also, the conjugation of gallate derivatives, including ECG and EGCG, were not found
in the plasma and urine [47], which was deemed to probably be due to the inhibition of
phase II enzymes by the gallated moiety of the catechins. The extensive metabolism and
enzymatic resistance of some conjugates, including sulphates during sample processing
can lead to large variations in pharmacokinetics [37].

2. Therapeutic Properties of Green Tea Catechins: Antioxidation and
Anti-Inflammation in the Eye

Polyphenols, especially catechins, are known for their beneficial effects for health
maintenance, along with their therapeutic effects [48]. These effects have been attributed
to the powerful anti-oxidative and inhibition of lipid peroxidation through the chelation
of metal ions to prevent oxidation reactions [49], and the hydroxyl groups for free radical
scavenging. Therefore, the scavenging power of galloylated catechins, such as (−)-EGC,
are stronger than non-galloylated catechins such as (+)-C [50]. The gallate derivative,
(−)-EGCG, has the strongest radical scavenging capacity amongst the catechins [51]. More-
over, owing to the possession of a vicinal diol in the B-ring galloyl moiety, and an ortho-
hydroxyl group in the A-ring, catechins can chelate the catalytic metal ions to generate
free radicals. Since the hydroxyl groups in the catechins are essential for antioxidation,
methylation can subsequently reduce the anti-oxidation power.

In addition to the radical scavenging process, catechins and their conjugates can cover
or even incorporate themselves into the lipid membrane bilayer externally and internally
to block the access of free radicals and stabilize the membrane through decreased lipid
fluidity [52]. EGCG interacts with both the hydrophobic and hydrophilic regions of the
lipid bilayers to protect the membrane from attack by the hydrophilic and hydrophobic
oxidants [53]. Meanwhile, polyphenols can also induce various endogenous molecular
pathways to activate the expression of antioxidant enzymes and suppress the pro-oxidative
pathways. Catechins can activate glutathione S-transferase and deactivate xanthine oxidase
and nitric oxide synthase, respectively [54]. More recently, the oral administration of EGCG
to rats has been shown to increase ascorbic acid levels and oxygen radical absorbance
capacity in the plasma [55].

Whilst the anti-oxidative effects of catechins have been attributed as beneficial health
effects, the pro-oxidative effects and the subsequent stimulation of the relevant signaling
pathways may account for the in vivo protection mechanisms. EGCG can be oxidized
to produce hydrogen peroxide in cell culture medium, but these cellular actions can
be abolished by SOD and catalase [56]. The anti-tumor activity caused by hydrogen
peroxide generated from the pyrogallol moiety can reduce Fe (III) to Fe (II), triggering
ROS production [57,58]. In an in vivo study, GTE, EGCG, EGC, and gallic acid showed
pro-oxidative effects in that they significantly reduced GSH from 33.3–43.3% and increased
GSSG, methemoglobin, and plasma hemoglobin in GPD-deficient erythrocytes, which are
vulnerable to oxidative stress [59]. However, pro-oxidation has usually been demonstrated
under experimental conditions and non-physiologically high concentrations under in vitro
studies [58]. The concentration of EGCG and metabolites present in vivo (1–2 µM) can
produce low levels of intracellular ROS to promote signal transduction pathways [27,60].
Moreover, GTE containing a high concentration of EGCG could increase oxidative stress
in the plasma, aqueous humor, vitreous humor, cornea, and retina in SD rats even under
lower physiological levels (<1 µM in plasma); yet, the 8-isoprostane level was lower than
half of the EGCG level. GTE with a high EGCG content was found to induce superoxide
dismutase 1 and glutathione peroxidase-3 expression, but also suppressed catalase in the
retina. These pro-oxidation effects can occur at physiological level and is influenced by
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both chemical and biological activities of GTE, indicating that an optimal EGCG level is
needed if GTE is used for health remedies [38].

The inhibition of inflammation was accompanied with the elevation of oxidative
stress [61]. The increased ROS activates NF-κB and NF-E2-related factor 2 (Nrf2) to express
the antioxidative factors HO-1 and glutathione [62]. In many antioxidative and anti-
inflammatory studies, EGCG pre-treatment was required to protect against oxidative insult
and inflammation induction [63]. We have proposed that the protective actions against
oxidative stress and inflammation may be secondary to the induction of endogenous
antioxidant proteins, as influenced by the pre-conditioned, pro-oxidative effects under
physiological conditions [64].

Since EGCG can activate antioxidative nuclear translocation elements in the Nrf2/HO-1
pathway for both the antioxidative and anti-inflammatory responses, the antioxidation
and anti-inflammation effects of catechins are always simultaneous as a result. In the
retina of a rat model, GTE suppressed the activation of microglial cells, astrocytes, and
Müller glia in a dose-dependent manner following lipopolysaccharide (LPS) induction.
It also reduced the expression of the pro-inflammatory cytokines IL-1β, TNF-α, and IL-
6 in the retina and vitreous humor through the suppression of the phosphorylation of
STAT3 and NF-κB, and the binding of 67LR on the neurons and glia [65]. We also found
similar ocular anti-inflammatory effects in the anterior chamber of the eye following LPS
induction [39]. It ameliorated the expression of tumor necrosis factor-alpha (TNF-α),
interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1) by CD43-positive
leucocytes and CD68-positive macrophages and reduced the infiltration of leucocytes and
macrophages into the iris and ciliary body. Our recent metabolomic analysis has shown
that the ocular anti-inflammation caused by GTE was indirect through induced systemic
phosphorylcholine lipids to suppress the inflammatory responses and alleviate the hepatic
damage and mitochondrial stress [66]. Furthermore, GTE was able to attenuate uveitis on
a murine model of experimental autoimmune uveoretinitis (EAU). It partially alleviated
uveitis phenotypes and recovered visual function. GTE and EGCG are also able to down-
regulate Th-17-associated pro-inflammatory genes, such as interleukin 1 beta (IL-1β), IL-6,
IL-17A, and tumor necrosis factor-alpha (TNF-α) [67]. These findings provide evidence for
the ocular anti-inflammatory effects of GTE and EGCG.

However, the bioavailability of EGCG is low, thereby limiting its capability for an-
tioxidation and anti-inflammation treatments, especially for neural tissues and retina that
are separated by various barriers. Nanotechnology may overcome such a limitation by a
flavonoid-containing nanoparticle formulation [68]. EGCG-loaded liposomes enveloped
with phosphatidylcholine or phosphatidylserine could improve the bioavailability. These
liposomes attenuated LPS-induced pro-inflammatory cytokines and restored motor impair-
ment in a Parkinsonian syndrome rat model, which was deemed to be possible through the
inhibition of murine BV-2 microglial cells [69]. Meanwhile, EGCG has been per-acetylated
as pro-EGCG to increase its tissue level and protect EGCG from oxidation before entering
the cell [70]. Pro-EGCG is a potent anti-angiogenesis agent that acts against angiogenesis-
dependent diseases, such as endometriosis [71]. In addition, the drug-delivery systems,
such as encapsulation, can also be used to improve the stability and bioavailability of green
tea catechins [72,73].

3. Pathophysiological Conditions in Glaucoma: Oxidative Stress and Inflammation

Glaucoma is a common and serious form of irreversible optic neuropathy, with ab-
normalities and dysfunction of the optic nerve estimated to affect over 100 million people
by the year 2040 [74]. Glaucoma is characterized by the progressive loss of retinal gan-
glion cells (RGCs) and their axon, thinning of the retinal nerve fiber layer, cupping of
the disc, and visual field defects [75]. The two major forms of glaucoma, primary open
angle glaucoma (POAG) and primary angle closure glaucoma (PACG), are complex and
multi-factorial in etiology involving genetic and environmental factors [76]. Risk factors
for POAG include older age, elevated intraocular pressure (IOP), sub-Saharan African
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ethnic origin, positive family history, and high myopia. PACG is affected by older age,
hyperopia, and east Asian ethnic origin [77]. Treatments based on topical eye drops, laser
therapy, and surgical intervention to lower IOP is a clinically proven approach to prevent
glaucoma progression [78]. RGC loss could arise happen in some patients who present
with a good control of IOP [79]. RGCs are responsible for transmitting image-forming
and non-image forming visual information from the retina to the brain. After optic nerve
injury, activation of apoptosis, autolysis, pyroptosis, and ferroptosis, together with the early
downregulation of autophagy and phagocytosis, are the major modes of cell death involved
in RGC death [80]. Besides the modes of cell death, oxidative stress and inflammation
are the major pathophysiological conditions that are implicated in the pathogenesis of
glaucoma [81,82].

Dysregulation in the ocular blood flow is another major pathological factor in glau-
coma. Unstable ocular blood flow causes chronic and repeated mild reperfusion, which
induces the peroxynitrite and superoxide production in the astrocytes and the mitochon-
dria of the RGCs [83]. Signs of chronic oxidative stress have been reported in the retinas
from glaucomatous donors with increased levels of oxidative by-products compared to
the control donors [81]. Increases in the superoxide dismutase (SOD) and glutathione
peroxidase (GPX) activities were found in the aqueous humor of POAG and PACG patients
compared to the cataract patients, while the levels of vitamin C and vitamin E were found
to be significantly lower in the aqueous humor of POAG and PACG [84]. Moreover, lower
levels of reduced and total glutathione were also found in POAG patients as compared
to the control subjects adjusted for age and sex [85]. A lower redox index was found in
the POAG patients than the age-matched controls [86]. Additionally, the immunostaining
for hypoxia-inducible factor-1α (HIF1A), which is tightly regulated by the cellular oxygen
concentration, was found to be increased in the retina and optic nerve head of glauco-
matous donor eyes compared to the control eyes. The retinal location of the increased
immunostaining for HIF1A was closely concordant with the location of the visual field
defects recorded in some of the glaucomatous eyes [87].

Retinal microglia, the resident yolk sac-derived macrophage cells in the retina, act as
the first and key active immune defense in the central nervous system, constantly scaveng-
ing for plaques, damaged or unnecessary neurons and synapses, and infectious agents [88].
Microglia are extremely sensitive to pathological changes to prevent pathological damage,
including glaucoma-related stress. Their intricate interactions affect the diverse outcomes
of the microglia–RGC relationship as either being neurosupportive or neurodestructive
in nature [89]. Histological studies on human specimens indicated the proliferation of
microglia in the optic nerve head from human donors with advanced glaucoma, including
the lamina cribrosa, along with the upregulation of immunomodulating (transforming
growth factor (TGF)-β2 and prostaglandin E2) and pro-inflammatory mediators (tumor
necrosis factor (TNF)-α and inducible nitric oxide synthase) [90]. Moreover, increased
levels of pro-inflammatory cytokines (TNF-α, interleukin (IL)-1β, IL-6, IL-8, and interferon
(IFN)-γ) [91] as well as inflammasome components (NOD-like receptor pyrin (NLRP)-3
and caspase-1) [92] were reported in human glaucomatous eyes/retinas. Our previous
animal experiments also demonstrated that acute IOP elevation upregulates inflammation
protein marker (IL-1β, TLR-4, and TNF-α) expression in the rat retina [93].

There is thus abundant evidence supporting oxidative stress and inflammation in
glaucomatous retina (Figure 5). Accordingly, oxidative stress and inflammation in the
retina should be targeted for treatments in order to ameliorate RGC death in glaucoma.
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4. Green Tea Catechins in Experimental Cellular Models of Glaucoma

Catechins attenuating oxidative stress and the inflammatory response could, in part,
account for their neuroprotective capabilities [94]. To investigate the in vitro effect of
green tea catechins, the primary culture of isolated RGCs [95], human stem cell-derived
RGCs [96,97], and the retinal explant culture [98] have been used as glaucoma-related
platforms on RGCs. However, these platforms have not been adopted to study the in vitro
effects of green tea catechins on RGCs. Instead, a transformed mouse cell line, RGC-
5 [99], was adopted in cellular studies, although this cell line later was characterized as the
mouse SV-40 T antigen-transformed photoreceptor cell line, 661 W [100]. Earlier studies
have demonstrated that 50 µM EGCG significantly reduces the apoptosis and ROS pro-
duction in RGC-5 cells caused by 400 µM hydrogen peroxide [101]. Consistently, EGCG
(2.5–10 µg/mL) was found to be able to improve the survival of RGC-5 cells upon hy-
drogen peroxide and ultraviolet radiation insults [102]. Moreover, EGCG (IC50: 0.8 µM)
was found to be able to attenuate the formation of thiobarbituric acid reactive substance
formation, a measure of lipid peroxidation, as induced by 20 µM sodium nitroprusside in
rat brain homogenates [103]. Similarly, an one-hour pretreatment of EGCG (50 µM) and
epicatechin (EC; 50 µM) was able to attenuate rotenone-induced toxicity in RGC-5 cells
and inhibit sodium nitroprusside-induced lipid peroxidation (EGCG IC50: 2.5 µM; EC IC50:
1.5 µM) [103]. EGCG at concentrations greater than 10 µg/mL has been proven to inhibit
RGC-5 cell growth [102]. This is consistent with our previous study on green tea extract
(Theaphenon E; ≥16.25 µg/mL) and EGCG (≥25 µM) attenuating cell proliferation and
migration [104,105]. For immunomodulation, EGCG treatment can cause immunosuppres-
sive alterations on human monocyte-derived dendritic cells by inducing cell apoptosis
and suppressing cell surface molecules and antigen presentation [106]. Administration of
EGCG can also increase IL-10 levels in cell culture supernatants [107].

5. Green Tea Catechins in Experimental Animal Models of Glaucoma

Green tea catechins are able to cross the blood-brain barrier [108]. Tea polyphenols
can reduce oxidative stress and IOP and stabilize ocular blood flow [109]. Glaucoma
and RGC-injury animal models have been applied to evaluate the treatment effects of
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green tea extract and EGCG on RGC survival after injury (Figure 5). In the study of
N-methyl-D-aspartate (NMDA)-induced excitotoxicity, NMDA-treated rats received two-
day prophylactic treatments of intraperitoneal EGCG injections (25 mg/kg) showed a
higher cell density in the ganglion cell layer and thickness of Thy-1 immunoreactivity
than those received intraperitoneal saline injections [110]. For the optic nerve axotomy
model, intraperitoneal injections of 50 mg/kg EGCG at 30 min before axotomy, and at Day
2 and 4 after axotomy were able to attenuate RGC loss by 12% in rat retina along with
reducing the upregulation of neuronal nitric oxide synthase and Bax protein expression,
and further enhancing ERK 1/2 and Akt activation after axotomy [111]. Inhibition of the
ERK and Akt pathways could attenuate the protection effects of EGCG on RGCs against
axotomy injury. In the optic nerve crush model, optic nerve-injured rats treated with
EGCG showed a significantly higher density of RGCs at Day 7, 14, and 28 post-optic nerve
crush, respectively, compared to those treated with the vehicle. Furthermore, there was a
significantly higher expression of the neurofilament triplet L protein observed in the optic
nerve-injured rats treated with EGCG than those treated with the vehicle [112]. Similarly,
our recent study demonstrated that rats with pre- or post-operative treatment of 275 mg/kg
green tea extract (Theaphenon E) showed a higher RGC survival and axonal regeneration
and improved pupillary light reflex post-optic nerve injury with the activation of Akt,
Erk p42/44, and Stat3, as well as the downregulation of inflammation, apoptosis, and
microglia activation genes, compared to the saline-treated rats [113]. Pre-treatment of 275 or
550 mg/kg green tea extract was also able to reduce the activation of microglia in rats with
an optic nerve injury.

In the chronic IOP elevation model induced by microbead injection into the anterior
chamber, the IOP-elevated mice fed with EGCG-supplemented drinking water showed
a higher RGC density than those fed with normal drinking water at Day 15 and 27 post-
injury [114]. Notably, in the acute IOP elevation model, intraperitoneal injections of
50 mg/kg EGCG at 30 min before ischemia injury (raising the IOP to 150 mm Hg for
60 min) was able to reduce RGC death by 10%. There were also improvements in the
TUNEL-positive cells observed in the inner retina, and neuronal NOS and nicotinamide
adenine dinucleotide phosphate diaphorase-positive cells in the rat retina at Day 3 post-
injury with the downregulation of ischemia injury-induced glial fibrillary acidic protein
and lipid peroxidation [115]. Similarly, the ischemia-injured (raising the IOP to 120 mm Hg
for 45 min) rats that received the EGCG treatment were determined to be able to attenuate
the reduction in the a-wave and b-wave amplitudes of the electroretinograms, decrease
Thy1 and neurofilament-L expression, increase retinal caspase-3 and caspase-8 expression,
and blunt the changes in the localization of the retinal Thy-1 and ChAT immunoreactiv-
ities [101]. EGCG present in the drinking water (0.5%, 200 mL/day for 3 days before
ischemia injury and 5 days after ischemia injury) was also able to ameliorate the ischemia
injury (120 mm Hg for 45 min)-induced thinning of Thy-1 and choline acetyltransferase
immunoreactivities, reduce a-wave and b-wave amplitudes of the electroretinograms, and
Thy1 and neurofilament-L expression in the rat retina [116]. Similarly, our previous study
on an experimental acute IOP elevation rat model (110 mm Hg for 2 h) demonstrated the
anti-oxidative and anti-inflammatory properties of the green tea extract on ischemia-injured
RGCs such that the oral administration of green tea extract (Theaphenon E; 275 mg/kg,
4 times within the first 2 days after the injury) ameliorated ischemic injury-induced RGC
apoptosis and promoted RGC survival by reducing caspase-3 and caspase-8 expression,
p38 phosphorylation, and inflammation marker (Il1β, Tlr4, and Tnfa) expression, as well as
enhancing Jak phosphorylation in the retina [116].

In addition to the studies conducted with rodents, a single intravenous injection dose
of 15 mg/kg EGCG in saline was found to reduce the TUNEL-positive and high-mobility
group box-1-positive cells in the retinal sections of the ischemia-injured (raising the IOP
to 100 mm Hg for 60 min) New Zealand male rabbits with the nuclear translocation of
Nrf2 and increase in HO-1 expression at 6 h after treatment [117]. Moreover, EGCG can act
directly on RGC axons in Xenopus embryos to increase the number of growth cone filopodia
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that responded to extrinsic signals in a Sema3a-independent manner and led to a dramatic
defect in the guided growth of RGC axons, whilst EGCG itself had no influence on RGC
axon behavior in Xenopus embryos [118].

6. Clinical Applications of Green Tea Catechins for Glaucoma Treatments

Antioxidants, including green tea components, have been proposed as biotherapies
for glaucoma prevention [119]. In young males with CrossFit training, green tea extract
supplementation (two capsules once daily for six weeks; 250 mg green tea extract per
capsule, containing 245 mg polyphenols (200 mg catechins, among which 137 mg EGCG,
<4 mg caffeine, microcrystalline cellulose, and magnesium stearate) doubled the total
antioxidant capacity in the venous blood test while also lowering the plasma concentration
of lipid peroxidation products [120]. Regular consumption of moderate quantities of green
tea could effectively modulate the antioxidant capacity in people subjected to oxidative
stress, along with lowering the glucose, lipid, and uric acid levels [121]. A combined
analysis from the Nurses’ Health Study and the Health Professionals Follow-up Study
in the United States reported that higher intakes of flavonols and monomeric flavanols
were nominally associated with a lower POAG risk, and consuming ~2 cups of tea per
day was associated with an 18% lower POAG risk [122]. Consistently, the United States
2005–2006 National Health and Nutrition Examination Survey reported that the participants
who consumed at least one cup of hot tea daily showed a 74% decreased odds of having
glaucoma compared with those who did not consume hot tea [123]. However, the Korea
National Health and Nutrition Examination Survey 2010 to 2011 reported no significant
associations between the frequency of tea consumption during the past 12 months and the
risk of POAG with adjusting for multiple covariates [124]. The Rotterdam Study in the
Netherlands also found no significant associations between flavonoid intake and the risk of
POAG [125].

There were 122 studies on EGCG and 890 studies on green tea in the registry of Clini-
calTrials.gov at the time of writing this manuscript. There was one study on EGCG and
five studies on green tea extract related to ocular health/disease (Table 3). A randomized,
placebo-controlled, double-blind, cross-over design clinical trial on EGCG in Italy (clin-
icaltrials.gov identifier: NCT00476138) reported that POAG patients who received oral
EGCG treatment (200 mg/day) for 3 months in addition to standard IOP-lowering therapy
showed increases in the amplitude of pattern-evoked electroretinograms as compared to the
baseline values or to the patients who received the placebo treatment [126]. The magnitude
of the pattern-evoked electroretinogram amplitude increments after EGCG treatment was
inversely related to the corresponding baseline amplitudes. However, standard automated
perimetry did not show significant changes after EGCG treatment. In addition, a recent
clinical study from Lithuania reported that young volunteers receiving 400 mg green tea
extract or EGCG capsules showed significant reductions in IOP after 2 h in the green tea
extract group and after 1 h in the EGCG group as compared to the baseline [127].
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Table 3. Registered clinical trials of green tea extract or EGCG application for eye diseases.

Identifier. Country Status Phase Enrollment Targeted Eye Diseases
or Conditions Intervention Dosage Duration

NCT00476138 Italy Unknown Phase I/II 40
Primary open angle

glaucoma
Ocular hypertension

Oral EGCG treatment 200 mg/day 3 months

NCT00718653 United States Completed Not Applicable 40 Eye health Lutein plus green tea extract
Lutein (12 mg/day)

Green tea extract
(200 mg/day)

Unknown

NCT01646047 United States Completed [118] Not Applicable 70

Diabetes Mellitus—Type 1
Diabetes Mellitus—Type 2
Non-proliferative diabetic

retinopathy

Multi-component nutritional
supplement capsules (vitamin C, mixed

tocopherols/tocotrienols, vitamin D,
fish oil, lutein, zeaxanthin, pine bark
extract, benfotiamine, curcumin, and

green tea extract)

2 capsules/day 6 months

NCT02984813 United States Terminated Phase I 21 Open-angle glaucoma
Diabetic retinopathy

Nutritional supplements capsules
(alpha lipoic acid, citicoline, Co-enzyme
Q10, Ginkgo biloba extract, grape seed

extract, N-acetyl-cysteine, curcumin,
and green tea extract)

2 capsules/day 3 months

NCT03866005 United States Unknown Not Applicable 150 Center-involved diabetic
macular edema

Multi-component nutritional
supplement capsules (macular

carotenoids lutein, zeaxanthin, vitamins
B1, B12, C, D, E, lipoic acid, coenzyme

Q10, resveratrol, patented extract of
French maritime pine bark grape seed,

curcumin, and green tea extract)

2 or 4 capsules/day Study duration

NCT04117022 United States Recruiting Not Applicable 45 Diabetes
Diabetic Retinopathy

Multi-component nutritional
supplement capsules (vitamins C, D3

and E (d-α tocopherol), zinc oxide,
eicosapentaenoic acid, docosahexaenoic

acid, α-lipoic acid, coenzyme Q10,
mixed tocotrienols/tocopherols,
zeaxanthin, lutein, benfotiamine,

N-acetyl cysteine, grape seed extract,
resveratrol, turmeric root extract,
Pycnogeno, and green tea leaf)

2 capsules/day 6 months

Information obtained from http://clinicaltrials.gov/ (accessed on 27 June 2022). EGCG: (−)-epigallocatechin-3-gallate.

http://clinicaltrials.gov/
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A 6 month randomized, placebo-controlled clinical trial study in Washington (clini-
caltrials.gov identifier: NCT01646047) aimed to evaluate the effects of a multi-component
dietary supplement (containing vitamin C, mixed tocopherols/tocotrienols, vitamin D, fish
oil, lutein, zeaxanthin, pine bark extract, benfotiamine, green tea extract, and curcumin;
two capsules per day) on the visual function and retinal structure of the patients with
type 1 or type 2 diabetes without retinopathy, or with mild-to-moderate non-proliferative
retinopathy [123]. The study reported that study subjects on active supplement had a
significantly better visual function and displayed significant improvements in most serum
lipids, high-sensitivity C-reactive protein, and diabetic peripheral neuropathy compared
to those who received the placebo. However, no significant changes in retinal thickness,
hemoglobin A1c, total cholesterol, and TNF-α were found. A follow-up double-blinded,
randomized, placebo-controlled clinical trial study in Washington (clinicaltrials.gov iden-
tifier: NCT03866005) aimed to evaluate the effects of “Diabetes Visual Function Study”
softgels (containing lutein, zeaxanthin, vitamins B1, B12, C, D, and E, lipoic acid, coen-
zyme Q10, resveratrol, EPA/DHA, Pycnogenol™, grape seed extract, green tea extract,
and curcumin; two or four capsules per day) to standard anti-vascular endothelial growth
factor therapy for the subjects with diabetic macular edema. Another follow-up open-label,
single-arm clinical trial study in California and Oklahoma (clinicaltrials.gov identifier:
NCT04117022), which was estimated to be completed at the end of 2022, aimed to evaluate
the ability of the chromatic electroretinogram and the full-field flicker electroretinogram
in detecting the changes in global retinal function in diabetic retinopathy patients with
dietary supplement treatments (DVS formula, consisting of vitamins C, D3, and E, zinc
oxide, eicosapentaenoic acid, docosahexaenoic acid, α-lipoic acid, coenzyme Q10, mixed
tocotrienols/tocopherols, zeaxanthin, lutein, benfotiamine, N-acetyl cysteine, grape seed
extract, resveratrol, turmeric root extract, green tea leaf, and Pycnogenol; 2 softgels per day
for 6 months). In addition, a randomized double-blinded clinical trial study conducted in
Massachusetts (clinicaltrials.gov identifier: NCT00718653) aimed to measure the macular
pigments and plasma lutein concentrations in subjects with lutein (12 mg per day) plus
green tea extract (200 mg per day) treatment. Although this study was stated as completed,
no results from this study have been reported as of yet.

7. Summary, Challenges, and Future Prospects

The pathophysiological mechanisms for RGC degeneration in glaucoma are complex.
Although oxidation and inflammation are the major insults to RGCs, multiple modes of
cell death are involved in RGC loss after optic nerve injury [80]. Targeting oxidation and
inflammation alone do not adequately rescue RGCs from glaucomatous degeneration.
The combined treatment of neurotrophic factors with antioxidative and anti-inflammatory
agents should generate pronounced therapeutic effects against RGC degeneration [128,129].
Our study on sodium iodate-induced retinal degeneration model demonstrated that green
tea extract (Theaphenon E) showed better treatment effects than EGCG alone or custom-
made catechin mixture with EGCG [130], indicating that other constituents in green tea
extract also possessed neuroprotective effects on RGCs. Furthermore, EGCG has a poor
bioavailability, which could therefore affect its therapeutic effects on disease treatment. To
enhance the stability and bioavailability of EGCG, the prodrug of EGCG (pro-EGCG, EGCG
octaacetate) could be useful [71,131]. Further research is needed to delineate the stability,
bioavailability, and neuroprotective effects of each catechin and their constituents in green
tea extract as well as their metabolites. Currently, there has only been one double-blinded
randomized placebo-controlled clinical trial for EGCG on eye disease, and none for the sole
green tea extract treatment. Whether green tea extract and catechins could be a therapeutic
treatment prescribed for glaucoma patients still requires additional clinical trials to confirm
its clinical applications in glaucoma and different eye diseases. It has been reported that
an herbal product made of a dry aqueous extract of green tea containing 90% of EGCG
(one tablet per day) was prescribed by an ophthalmologist to treat a glaucoma patient.
However, green tea-related hepatotoxicity was suspected [132]. Therefore, the dosage and
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safety of green tea extract or EGCG treatment for glaucoma patients should be seriously
studied. Nevertheless, as multiple pre-clinical studies have proven the efficacy of green
tea extract and EGCG on ameliorating RGC degeneration, green tea catechins could be a
potential co-adjuvant counteracting the oxidation and inflammation in RGCs for glaucoma
management in addition to the IOP-lowering therapies.
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