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Abstract: This study aimed to investigate the potential adverse effects of the practical application of
copper sulfate on yellow catfish (Pelteobagrus fulvidraco) and to provide insights into the gill toxicity
induced by copper sulphate. Yellow catfish were exposed to a conventional anthelmintic concen-
tration of copper sulphate (0.7 mg/L) for seven days. Oxidative stress biomarkers, transcriptome,
and external microbiota of gills were examined using enzymatic assays, RNA-sequencing, and 16S
rDNA analysis, respectively. Copper sulphate exposure led to oxidative stress and immunosup-
pression in the gills, with increased levels of oxidative stress biomarkers and altered expression
of immune-related differentially expressed genes (DEGs), such as IL-1β, IL4Rα, and CCL24. Key
pathways involved in the response included cytokine–cytokine receptor interaction, NOD-like recep-
tor signaling pathway, and Toll-like receptor signaling pathway. The 16S rDNA analysis revealed
copper sulphate altered the diversity and composition of gill microbiota, as evidenced by a significant
decrease in the abundance of Bacteroidotas and Bdellovibrionota and a significant increase in the
abundance of Proteobacteria. Notably, a substantial 8.5-fold increase in the abundance of Plesiomonas
was also observed at the genus level. Our findings demonstrated that copper sulphate induced
oxidative stress, immunosuppression, and gill microflora dysbiosis in yellow catfish. These find-
ings highlight the need for sustainable management practices and alternative therapeutic strategies
in the aquaculture industry to mitigate the adverse effects of copper sulphate on fish and other
aquatic organisms.
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1. Introduction

Yellow catfish (Pelteobagrus fulvidraco) is a small freshwater fish species that dwells
at the bottom of rivers and lakes, with a wide distribution in China and other Asian
countries [1]. This species is extensively cultivated by farmers due to its high economic
and nutritional value, as well as its strong adaptability to various environments. Due to
the rapid advancement of modern breeding and culture techniques, the aquaculture of
yellow catfish has flourished in recent years, reaching a production of 5.09 × 105 tons in
2018 [2]. However, the occurrence of infectious diseases caused by parasitic protozoa, such
as Trichodina sp., Chilodonella sp., and Epistylis sp., has resulted in significant deaths of
yellow catfish, particularly juveniles, posing a severe risk to the yellow catfish aquaculture
industry [3]. Currently, chemotherapy remains one of the primary strategies for treating
protozoan infections in yellow catfish [4]. For instance, copper sulphate is widely used in
aquaculture and has been proven to be effective in managing protozoan parasites [5].
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As a commonly used antiparasitic agent, copper sulphate can be harmful to fish when
used for the treatment of parasitic diseases, as it has the capacity to interfere with the nor-
mal physiological functions of fish, primarily by inhibiting enzyme activity and reducing
the oxygen-carrying capacity of the hemoglobin [5]. Therefore, extensive research has
been conducted to investigate the impact of copper sulphate on aquatic animals, including
toxicity, histopathology, physiological changes, and immunological alterations [5–8]. For
example, copper sulphate exposure has been shown to induce hyperemia, edema of pri-
mary and secondary epithelium, and hyperplasia of the gill epithelium in common carp
(Cyprinus carpio) [9]. In tigris scraper (Capoeta umbla), exposure to copper sulphate has led
to alterations in physiological and biochemical indicators such as superoxide dismutase
(SOD), catalase (CAT), and glutathione reductase (GR) [8]. The utilization of copper sul-
phate to treat parasitic infections in aquaculture frequently relies on immersion techniques,
which exposes the fish gills to this agent and makes them the most vulnerable organ.
However, previous research on the toxicity of copper sulphate to fish gills has primarily
been restricted to histopathology and the determination of some key physiological and
biochemical indicators, thereby failing to offer a thorough comprehension of the gill toxicity
induced via the practical application of copper sulphate in aquaculture [5,10].

Furthermore, the microbial community inhabiting the gills of fish is known to perform
a range of vital functions, including nutrient uptake, metabolic regulation, and immune
defense, thereby contributing to the overall health of the host [11,12]. The use of chemical
agents in aquaculture can significantly perturb the diversity and community structure of
bacteria in the gills of fish, which might pose a deleterious influence on the health of fish [13].
For instance, exposure to Chloramine-T has been shown to reshape the gill microbiome of
Atlantic salmon (Salmo salar) by reducing bacterial load on gills [14]. Similarly, potassium
permanganate exposure has resulted in disturbance of the gill microbial community of
channel catfish (Ictalurus puntactus), thereby increasing host susceptibility to columnaris
disease [15]. Nonetheless, the effect of the practical application of copper sulphate on the
microbiota of fish gills remains unexplored.

To gain a comprehensive understanding of the adverse effects of the practical appli-
cation of copper sulphate on the gills of fish, in this present study, yellow catfish were
subjected to conventional anthelmintic concentrations of copper sulphate (0.7 mg/L) for
7 days. Subsequently, the oxidative stress biomarkers, including SOD, CAT, glutathione
peroxidase (GSH-Px), as well as the contents of malondialdehyde (MDA), were measured
in the gills, and the gene expression profiles and microbial communities in the gills of
yellow catfish were also investigated.

2. Materials and Methods
2.1. Fish and Reagents

A batch of juvenile yellow catfish (average weight: 5.12 ± 0.89 g) was obtained from
the fish breeding base of Huazhong Agricultural University. These fish were acclimated for
a minimum of two weeks in 500 L aquariums containing 300 L of dechlorinated water in
the laboratory. During the acclimatization period, these fish were fed with commercial feed
twice daily, and the feces and debris were removed regularly, and one-third of the water was
exchanged every three days. The water quality parameters were as follows: 21 ± 1 ◦C of
temperature; 7.12 ± 0.45 for pH; 6.3 ± 0.4 mg/L for dissolved oxygen; less than 0.02 mg/L for
ammonia nitrogen. Copper sulphate was purchased from J&K Scientific (Shanghai, China).

2.2. Experimental Design

A total of 120 healthy and swim-normally juvenile yellow catfish were randomly
selected and assigned to two groups, each with three replicate plastic tanks containing 40 L
of dechlorinated water and 20 yellow catfish. Subsequently, three tanks were selected and
added with 0.7 mg/L copper sulphate, which is the recommended concentration for the
treatment of parasites in aquaculture [16]. The remaining three tanks without drugs were
used as the control group. The experimental environmental conditions were the same as
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during the acclimatization period. After one week of treatment, 15 yellow catfish from each
group (five fish per tank in three replicate tanks) were randomly selected and anesthetized
with 0.02% tricaine methanesulfonate (MS-222). Mucus samples were collected from the
gills of the selected fish. Sterile swabs were used to scrape mucus from the right gill
filaments between the first and second arch. To reduce heterogeneity, three swabs from
different tanks within each experimental group were pooled into a single sample. After
that, the gills were removed and separated into two parts, with one part used for enzyme
activity assay and the other for RNA extraction. All samples were immediately frozen in
liquid nitrogen and then stored at −80 ◦C for further experiments.

2.3. Determination of Antioxidant Enzyme Activities

The gill samples (three samples per treatment) were homogenized in a cold physiological
saline solution (0.9% NaCl) at a ratio of 1:9 (w/v) using glass tissue homogenizers under
ice-bath cooling. The homogenate was centrifuged at 4000 g for 20 min at 4 ◦C, and then
the supernatant was collected for biochemical analysis. The enzyme activities of SOD, CAT,
and GST, as well as the MDA level and protein content were determined using commercial
kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, China). SOD activity was assessed
using the WST-1 (water-soluble tetrazolium-1) method at a wavelength of 450 nm [17]. One
unit of SOD is defined as the quantity of the enzyme in a 20 µL sample solution that inhibits
the reduction reaction of WST-1 with superoxide anion by 50%. CAT activity was determined
by measuring the degradation of hydrogen peroxide at 405 nm [18]. One unit of CAT is
defined as the amount of tissue protein that decomposes 1 µmol H2O2 and is expressed as
U/mg protein. GST catalyzes the conjugation between 1-chloro-2,4 dinitrobenzene (CDNB)
and GSH, and the activity of GST was determined by measuring the concentration of GSH
at 412 nm [19]. One unit of GST is defined as the amount of enzyme necessary to reduce
the GSH concentration by 1 µmol/L within one minute at 37 ◦C, excluding non-enzyme
catalysis. MDA content was calculated based on the reaction of the generated substrate with
thiobarbituric acid at 532 nm [20]. The protein concentration was quantified using bovine
serum albumin solution as a standard following the Bradford method [21].

2.4. Transcriptomic Analysis
2.4.1. RNA Extraction and Sequencing

The total RNA of gills samples (three samples per treatment) was extracted using
TRlzol Reagent (Life Technologies, Carlsbad, CA, USA) according to the manufacturer’s
instructions. The RNA concentration and quality were determined, and RNA libraries were
prepared according to the conventional methods. The Illumina NovaSeq 6000 platform was
used to perform paired-end sequencing with PE150 sequencing mode.

2.4.2. Bioinformatic Analyses

The raw sequencing reads were trimmed of adapter sequences and low-quality re-
gions, and clean reads were then mapped to the reference genome of yellow catfish
(https://www.ncbi.nlm.nih.gov/genome/?term=Pelteobagrus_fulvidraco, accessed on
16 September 2022) using HISAT2 v2.2.1 software program. Gene expression levels were
determined using the fragments per kilobase of transcript per million fragments mapped
(FPKM) method, and differential expression analysis between treatment groups was con-
ducted using DESeq2 v1.30.1. Differentially expressed genes (DEGs) were identified using
the following criteria: |log 2 (Fold change)| > 1 and adjusted p-value < 0.05. Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of these
DEGs was conducted using the ClusterProfiler packages in R software v4.1.0, with adjusted
p < 0.05 as the cutoff.

2.4.3. QRT-PCR Verification

To verify the reliability of the RNA-Seq results, the qPCR assays (three samples
per treatment) were performed targeting nine DEGs identified in yellow catfish after
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exposure to copper sulphate. Primer pairs for these DEGs were designed and provided
in Table S1. The qPCR assays were conducted using the QuantStudio TM 3 real-time
PCR System with the same reaction system and thermal cycling conditions as described
in our previous study [22]. The translation elongation factor 1-alpha 1 (Elfa) was used
as an internal reference gene, and the 2−∆∆Ct method was used to calculate the relative
expression levels [23,24].

2.5. Microbiota Analysis
2.5.1. DNA Extraction and Sequencing

The genomic DNA from the gills of yellow catfish (five samples per treatment) was
extracted with the TGuide S96 Magnetic Soil/Stool DNA Kit (Tiangen Biotech (Beijing)
Co., Ltd., Beijing, China), and the concentration of gDNA was also determined. The V3-V4
hypervariable region of the bacterial 16S rDNA gene was amplified, and the PCR reagents
and cycling parameters are the same as previously described [25]. The PCR products were
purified with Agencourt AMPure XP Beads (Beckman Coulter, Indianapolis, IN, USA),
quantified using the Qubit dsDNA HS Assay Kit and Qubit 4.0 Fluorometer (Invitrogen,
Thermo Fisher Scientific, Eugene, OR, USA), and sequenced on the Illumina NovaSeq
6000 platform with PE150 sequencing mode.

2.5.2. Biodiversity Analysis

Clean reads were obtained via quality filtering and removal of primer sequences.
Sequences with higher than 97% similarity were clustered into the same OTU (operational
taxonomic unit) using USEARCH v10.0, and taxonomy annotation of the OTUs was per-
formed using the SILVA database (release 138). Alpha diversity and beta diversity were
calculated and displayed via the QIIME2 (release 2020.6) and R software v4.1.0, respectively.
The differences in the relative abundances at the phylum and genus levels between the
copper sulphate exposure group and control group were tested using one-way ANOVA,
and a difference (p < 0.05) was considered significant. The functional profile of the gill
microbiome was predicted using a PICRUSt2 analysis based on the KEGG annotations.

2.6. Statistical Analyses

The statistical analysis was conducted using SPSS 20.0 software (IBM, Armonk, NY,
USA). Significant differences in the biochemical indexes, the gene expression levels, and
the microbial alpha diversity and abundance between different groups were detected using
a one-way analysis of variance (ANOVA) or an independent-sample t-test, and a p value
less than 0.05 was considered significant.

3. Results
3.1. Behavior Observation and Antioxidant Enzyme Activity Analysis

During the entire duration of the experiment, no fish mortality occurred in the copper
sulphate-exposed group and control group, and no significant behavioral abnormalities
of the experimental fish were observed in both groups. The antioxidant enzyme activities
and MDA content in the gills of yellow catfish after exposure to copper sulphate are shown
in Table 1. Compared with the control group, the activity of SOD, CAT, and GSH-Px in
the gill tissue of yellow catfish was significantly decreased, while the MDA content was
significantly increased after exposure to copper sulphate.

Table 1. Effect of copper sulphate exposure on superoxide dismutase (SOD), catalase (CAT), Glu-
tathione peroxidase (GSH-Px), as well as the contents of malondialdehyde (MDA) in the gill tissue of
yellow catfish (Pelteobagrus fulvidraco). * p < 0.05 (N = 3, mean ± SD).

Treatment SOD
(U/mg Protein)

CAT
(U/mg Protein)

GSH-Px
(U/mg Protein)

MDA
(nmol/mg Protein)

Control group 55.45 ± 3.19 6.84 ± 0.53 6.63 ± 0.7 5.91 ± 1.51
Exposed group 39.19 ± 3.15 * 4.8 ± 0.6 * 4.69 ± 0.68 * 10.94 ± 1.36 *
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3.2. Transcriptomic Analyses
3.2.1. Transcriptome Statistics

Six cDNA libraries (CG1, CG2, CG3, TG1, TG2, and TG3) were constructed and
sequenced from the gills of yellow catfish in the control and exposed groups, and the
characteristics of these libraries are summarized in Table S2. A total of 43.42 Gb clean reads
were obtained from the sequencing library, with the Q30 values greater than 93.98%. The
mapping rate in each library ranged from 72.97% to 74.25%.

3.2.2. Identification of Differentially Expressed Genes

A total of 207 differentially expressed genes (DEGs) were identified between the con-
trol group and copper sulphate exposure group via differential expression analysis, of
which 121 were up-regulated and 87 were down-regulated (Figure 1). Subsequently, these
DEGs were subjected to GO and KEGG enrichment analysis. GO analysis indicated that
168 DEGs were successfully assigned into three main groups, including biological process,
cellular component, and molecular function. In the biological process category, striated
muscle contraction (GO:0006941) and cellular component assembly involved in morpho-
genesis (GO:0010927) were the most enriched GO terms. The most enriched GO terms in
the cellular component category were sarcomere (GO:0030017) and myofibril (GO:0030016).
In the molecular function category, the most enriched GO terms were chemokine activity
(GO:0008009) and structural constituent of muscle (GO:0008307) (Figure 2). The KEGG
pathway enrichment analysis demonstrated that 163 DEGs were enriched in 76 KEGG
pathways, and the most significantly enriched pathways were glycine, serine, and threo-
nine metabolism (ko00260); cytokine–cytokine receptor interaction (ko04060); and cellular
senescence (ko04218) (Figure 3). Moreover, some immune-related pathways were also
enriched, such as NOD-like receptor signaling pathway (ko04621), Toll-like receptor signal-
ing pathway (ko04620), C-type lectin receptor signaling pathway (ko04625), and intestinal
immune network for IgA production (ko04672). Several immune-related DEGs in the gills
of yellow catfish after exposure to copper sulphate were listed in Table S3.
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Figure 1. Summary of differentially expressed genes (DEGs) in gills of yellow catfish (Pelteobagrus
fulvidraco) after exposure to 0.7 mg/L copper sulphate. (A) Volcano plot of DEGs. Red and blue
dots represent significantly up-regulated and down-regulated DEGs, respectively. (B) Transcriptome
analysis of the number and expression of DEGs.
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Figure 3. QRT−PCR verification of differentially expressed genes in the gills of yellow catfish
(Pelteobagrus fulvidraco) after exposure to 0.7 mg/L copper sulphate. The X−axis displays 9 DEGs,
and the Y−axis represents relative fold change. The data are expressed as the means ± SD (n = 3).
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3.2.3. QRT-PCR Verification

To verify the results obtained via RNA sequencing, nine DEGs were selected and
subjected to qPCR analysis. In general, the gene transcription levels obtained from the
qPCR assays exhibited a similar pattern and degree of alterations in comparison to the
transcriptomic results, hereby providing further support for the reliability of the RNA-seq
data (Figure 3).

3.3. Microbiota Analysis
3.3.1. Sequencing Analysis and Taxonomic Annotation

A total of 799,446 clean reads were obtained from the gills of yellow catfish, with
the number of clean reads ranging from 79,578 to 80,380 in different samples (Table S4).
Rarefaction curves of sequences indicated that the sequencing depth was sufficient and the
sequencing data were suitable for further analysis (Figures S1 and S3). These sequences
were then subjected to clustering analysis, resulting in the identification of 7718 OTUs.
Among these, 331 OTUs were shared by the control group and copper sulphate exposure
group. Alpha-diversity indices of the gill microbiota of yellow catfish after exposure to
copper sulphate are listed in Table S5. Statistical analysis indicated that the Chao, ACE,
and PD whole tree indices decreased in the copper sulphate exposure group, but there
was no statistically significant difference (p > 0.05). Additionally, significant decreases in
the Simpson and Shannon indicators were noted in the gills of yellow catfish that were
subjected to copper sulphate exposure (p < 0.05) (Figure 4).
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Figure 4. Simpson index and Shannon index of bacterial communities in the gills of yellow catfish
(Pelteobagrus fulvidraco) after exposure to 0.7 mg/L copper sulphate. C: 0 mg/L copper sulphate;
T: 0.7 mg/L copper sulphate.

3.3.2. Microbial Composition

To identify the alterations of the gill microbial community of yellow catfish after
exposure to copper sulphate, the composition and relative abundance of the microbiota
from the gills were analyzed. The most dominant phyla of the microbial community
were Proteobacteria, Bacteroidotas, Firmicutes, Bdellovibrionota, and Actinobacteriota
(Figures 5A and S2). These five phyla accounted for more than 78% of the total sequences
in all samples. The abundance of Bacteroidotas and Bdellovibrionota was significantly
decreased, while the abundance of Proteobacteria was significantly increased in the gills of
yellow catfish after exposure to 0.7 mg/L copper sulphate (p < 0.05) (Table 2). The ratio of
Bacteroidas/Firmicutes was decreased in the copper sulphate exposure group (6.37 ± 2.94)
compared to the control group (2.47 ± 0.68) but statistically non-significant (p > 0.05).
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Table 2. The microbial composition (mean ± SE, N = 5) in the gills of yellow catfish (Pelteobagrus
fulvidraco) after exposure to copper sulphate at the phylum level, * p < 0.05.

Phylum
Relative Abundance (%)

0 mg/L Copper Sulphate 0.7 mg/L Copper Sulphate

Bacteroidotas 27.64 ± 3.96 4.51 ± 0.51 *
Bdellovibrionota 5.93 ± 0.92 0.26 ± 0.04 *
Proteobacteria 45.46 ± 5.93 84.07 ± 2.46 *
Firmicutes 7.4 ± 2.35 2.16 ± 5.83
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Figure 5. Relative abundances of dominant microbial phyla (A) and genera (B) in the gills of yellow
catfish (Pelteobagrus fulvidraco) after exposure to 0.7 mg/L copper sulphate. C: 0 mg/L copper
sulphate; T: 0.7 mg/L copper sulphate.

At the genus level, the dominant bacteria in the gills of yellow catfish were Plesiomonas,
Runella, Flavobacterium, Arsenicibacter, and Methylophilus (Figure 5B). In the copper sulphate
exposure group, the top eight dominant genera with significant differences (p < 0.05) in
abundance were Plesiomonas, Legionella, Sphingopyxis, Paucibacter, Polynucleobacter, Curvibac-
ter, GKS98 freshwater group, and Aurantimicrobium (Figure 6A). Notably, a significant
8.5-fold increase in the abundance of Plesiomonas was observed in the copper sulphate expo-
sure group compared to the control group. In the KEGG analysis, carbohydrate metabolism
and amino acid metabolism were the most enriched categories of gill microbial function in
the control group and copper sulphate exposure group.
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(B) KEGG analysis identified various enriched pathways between the control group and copper
sulphate exposure group. C: 0 mg/L copper sulphate; T: 0.7 mg/L copper sulphate.
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4. Discussion

Copper sulphate is a widely used chemical agent in aquaculture for the treatment
of infectious diseases caused by parasitic protozoa, such as Cryptobia sp., Trichodina sp.,
and Chilodonella sp., as well as crustacean diseases, such as Sinergasilus sp. [26,27]. Copper
sulphate is usually applied in therapeutic baths, and the fish gills are, thus, one of the most
vulnerable organs due to direct contact with the external environment. Despite this, the
gill toxicity inducted via the practical application of copper sulfate in aquaculture has been
rarely explored. In this present study, the changes in the molecular indices of oxidative
stress, transcriptomic profile, and microbial communities in the gills of yellow catfish were
investigated following copper sulphate exposure, aiming to reveal the potential adverse
effects of the practical application of copper sulfate in aquaculture.

The antioxidant system is one of the primary defense lines for the host to resist
external environmental stress [28]. This system is able to prevent oxidative damage to
cellular components by activating enzyme systems such as SOD and CAT [29]. In the
current study, the activity of SOD, CAT, and GSH-Px was significantly decreased, and the
MDA content was significantly increased after exposure to copper sulphate. MDA serves
primarily as an indicator of lipid peroxidation. However, in this study, MDA levels were
measured relative to tissue protein levels rather than fat content, which may not accurately
reflect meaningful parameters of oxidative stress. Nevertheless, these results indicated that
exposure to 0.7 mg/L copper sulphate can significantly inhibit antioxidant enzyme activity
in the gills of yellow catfish. These findings of this study are in agreement with those of a
previous investigation, which has shown that exposure to 0.1–1.5 mg/L copper sulphate
resulted in increased lipid peroxidation and decreased levels of SOD, CAT, and GSH-Px
activities in the liver of goldfish (Carassius auratus) [30]. Similarly, reduced GSH-Px and CAT
activity and increased MDA content were also observed in the liver and gills of rainbow
trout (Oncorhynchus mykiss) after exposure to 5 µg/L copper sulphate [31]. On the contrary,
25–200 µg/L of copper ions induced a rapid and transient increase in SOD, CAT, and
GSH-Px activity in the three-spined stickleback (Gasterosteus aculeatus) [32]. The activity of
antioxidant enzymes also showed a trend of continuous increase in the liver and kidney of
snake-headed murrel (Channa punctatus) after exposure to various sublethal concentrations
of copper sulphate [33]. The divergent trends observed in the antioxidant enzyme activity
induced by copper sulphate across various fish species may be attributed to differences
in exposure dosage and time, the specific tissues examined, and the varying tolerance
to copper sulphate. Fish species display differing levels of tolerance to copper sulphate,
with some being highly susceptible and experiencing mortality even at low concentrations,
while others exhibit greater tolerance. For instance, the 72 h-LD50 of copper sulphate was
found to be 2.01 mg/L in grass carp (Ctenopharyngodon idella), whereas, in Nile tilapia
(Oreochromis niloticus), it was determined to be significantly higher at 40.6 mg/L [34,35].
Moreover, several environmental factors, such as pH and water hardness and alkalinity, can
affect the forms of copper ions present in the aquatic environment, ultimately determining
its bioavailability to organisms and further affecting their toxicity [5,7]. Overall, our
findings demonstrated that exposure to 0.7 mg/L copper sulphate for seven days has
potential to induce oxidative stress in the gills of yellow catfish.

The immune system of fish plays a crucial role in maintaining their health and is
vulnerable to external environmental stressors [36,37]. In this trial, the immune response
was significantly enriched in the GO analysis and several immune-related pathways, such
as Cytokine-cytokine receptor interaction, NOD-like receptor signaling pathway, and Toll-
like receptor signaling pathway were also enriched. Specifically, the expression levels of
many immune-related DEGs, such as interleukin-1 beta-like (IL-1β), macrophage mannose
receptor 1-like (MRC1L), and CD209 antigen-like protein D isoform X1 (CD209D), were sig-
nificantly downregulated in the gills of yellow catfish following copper sulphate exposure.
IL-1β plays a critical role in regulating the immune response by stimulating the production
of other cytokines and promoting the differentiation and proliferation of lymphocytes [38].
MRC1L and CD209D are important immune molecules that exhibit a variety of immune
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functions, including pathogen recognition and clearance, regulation of immune response,
and promotion of immune cell activation [39,40]. The downregulation of these genes
indicated that recommended anthelmintic concentrations of copper sulphate (0.7 mg/L)
can perturb the host’s immune system. Similarly, previous studies have also reported that
copper exposure could lead to immunosuppression in the olfactory mucosa of rainbow
trout and the intestines of juvenile orange-spotted grouper (Epinephelus coioides) [41,42].
Moreover, in this current study, inflammatory-related GO terms, including inflammatory
response, response to interleukin-1, and response to tumor necrosis factor, were also sig-
nificantly enriched. Several inflammatory-related DEGs, such as interleukin-4 receptor
subunit alpha-like (IL4Rα), C-X-C motif chemokine 3-like isoform X1 (CXCL3), and C-C
motif chemokine 24-like (CCL24), showed significant fluctuations in the copper sulphate
exposure group compared with the control group. Additionally, IL-1β, a pro-inflammatory
factor mentioned above, was significantly downregulated. Similarly, 0.25 mg/L copper
exposure significantly decreased the gene expression of IL-1β, IL-10, and TNF-α in the
gills of common carp [43]. These results suggested that copper sulphate exposure induced
immunosuppression in the gills of yellow catfish.

The gill microbiome of fish is essential in protecting the host organism from bacterial
infection by either competing with pathogens for space or nutrients, producing antagonistic
compounds, or interacting with the host’s immune system [44]. Due to direct exposure
to the external environment, the gill microbial community is particularly vulnerable to
external environmental stressors [45]. Pathogen infections and drug treatments disrupt the
gill microbial community, which may, in turn, increase the host’s susceptibility to other
opportunistic pathogens [13–15,46]. For instance, exposure to potassium permanganate and
chloramine-T resulted in significant disturbances to the external microbiomes of channel
catfish and Atlantic salmon, respectively [14,15]. In this study, noteworthy declines in the
Simpson and Shannon indicators were observed in the gill of yellow catfish after exposure
to copper sulphate, suggesting an imbalance of the gill microbial community inducted by
copper sulphate.

In terms of microbial composition in the gill of yellow catfish, the most dominant
phyla observed were Proteobacteria, Bacteroidotas, and Firmicutes, which is consistent
with the results of comparable studies on other fish species [47–49]. In this trial, the relative
abundance of Proteobacteria was significantly increased after exposure to copper sulphate.
Similar results have been reposted in the gill and skin of common carp following exposure
to povidone iodine [13]. Proteobacteria is generally considered to be the most diverse and
adaptable of the major phyla in the intestinal flora, exhibiting a wide range of metabolic and
physiological characteristics [50]. The relative abundance of Proteobacteria is easily influ-
enced by various factors, including oxygen contents, drug treatment, genetic susceptibility,
and enteritis. The increased abundance of Proteobacteria is a potential diagnostic signature
of metabolic and immune dysbiosis and risk of disease [50,51]. Therefore, although the ex-
act physiological role of Proteobacteria in the gills of yellow catfish remains unclear, future
studies should investigate whether the observed increase in their abundance is associated
with the immune disorder following exposure to copper sulphate. In this study, the increase
in Proteobacteria abundance was primarily attributed to the proliferation of Plesiomonas,
a genus of Gram-negative bacteria frequently found in aquatic environments [52]. The
genus Plesiomonas consists of only one species, namely P. shigelloides, which is recognized
as a potential pathogen for humans and animals [52]. This species has been proven to
be highly pathogenic for cichlid ornamental fish (Pseudotropheus socolofi) and silver carp
(Hypophthalmichthys molitrix), and its infections can result in massive host mortality [53,54].
Furthermore, the abundance of Bdellovibrionota was also notably reduced. The phylum
Bdellovibrionota consists of obligate predators that have the capability to attack and destroy
other bacteria, including pathogens [55]. Although there is limited research on the role of
Bdellovibrionota in the external microbiomes of fish, available evidence suggests that these
bacteria may have a protective effect against harmful bacterial pathogens. For instance,
Bdellovibrio, a genus of the phylum Bdellovibrionota, worked in conjunction with the host



Antioxidants 2023, 12, 1288 12 of 15

immune system to effectively treat Shigella infection and increase the survival of zebrafish
(Danio rerio) [56]. Thus, exposure to copper sulphate might lead to an elevation of poten-
tially pathogenic bacteria and a decline in the levels of potentially beneficial bacteria in the
gill microenvironment of yellow catfish, which could be detrimental to the host’s health.

In addition, the abundance of Bacteroidete and Firmicutes was found to be decreased
after copper sulphate exposure. Similarly, a previous study also showed that povidone-
iodine exposure also induced a decrease in the abundance of Bacteroidotas and Firmicutes
in koi carp (C. carpio) [13]. A previous study also indicated that copper sulphate treatment
led to a notable reduction in the abundance of Bacteroidotas on the external microbiota
of adult common snook (Centropomus undecimalis), whereas the abundance of Firmicutes
increased [57]. Bacteroidete and Firmicutes are crucial in polysaccharide catabolism. Specif-
ically, Bacteroidetes are responsible for decomposing complex polysaccharides and gener-
ating different enzymes, whereas Firmicutes ferment complex carbohydrates and produce
short-chain fatty acids [58]. The relative abundance of these two phyla has been extensively
investigated as indicators for gut health and dysbiosis [59]. Consequently, the results
demonstrated that copper sulphate exposure had the potential to disrupt carbohydrate
metabolism in yellow catfish by modifying the composition of gill microorganisms, as
evidenced by a reduced abundance of Bacteroidete and Firmicutes, along with a lower Bac-
teroidete/Firmicutes ratio. The findings were substantiated via PICRUSt2 analysis, which
revealed the inhibition of carbohydrate metabolism due to copper sulphate treatment.

5. Conclusions

In summary, the results of this study provide novel insights into the gill toxicity in-
duced via the practical application of copper sulfate in aquaculture using biochemical
assays, transcriptome, and microbiome analyses. Acute exposure to conventional an-
thelmintic concentrations of copper sulphate can induce oxidative stress and disturb the
immune system in the gills of yellow catfish. Additionally, copper sulphate treatment
also caused an imbalance of the gill microbial community and resulted in an elevation of
potentially pathogenic bacteria and a decline in the levels of potentially beneficial bacteria
in the gill microenvironment of yellow catfish, which could be detrimental to the host’s
health. Overall, the findings presented in this study have important implications for our
understanding of the gill toxicity of copper sulphate to fish and highlight the need for
developing strategies to mitigate the adverse effects of copper sulphate on fish and other
aquatic organisms.
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