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Abstract: Carbon monoxide (CO) is a cytoprotective endogenous gas that is ubiquitously produced
by the stress response enzyme heme-oxygenase. Being a gas, CO rapidly diffuses through tissues
and binds to hemoglobin (Hb) increasing carboxyhemoglobin (COHb) levels. COHb can be formed
in erythrocytes or in plasma from cell-free Hb. Herein, it is discussed as to whether endogenous
COHb is an innocuous and inevitable metabolic waste product or not, and it is hypothesized that
COHb has a biological role. In the present review, literature data are presented to support this
hypothesis based on two main premises: (i) there is no direct correlation between COHb levels and
CO toxicity, and (ii) COHb seems to have a direct cytoprotective and antioxidant role in erythrocytes
and in hemorrhagic models in vivo. Moreover, CO is also an antioxidant by generating COHb,
which protects against the pro-oxidant damaging effects of cell-free Hb. Up to now, COHb has been
considered as a sink for both exogenous and endogenous CO generated during CO intoxication or
heme metabolism, respectively. Hallmarking COHb as an important molecule with a biological (and
eventually beneficial) role is a turning point in CO biology research, namely in CO intoxication and
CO cytoprotection.
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1. Hemoglobin Function

Hemoglobin (Hb) is a widely conserved protein presented in all aerobic life forms
where it is responsible for the transport and storage of oxygen (O2). In red blood cells (RBC),
Hb corresponds to 98% of the total amount of cellular protein [1]. Hb is a globular protein
with a tetrameric structure that is formed by two α and two β polypeptide chains. Each
chain contains one heme group, a protoporphyrin IX molecule bound to reduced ferrous ion
(Fe2+) which can bind one molecule of O2. Thus, Hb can bind up to four molecules of O2.

The primary biological role of Hb is the transport of O2 from the lungs to all tissues in
the organism. Nevertheless, Hb also presents other functions related to its ability to bind
other gaseous molecules, namely carbon dioxide (CO2), and the endogenous gasotransmit-
ters: nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO) [2,3]. For the
sake of completion, a brief overview of the main roles of the first three gasotransmitters is
now presented, whereas the role of CO is more extensively presented in the next section.

CO2 is a metabolic product of the tricarboxylic acid cycle (TCA cycle) that affects pH,
buffers the blood and inhibits innate immune and inflammatory responses [4]. Hb facilitates
CO2 elimination from the organism, thus maintaining cellular homeostasis. Likewise, Hb
affinity to O2 decreases in response to milieu acidification or to CO2-Hb binding which
produces an allostery change. The decrease in Hb’s affinity to O2 is particularly important
for facilitating O2 delivery into tissues [5].
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NO is a gasotransmitter and an important signaling molecule enzymatically pro-
duced by the activity of nitric oxide synthase (NOS) or non-enzymatic reduction from
nitrite. NO regulates vasomodulation by acting on vascular tone and on the expression
of endothelial adhesion proteins, plays a role in immunity and inflammation, and is
also a CNS signaling molecule [6,7]. Thus, the binding of Hb to NO alters its levels,
changing cell signaling. In circulation, RBCs are the main scavengers of NO due to their
high amounts of Hb. In fact, NO is much more reactive than CO, reacting with Hb in a
much faster and efficient manner. OxyHb-Fe2+ converts NO into nitrate forming methe-
moglobin (MetHb or Hb-Fe3+) (Figure 1), while NO reacts with deoxyHb-Fe2+ forming
DeoxyHb-Fe+ NO iron nitrosyl Hb [8,9].
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Hydrogen sulfide (H2S) is a gasotransmitter and signaling molecule constantly pro-
duced by enzymes such as 3-MST (3-mercaptopyruvate sulfurtransferase), CBS (cystathion-
ine β-synthase) and CSE (cystathionine γ-lyase). High concentrations of H2S are cytotoxic,
but at low concentrations it possesses a variety of physiological functions, such as the
regulation of blood vessel constriction and dilation and neuronal activity [10]. H2S can
exclusively bind to methemoglobin (Hb-Fe3+) to form a methemoglobin–sulfide compound.
Nevertheless, this compound can later undergo reductive sulfhydration resulting in the
reduction of methemoglobin back to hemoglobin (Hb-Fe2+), along with the formation of
polysulfides and thiosulfates. Although H2S mechanisms are not fully understood, the
end goal of H2S-MetHb binding seems to be H2S transport and the capacity to reduce
methemoglobin back to ferrous hemoglobin (Hb-Fe2+) [3].

CO is a key endogenous signaling gasotransmitter involved in inflammation, cell
death, and metabolism control, maintaining cellular homeostasis, as described in the next
section. Nevertheless, not much is known about the biological role of carboxyhemoglobin
(COHb) under physiological conditions and its potential protective functions under patho-
logical conditions.

2. Carbon Monoxide (CO) and Its Biological Role

As early as 1920, carbon monoxide (CO) was found in exhaled human air, a fact
attributed to pollution and smoking and a bit later (1933) to metabolism of microbiota in
the gut [11]. CO was identified as a product of heme catabolism only in 1951 [12], taking
about two decades more for the identification of heme-oxygenase [13]. Heme-oxygenase
(HO) can be inducible (HO-1) or constitutive (HO-2), and its expression and/or activity
increases in response to stress along with CO production.
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In the last two decades, CO has been extensively studied as a homeostatic and pro-
tective molecule. CO’s anti-inflammatory property was the first biological role to be
scrutinized. In macrophages, CO controls inflammatory response [14,15] and the ability
to kill bacteria [16]. Likewise CO also modulates and limits neuroinflammation in mi-
croglia [17,18] and in vivo models of multiple sclerosis [19,20]. CO plays an anti-apoptotic
role in different cell types: endothelial cells [21,22]; lung cells [23]; cardiomyocytes [24];
neurons [25–27]; and astrocytes [28–30]. Another biological process regulated by CO is cell
metabolism, namely the balance between glycolysis and oxidative phosphorylation and the
modulation of the pentose phosphate pathway related to ROS signaling response [31]. CO-
induced reinforcement of oxidative metabolism facilitates prostate cancer treatment [32]
and neuronal differentiation [33] and also prevents cell death [29] and limits neuroinflam-
mation [34,35]. Revisions on the biological role of CO in homeostasis and cytoprotection
are available [36,37].

Therefore, administration of low CO levels holds great therapeutic potential, with
considerable ongoing biomedical research and clinical trials [37]. The administration of
these low levels of CO in humans is made by inhalation (iCO). However, in preclinical
animal studies of many animal models of disease, CO has been administered through pro-
drugs or CO-loaded materials. The prodrugs are generally named CO-releasing molecules
(CORMs), which can be based on metal carbonyl complexes [38], organic molecules [39,40],
or materials loaded with CORMs (CORMAs) [41,42]. All these developments around CO
delivery methods different from simple inhalation intend to improve the selective targeting
of CO to the disease tissues, which is impossible with inhalation whereby CO is transported
in the blood stream without any tissue selectivity, either as dissolved gas in the plasma
or as COHb. In all cases, in vivo animal studies with CORMs and/or iCO therapy have
used measurements of COHb as a control of exposure and toxicity since, in humans, the
latter is absent below 15% COHb with very rare, alleged exceptions. In the case of CORMs
and CORMAs, efficient targeting is expected to reduce COHb to very low values just like
what happens when HO-1 is activated at the site of disease. In this sense, a clear and
rapid COHb rise is an unwanted event. Notwithstanding, some experimental evidence
suggests that COHb is not toxic and could instead possess protective activities. Thus, the
cytoprotection elicited by CO may be due not only to its direct effect on cells but may also
imply COHb signaling.

3. Hemoglobin in Red Blood Cells

Erythrocytes or red blood cells (RBCs) correspond to about one quarter of human cells.
They are generated and develop in bone marrow and have a rapid cellular population
turnover with a lifetime of 100 to 120 days in circulation. These cells lack nuclei and most of
the cellular organelles in order to maximize O2 transport by presenting great amounts of Hb
(~98% of total protein). Therefore, cellular function is mainly controlled by protein–protein
interactions and allosteric and post-translational modifications [43].

Because of the high O2 tension and abundant iron content, RBCs are prone to generate
reactive oxygen species (ROS), which trigger oxidative stress and cell damage. In fact, Hb
can suffer slow autooxidation, reducing O2 to the superoxide anion (O2

·−) and oxidating
Fe2+ to Fe3+, thus leading to the formation of MetHb, which is unable to bind O2 (Figure 1).
The auto-oxidation of Hb is a slow process, but can be accelerated under hypoxia [44].
Likewise, dismutation of O2

·− produces hydrogen peroxide (H2O2) which via the Fenton
reaction oxidizes Fe2+ to Fe3+ along with hydroxyl radical (HO·) production, functioning
as an amplification loop. In addition, Hb and MetHb can also function as pseudo per-
oxidases converting H2O2 into H2O under uncontrolled pathological conditions [45]. In
particular, Fe3+ in MetHb is a dangerous molecule that can react with H2O2 leading to Fe4+

ferrylHb formation, which is a powerful oxidant [46] (Figure 1). Endothelial vessel cells
and macrophages produce NO which can cross membranes reaching RBC. Once there, NO
can oxidize Hb to MetHb, generating nitrate, as well as react with a superoxide, forming
peroxinitrite, which is a highly reactive and tissue damaging molecule [44].
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4. RBC Anti-Oxidant Machinery

In order to avoid the oxidative processes mentioned above, the RBC environment must
be very reducing with strong antioxidant systems able to maintain Hb at the functional
reduced Fe2+ state. Accordingly, the RBC antioxidant machinery is constituted by en-
zymes such as catalase, superoxide dismutase, glutathione peroxidase, and peroxiredoxin-2
enzymes [44]. Catalase and glutathione peroxidase are the main antioxidant enzymes
involved in the maintenance of a reducing environment in RBCs [47]. Moreover, high
levels of intracellular reduced GSH and ascorbic acid are key elements for maintaining
iron at its reduced state [48]. In RBCs, ascorbic acid (AA) can reach concentrations as
high as 2 mM. In response to an oxidant, AA is oxidized to dehydroascorbic acid (DHA),
which must be recycled by reacting with reduced glutathione (GSH). Likewise, AA is also
a critical reducing molecule in plasma, where its oxidation product, DHA, is transported
into RBCs via GLUT-type D-glucose transporters for reduction into AA by GSH [46]. RBCs
do not contain mitochondria, with glycolysis being their main source of ATP. Glycolysis is
linked to the pentose phosphate pathway (PPP), which is the key metabolic pathway for
the generation of the reducing factor NADPH needed for GSSG reduction into GSH [49]
(Figure 2). Alternatively, Ogasawara and colleagues also demonstrated that in response to
tert-butylhydroperoxide treatment (oxidative stress) the reduction of MetHb to Hb was not
supported by increased levels of PPP but by glycolysis and NADH generation. In fact, there
is an increase in glucose metabolism via glycolysis, generating more pyruvate and NADH
via glyceraldehyde-3-phosphate dehydrogenase (GAPDH) [50]. In conclusion, glucose
metabolism can be antioxidant in RBCs through different metabolic pathways (Figure 2).
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Finally, the Hb protein itself also presents antioxidant functions. Whenever its β93
cysteine (β93Cys) residue is changed for alanine, there is an increase in ROS generation in
response to stressful stimuli such as inflammation in mice [51].

5. Cell-Free Hemoglobin

The presence of cell-free Hb in the plasma occurs following hemolysis with the leakage
of Hb from RBCs. Pathological hemolysis is a consequence of hemolytic diseases, namely
hemorrhage, sickle cell disease, autoimmune induced anemia, infection-induced anemia,
thalassemia, massive blood transfusion, among others [52,53]. Under pathological hemoly-
sis, the toxicity of cell free-Hb and heme is not limited to blood vessels but also affects organ
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parenchyma. In contrast, under physiological conditions, vascular hemolysis also occurs
as a consequence of normal RBC turnover. It is well established that the concentration of
intracellular Hb (inside erythrocytes) is 10 mM, while the extracellular Hb concentration is
around 2 µM in healthy humans [54]. Nevertheless, a study performed in 1959 calculated
that about 10% of total RBC breakdown occurred in blood vessels [55]. Despite these
controversial data, one can speculate that the systems for scavenging cell-free Hb are quite
efficient (please see Section 6).

Inside RBCs, Hb is an α2β2tetramer protein with reduced Fe2+ and an efficient cellular
machinery for the maintenance of a reducing environment. In contrast, in an extracellular
environment, tetramer Hb is in balance with αβdimer Hb, with a predominant dimer
state depending on the cell-free Hb concentration [56]. αβdimer Hb is smaller, which
facilitates its extravasation into perivascular tissue, increasing oxidative stress in vulner-
able organ parenchyma (the kidneys and liver) [56]. In addition, there is NO-induced
oxidative stress by oxidizing oxyHb-Fe2+ to Hb-Fe3+, which easily releases the reactive
ferric protoporphyrin-IX group (heme group). In fact, heme is a strong prooxidant and pro-
inflammatory molecule, exacerbating tissue damage [56]. Cell-free Hb-Fe2+ also scavenges
endogenous NO produced by endothelial cells. Thus, NO does not reach smooth muscle
cells, and vasodilation is inhibited [57,58]. In fact, some hemolytic diseases are associated
with hypertension since the lack of NO promotes vasoconstriction [59] (Figure 3). Inter-
estingly, cell-free methemoglobin can suffer auto-reduction, generating cell-free Hb-Fe2+,
which in turn scavenges NO and promotes vasoconstriction [60].
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In vascular endothelial cells, cell-free Hb induces oxidative stress, upregulation of
heme-oxygenase and ferritin, and cell injury, with the effect being much more pronounced
whenever MetHb is present [61,62]. Cell-free ferrylHb (Hb-Fe4+) triggers inflammation and
permeability of vascular endothelial cells, changing actin cytoskeleton organization and
increasing the expression of pro-inflammatory genes [63]. Likewise, interaction between
cell-free Hb and atheroma lipids promotes an amplification loop of vessel lesions, involving
oxidative stress and inflammation. In fact, oxidized LDL (low density lipoprotein) and
lipids derived from atherosclerosis patients facilitates oxidation of MetHb to ferrylHb [64].
Likewise, treatment with ascorbic acid can eventually decrease the cell-free-Hb-induced per-
meability and lesions in the endothelium [65]. Finally, being a pro-inflammatory molecule,
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ferrylHb also activates macrophages, promoting a proinflammatory environment in tis-
sues [66].

Great amounts of plasma are filtered by the kidneys daily; therefore, cell-free Hb and
its metabolites are highly nephrotoxic, inducing oxidative stress, apoptosis, and inflamma-
tion [67,68], which can lead to acute and eventually chronic kidney disease [69,70].

Cerebral microvascular endothelial cells along with astrocytes and pericytes form
the blood-brain barrier (BBB), which is a key structure with higher selectivity and lim-
ited permeability for the maintenance of brain homeostasis as a sanctuary organ [71].
Intracerebral or subarachnoid hemorrhage are the main causes of cell-free Hb affecting
the brain, although vascular hemolysis with systemic circulating cell-free Hb also disturbs
the BBB and cerebral parenchyma [72]. Systemic exposure to Hb alters the organization
of tight junction proteins and promotes lipid peroxidation and iron deposition in the BBB,
leading to its permeabilization [73]. Moreover, rat intracerebral injection of Hb solution
promotes BBB leakage by inducing endothelial and inducible NO synthase activity and
NO production, which in turn alter tight junction proteins’ organization [74]. Similarly, in
hemorrhagic stroke models based on cerebral Hb injection, BBB permeability occurs by
peroxinitrite formation following Hb’s reaction with NO [75] or by activation of matrix
metalloproteinase-9 (MMP-9) inducing apoptosis in the EC of the BBB [76].

Hb dimer and free heme are small molecules that can easily cross endothelial barriers
and infiltrate into tissues; thus, their deleterious effect can also reach other compartment
than just the blood or endothelium [56,77]. In particular, in the CNS, cell-free Hb is
neurotoxic when reaching the brain parenchyma by triggering neuronal cell death [78]
and by inducing neuroinflammation with microglial activation and the release of many
proinflammatory cytokines [79,80]. Likewise, Hb breakdown products actively participate
in brain injury following intracerebral hemorrhage [81]. The presence of cell-free MetHb
in cerebrospinal fluid (CSF) following preterm cerebral intraventricular hemorrhage is
associated with pro-neuroinflammatory response with higher levels of TNF-α, IL-1β, and
TRL-4 [82]. In astrocytic cell culture, MetHb treatment also increases TNF-α expression,
while oxyHb does not [82].

In summary, cell-free Hb is a highly reactive molecule, with it becoming a dimer
protein with oxidized iron, that in turn is extremely toxic, with the endothelium being the
first target.

6. Haptoglobin and Hemopexin

During evolution, nature has developed systems to protect organisms from cell-free
Hb and free heme: haptoglobin and hemopexin, respectively. Haptoglobin (Hp) is an
α2- sialoglycoprotein and is the primary Hb-binding protein in the plasma [83]. Hp binds
to dimers of Hb, which is rapidly formed following Hb’s release from RBCs [84]. Under
physiological conditions, circulating Hp scavenges free Hb originating from normal RBC
turnover, thus inhibiting Hb-mediated toxicity. Then, the complex Hb-Hp interacts with
CD163 receptors of monocytes/macrophages for its internalization and further clearance
in the lysosomes, with upregulation of heme-oxygenase (HO) for heme degradation [85].
Whenever excessive and pathological hemolysis occurs, Hp is depleted in the plasma, and
cell-free Hb leads to oxidative stress and endothelium and tissue lesions [83]. Interestingly,
there are many studies targeting the levels and the genotype of circulating Hp as a potential
biomarker for disease severity, in particular in hemorrhagic diseases [86,87].

In contrast, free heme is first bound to albumin and then is transferred to hemopexin
(Hpx). The complex heme-Hpx is primarily eliminated in hepatocytes after its internal-
ization via LDL-receptor-related protein 1 (LRP1) [83]. In fact, the presence of hemopexin
reduces endothelial oxidative stress and brain lesions following atherosclerosis [88] and
intracerebral hemorrhage [89]. Interestingly, α1-microglobulin is a heme-binding protein
also able to scavenge free heme following hemorrhage in atherosclerosis lesions. In fact, the
pro-inflammatory ferrylHb and free heme promote expression of α1-microglobulin [90].
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7. Is Carboxyhemoglobin (COHb) Toxic?

Since the ancient era, coal fumes are known to be toxic. In the 18th century, the
concept of a gas being produced by combustion was established, and a more systematic
characterization of gas intoxication in humans was carried out. Still in 1796, this gas was
described to have more affinity to “animal fibers” than oxygen, but only in 1800 was CO’s
structure found [11]. Claude Bernard discovered that CO displaces oxygen leading to body
hypoxia in 1846, and in the 20th century, Haldane and colleagues carried out a quantitative
study on CO’s affinity to hemoglobin. For an interesting and complete historical review
about CO, please see [11]. With a long role in human history, carbon monoxide (CO)
is widely known to the public as a silent killer due to its high affinity to Hb, forming
carboxyhemoglobin (COHb). CO presents 240-fold greater affinity for Hb than O2, limiting
O2 delivery into tissues, which can lead to systemic hypoxia [11,91]. Interestingly, CO
partially binding to Hb increases the affinity of the remaining O2 molecules to Hb, limiting
their release into the tissues [92].

With the high affinity of CO to Hb, it is expectable that the storage of endogenously
produced CO occurs under the form of COHb. Under physiological conditions, CO is
continuously produced by the catabolism of free heme corresponding to more than 90%
of endogenous CO production, with the remaining CO coming from lipid and xenobiotic
metabolism [93]. Thus, an adult generates 20–50 mL of exhaled CO gas per day under
physiological conditions. On the other side, 10–15% of normal erythrocytes’ turnover occurs
by vascular hemolysis, leaking hemoglobin (Hb) and free heme into the plasma [55,56].
Thus, endogenous CO is scavenged by Hb, leading to basal COHb production. Indeed, the
human basal levels of circulating COHb in a non-smoker subject are 0.1 to 2%, depending on
the environmental conditions [11,94]. Moreover, under pathological conditions (in response
to inflammation, oxidative stress, hypoxia, etc.), the levels of HO-1 expression increase
along with CO generation. Therefore, elevation in COHb circulating levels also occurs.

Since in biology nothing is produced without purpose, it is hypothesized that COHb is
not an inert or waste by-product of CO metabolism. Rather, COHb might present an active
biological role and thus, COHb could be considered as an integral part of the cytoprotective
HO/CO axis previously described. In the next sections, literature data will be presented to
support this hypothesis.

8. COHb Is Not a Measure of CO Toxicity

In biological systems, CO binds to heme proteins, changing their function. In fact,
CO-induced intoxication is usually associated with deficient systemic oxygen delivery
as previously mentioned, while cytotoxicity is mostly associated with CO binding to
cytochrome c oxidase which in turn inhibits mitochondrial respiration leading to ATP
deprivation and oxidative stress [95].

For decades, the levels of circulating COHb have been considered a measure of CO
intoxication. Nevertheless, a great variety of COHb concentrations are associated with fatal
CO intoxication, ranging from 3% to 98% [96]. It is important to note that with such a wide
range of values, its statistical significance is almost meaningless. Additionally, the highest
reported value of COHb levels in an individual who survived is 73% [97], reinforcing the
point that COHb does not accurately correlate with CO poisoning. Thus, COHb should
only be used as a confirming biomarker of recent CO exposure and not as a measure of CO
poisoning severity [98].

Moreover, in 1975, an important in vivo study on systemic CO toxicity showed no
correlation between COHb levels and CO toxicity [99]. When a group of dogs was exposed
to 13% of CO gas by inhalation, COHb levels reached 54% to 90%, and all animals died
within 1 h. In the second group, the dogs received a transfusion of CO-loaded blood,
leading to a final value of 80% COHb. In this case, all animals survived [99]. These
results indicate that COHb levels cannot be taken as a measure or predictor of systemic
CO toxicity. If anything, they show that exogenously administered COHb is not toxic and
that, in the case of CO inhalation, toxicity is most likely due to free CO. Accordingly, in
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2021, Mao and colleagues developed an accurate and sensitive colorimetric assay for CO
quantification in tissues and blood following CO inhalation [100]. This assay is based on
the synthetic supramolecule hemoCD1, synthesized by Kitagishi and colleagues, composed
of an iron(II)porphyrin, meso-tetrakis(4-sulfonatophenyl) porphinatoiron-(II), and a per-
O-methylated β-cyclodextrin dimer, which binds to CO with an affinity higher than that
of Hb [101]. Following CO gas inhalation at 400 ppm, the blood COHb concentration
linearly increases over time, while CO levels in different tissues (the liver, lungs, cerebrum,
cerebellum, and heart) rapidly reach a plateau below the tissue’s saturation capacity. These
data suggest that COHb is formed to prevent toxic accumulation of free CO in tissues,
ultimately resulting in protection [100].

In summary, COHb in circulation is not toxic and circulating COHb concentration
must not be considered a measure of systemic CO toxicity. Likewise, CO-induced tox-
icity may be mostly associated with CO gas which binds to cellular heme proteins, in
particular cytochrome c oxidase. Nevertheless, one can also envisage a scenario where
COHb would deliver CO to other heme proteins depending on its affinity, but this needs
further investigation.

9. How Can COHb Be (cyto)Protective?

Several hypotheses can be considered for endogenous COHb to have a biological role
that can be systemically protective and/or cytoprotective.

9.1. COHb Formation Is a Protection Mechanism against Cell-Free Hb Oxidation and Toxicity

Upon hemolysis, cell-free Hb is easily oxidized from Hb-Fe2+ into Hb-Fe3+ (methe-
moglobin, MetHb) or Hb-Fe4+ (ferrylHb), which in turn promote oxidative stress, lipid
peroxidation, inflammation, and BBB disruption [56,72]. Cell-free COHb is more stable and
less toxic than cell-free Hb [102]. For example, in vitro studies mimicking plasma conditions
demonstrated that CO reduces Hb-Fe3+ into carboxyHb-Fe2+ in the presence of peroxide
as an electron donor [102]. Likewise, in a model of hemolytic malaria (P. berghei-infected
mice), CO gas exposure decreased the levels of circulating MetHb and free heme, which
limits oxidative stress [103]. Furthermore, the Kirklareli mutation (H58L) in human Hb
promotes mild anemia because the mutated Hb is susceptible to high auto-oxidation [104].
Interestingly, smokers carrying the mutation are protected against anemia when compared
to non-smokers. This is due to the fact that the CO derived from cigarette smoke tightly
binds to the mutated Hb and prevents its oxidation into MetHb [104].

Administered as a mouse intraperitoneal injection, hemoCD binds first to free en-
dogenously produced CO and then captures CO from circulating COHb. Thus, hemoCD
generates a depletion of endogenous CO, which in turn upregulates liver HO-1 expression
to compensate for the lack of CO. In fact, after losing CO, plasma oxyHb is rapidly oxidized
into MetHb, releasing free heme which triggers HO-1 expression [101].

Cell-free or RBC COHb levels may also represent novel potential biomarkers of disease.
In fact, high levels of cell-free Hb in human plasma have been found to be associated with
worse prognosis in sepsis [105]. Likewise, in intensive care units, COHb is a biomarker for
hemolysis. In fact, hemolysis releases cell-free Hb, which is eliminated by macrophagic
phagocytosis, increasing the expression of HO-1 for heme degradation which increases
CO, thus forming COHb [106]. Thus, COHb holds potential as a diagnostic or prognostic
circulating biomarker.

Altogether, these data point to another CO mechanism of action: the generation of
COHb protecting against cell-free Hb’s deleterious effects (Figure 3).

9.2. COHb Is an Antioxidant

In vitro, the exposure of red blood cells (RBCs) to CO promotes a great increase in
the levels of intracellular reduced GSH, from about 2 mM to 3 mM [107]. CO does not
promote glycolysis but partially increases the pentose phosphate pathway. Nevertheless,
the main origin of this great increase in GSH levels is Hb de-glutathionylation, meaning
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the release of glutathione from cysteine residues, in particular Cys93 and Cys112 [107].
COHb formation alters Hb conformation and releases GSH, which in turn plays a key
antioxidant role. Therefore, COHb formation in RBCs due to the presence of CO reinforces
their antioxidant defenses (Figure 4).
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Using an in vivo rat model of hemorrhagic shock, transfusion of RBCs or vesicles
containing Hb exposed to CO gas, that is containing COHb, showed better systemic pa-
rameters (arterial blood pressure, lactate, or PO2 and PCO2) than whenever a transfusion
was performed with RBCs or vesicles containing Hb [108]. In addition, COHb vesicles
or CO-RBCs decreased oxidative damage in the lungs and liver when compared to Hb
vesicles or RBC transfusion. Moreover, the circulating COHb levels decreased from 26–39%
immediately after transfusion to 3% after 6 h [108]. RBC transfusion is the gold standard
treatment for massive hemorrhage. Despite this, this therapy is associated with great hep-
atic oxidative stress and a decrease in cytochrome P450 activity. Whenever RBCs exposed
to CO (CO-RBCs) were used for transfusion, there was a reversion of the deleterious effects
of RBCs, with a decrease in nitric oxide and free heme levels, an increase in cytochrome
P450 activity, and lower oxidative stress biomarkers [109,110]. Likewise, at a late stage after
resuscitation, CO-RBCa also limited the increased levels of the plasma pro-inflammatory
markers IL-6 and TNF-α [111]. Finally, in a rat model of acute kidney injury triggered
by traumatic rhabdomyolysis and hemorrhage, transfusion of CO-RBCs was revealed to
be renoprotective, avoiding the oxidative stress induced by free heme [112]. In summary,
transfusion of CO-RBCs confers systemic protection against oxidative stress in the con-
text of hemorrhagic disorders. It should also be tested in other models, including organ
transplant or blood transfusion after surgery.

9.3. COHb May Present Other Protective Functions

The most frequently used concentration of CO gas inhalation in animal models is
250 ppm, which promotes protection in several different tissues and pathologies [93].
Depending on the exposure time and the animal model, 250 to 500 ppm leads to circulating
COHb levels between 5 and 30% [113]. Thus, the protective effect may be due to free CO
reaching tissues or due to circulating COHb or even both.

In addition, ALF186 is a CO-releasing molecule (CORM) that readily delivers its CO
load to RBC, reproducibly raising COHb within minutes after mouse injection, with most of
the released CO binding to COHb [114]. Interestingly, in vivo i.v. administration of ALF186
protects retinal ganglion cells against ischemia and reperfusion [115]. Because practically
all CO molecules released from ALF186 bind to Hb, one can speculate on a direct effect



Antioxidants 2023, 12, 1198 10 of 15

of COHb in tissues, in this case a protective effect in the retina [115]. Nevertheless, this
experiment should be repeated with COHb administration instead of CO to confirm the
role of COHb.

Finally, another clue indicating that COHb might have a protective role is disclosed
by smokers or the phenomenon called the smoking paradox. In fact, smokers present on
average higher circulating COHb levels than non-smokers, going from 2% to 10% [116,117].
Despite being extremely injurious and harmful, epidemiological data show that smokers
present lower levels of incidence of Parkinson’s disease [118], pre-eclampsia [119], and
some skin cancers [120], among other diseases [11]. These protective effects have been
attributed to free CO; however, it can be speculated that the higher levels of COHb may
also play a role. Of course, molecules other than CO may also be involved in the smoking
paradox, since tobacco smoke has a complex composition.

10. Impact and Future Perspectives

The research about COHb as a protective molecule opens a new paradigm in the CO
biology field. For 20 years, scientists have searched for the underlying CO mechanisms of
cytoprotection, without paying attention to COHb. Moreover, the development of CORMs
has always been guided by the idea of avoiding extensive COHb formation to keep the
CORM structure intact until it reaches the tissues in need to deliver CO locally. It is urgent
now to expand scientific knowledge on the physiological role of COHb, which may also
open new avenues for therapy development.

In fact, COHb presents advantages as a therapeutic agent since it is an endogenous
molecule that exists permanently in organisms, meaning that our body is fully adapted to
it. The advantages of using COHb instead of CO gas or any type of CORMs are obvious. In
the former case, the opposition to the use of CO gas due to the widespread, deeply rooted
perception of its potential toxicity would be removed. In the latter case, beyond CO, the
added risks posed by xenobiotic molecules from scaffolds, carriers, or metabolites would
be absent. Many blood substitute products based on Hb have been developed to replace
blood and deliver oxygen into tissue. Following this paradigm, PEGylated COHb emerges
as a potential therapeutic agent against hemorrhagic and ischemic stroke since it delivers
CO and O2 into tissues [121].
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