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Abstract: Oxidative stress driven by several environmental and local airway factors associated
with chronic obstructive bronchiolitis, a hallmark feature of COPD, plays a crucial role in disease
pathomechanisms. Unbalance between oxidants and antioxidant defense mechanisms amplifies
the local inflammatory processes, worsens cardiovascular health, and contributes to COPD-related
cardiovascular dysfunctions and mortality. The current review summarizes recent developments in
our understanding of different mechanisms contributing to oxidative stress and its countermeasures,
with special attention to those that link local and systemic processes. Major regulatory mechanisms
orchestrating these pathways are also introduced, with some suggestions for further research in
the field.
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1. Introduction

Oxidative stress driven by several environmental and local airway factors associated
with chronic obstructive bronchiolitis, a hallmark feature of chronic obstructive pulmonary
disease (COPD), plays a crucial role in the disease pathomechanisms [1,2]. Unbalance
between oxidants and antioxidant defense mechanisms amplifies the local inflammatory
processes, has systemic effects, contributes to developing COPD–related comorbidities,
and worsens cardiovascular health. COPD often coexists with cardiovascular diseases
(CVDs). CVDs are not only the most common comorbidities perceived in COP, but also
account for an increased risk of death in COPD patients [3–5]. Approximately 30% of
COPD patients are reported to die due to CVD. COPD and CVD share common pathophys-
iological mechanisms strongly related to oxidative stress [6]. This review summarizes our
current understanding of the local and systemic processes that link COPD and various
CVDs via oxidative stress. We focus on some relevant mechanisms that orchestrate the
systemic responses leading to the parallel development of respiratory and cardiovascular
dysfunctions. We aim to update and extend previous reviews related to the field by de-
scribing biomarkers, discussing the relationship between COPD and CVDs in a broader
sense instead of focusing on certain specific CVDs and highlighting novel, less investigated
mechanisms connecting the two disease entities via oxidative stress [4,7–11].

2. Pathways of Oxidative Stress

Oxidative stress is when the oxidative burden imposed by exposure to exogenous and
endogenous free radicals exceeds the antioxidant defense capacities. This may occur due
to excessive oxidant production, exhaustion, or the defective functioning of antioxidant
mechanisms (Figure 1). Reactive oxygen species (ROS), such as hydroxyl radical and
superoxide anion, are produced by each cell in the body during mitochondrial respiration
and cell signaling processes. ROS production by the immune, mainly phagocytic cells, is
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also essential in the immune defense against pathogens [1,2]. To protect the physiological
function of cells from the harmful effects of exogenous and endogenous radicals, the body
maintains powerful antioxidant mechanisms.
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superoxide dismutase; CAT—catalase; GPx—glutathione peroxidase; H2O2—hydrogen peroxide; 
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Figure 1. Pathways of oxidative stress. Enzymes marked in red participate in producing oxy-
gen radicals, whereas enzymes marked in green deactivate reactive oxygen species. Inflamma-
tory stimuli, pathogens and oxidants upregulate and activate signaling via NF-κB, Nrf2 and
AP-1 transcription factors that result in enhanced production of reactive species and depressed
functioning of antioxidant enzymes. Abbreviations: NF-κB—nuclear factor kappa-light-chain-
enhancer of activated B cells; Nrf2—nuclear factor erythroid 2-related factor 2; AP-1—activator
protein 1; iNOS—inducible nitric oxide synthase; NO—nitric oxide; NOX—nicotinamide
adenine dinucleotide phosphate oxidase; O2

•−—superoxide anion, ONOO−—peroxynitrite;
SOD—superoxide dismutase; CAT—catalase; GPx—glutathione peroxidase; H2O2—hydrogen
peroxide; MPO—myeloperoxidase; EPX—eosinophil peroxidase; HOCl—hypochlorous acid;
RNS—reactive nitrogen species; RCS—reactive carbonyl species.

2.1. Production of Oxygen Radicals

Phagocyte ROS generation relies on the operation of nicotinamide adenine dinu-
cleotide phosphate (NADPH)-oxidase (NOX) enzymes which produce superoxide anion
(O2
•−) by transferring an electron from NADPH to O2 as a result of activation of nuclear

factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling. NOX enzymes are
localized to the membrane, and their different isoforms are expressed in numerous tissues
and cell types in the body [12,13]. The O2

•− anion is unstable and is rapidly dismutated to
hydrogen peroxide (H2O2) by the enzyme superoxide dismutase (SOD) [14]. Phagocyte
lysosomes also contain the enzyme myeloperoxidase, which catalyzes the conversion of
H2O2 to hypochlorous acid (HOCl), a highly oxidizing agent [15]. H2O2 can also be con-
verted to reactive nitrogen and carbonyl species (RNS and RCS) in the Haber–Weiss and
Fenton reactions [16,17].

A further essential source of ROS is excessive nitrogen monoxide (NO) production
by inducible nitric oxide synthase in phagocytes and various cell types as part of the in-
flammatory responses [18]. When NO and O2

•− are present at increased concentrations, as
seen in inflammation, they readily combine to form peroxynitrite (ONOO−). Peroxynitrite
is a highly reactive oxidant with enhanced stability [2,18].

Reactive species can oxidize thiols, amines, and amino acid residues of proteins such
as cysteine, methionine, and tyrosine. This may alter the tertiary structure and function



Antioxidants 2023, 12, 1196 3 of 29

of the protein. In addition, ROS can also be harmful to lipids and DNA, which may cause
membrane dysfunction and transcriptional errors [1,2,19–21].

Nuclear factor-κB (NF-κB) signaling connects ROS production to local and systemic
inflammation in various diseases. While certain NF-κB regulated genes control ROS
generation by the cell, ROS also have complex inhibitory and stimulatory effects on NF-κB
signaling, mediating mainly proinflammatory responses [22]. Another transcription factor
that is relevant in exacerbating ROS production in inflammatory responses is activator
protein 1 (AP-1). AP-1 activity is redox-sensitive and induced by many physiological,
pathophysiological, and environmental stimuli, including various cytokines and bacterial
and viral infections [23]. The products of AP-1-induced genes participate in inflammatory
processes and ROS production and have been shown to contribute to the etiology of disease
conditions in the respiratory and cardiovascular systems [23–25].

2.2. Antioxidative Defense

The action of ROS is kept under control by enzymatic and non-enzymatic defense
mechanisms [1,2]. Antioxidant molecules, metal-binding proteins, and unsaturated lipids
acting as electron donors or recipients can scavenge non-enzymatic radicals. In the lung,
the antioxidants vitamin C (ascorbate) and vitamin E (tocopherol) are found in abundance
in the airway surface liquid [26,27]. In addition, albumin, mucin in extracellular body fluids
and glutathione within cells are relevant scavengers as they offer methionine and cysteine
residues for radicals [28–30].

Enzymatic ROS antioxidation is carried out by three significant enzymes, superoxide
dismutase (SOD), catalase and glutathione peroxidase (GPx). Superoxide dismutase (SOD1,
SOD2 and SOD3) quickly remove O2− by converting it to H2O2 to prevent it from causing
damage or producing extremely damaging peroxyl radicals [14]. However, this process
produces H2O2, which can be the precursor of further hydroxyl radical generation. Catalase
and GPx eliminate H2O2 by splitting it into H2O and O2 [31,32]. In the GPx-catalyzed
reaction, glutathione (GSH) acts as a hydrogen ion donor, becoming glutathione disulphide
(GSSG). Expression of antioxidant enzymes is highly regulated by the transcription fac-
tor ‘nuclear factor erythroid 2-related factor 2 (Nrf2)’. Decreased activation of Nrf2 due
to inflammatory cytokines and depression of anti-aging mechanisms participates in the
downregulation and loss of antioxidant defense in COPD and CVDs [33–36]. Moreover,
Nrf2 is downregulated by oxidative stress itself, initiating a vicious circle [37–39].

2.3. Sources of Oxidative Stress in COPD

In COPD development, exogenous radicals from cigarette and biomass smoke, air
pollution, and occupational exposure contribute substantially to the oxidative stress of small
molecules [2,40,41]. In addition, cigarette smoke can enhance NOX activity in lung tissue
and stimulate leukocyte migration [42,43]. Compared with non-smokers, the neutrophil
count in COPD patients is higher in BAL fluid and sputum and enhanced NOX activity can
be detected in circulating neutrophils [12,43]. Moreover, NOX4 was upregulated in COPD
patients’ airway smooth muscle cells, correlated with disease severity, and was associated
with pulmonary hypertension [43–46].

Furthermore, the increased oxidant burden causes the upregulation of antioxidant
genes that play protective roles. For example, the induction of the GSH gene increases the
accumulation of GSH in the epithelial lining fluid in the airspaces, which is important for
preventing oxidative injury [47,48]. Similarly, increased SOD and catalase activity have
been observed in the sputum of COPD patients during acute exacerbation [49]. On the
other hand, cigarette smoke exposure and long-term inflammation have been shown to
reduce the activity of antioxidant enzymes, such as catalase and superoxide dismutase,
contributing to the severe perturbation of oxidative balance in the lung tissue [50,51] (see
in details later).
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3. Oxidative Stress—A Link between COPD and Cardiovascular Comorbidities

COPD and CVDs share common pathophysiological mechanisms that involve systemic
inflammation, endothelial dysfunction, vascular inflammation and remodeling, alteration
in heart rate variability, and clotting abnormalities [6]. These underlying mechanisms (at
least in part) participate in the development of pulmonary arterial hypertension (PAH),
hypertension, accelerated atherosclerosis and its consequences, such as stroke, ischemic
heart disease and, in the long run, cardiac failure (Figure 2).
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Figure 2. The role of oxidative stress in the etiology of COPD and cardiovascular comorbidities. The
oxidative balance of the body is disturbed by risk factors resulting in inflammation, increased oxidative
burden and production of reactive oxygen radicals, and reduction in antioxidant defense mechanisms. The
consequential oxidative stress stimulates processes that lead to COPD and cardiovascular disorders. Abbre-
viations: ROS—reactive oxygen species; IL—interleukin; TNF—tumor necrosis factor; SOD—superoxide
dismutase; Nrf2—nuclear factor erythroid 2-related factor 2; FOXO1, FOXO3—forkhead box O1 and
O3; COPD—chronic obstructive pulmonary disease; ox-LDL—oxidized low-density lipoprotein;
PAH—pulmonary arterial hypertension.

3.1. COPD and Vascular Aging, Hypertension

Though widely debated, many experts view the development of COPD as a manifes-
tation of accelerated aging [52]. Indeed, a strong association between vascular aging and
COPD is well-established in the literature. COPD manifests as small airway obstruction
(chronic obstructive bronchiolitis) and emphysema. Pathologically, chronic inflamma-
tion and fibrosis of peripheral airways, increased mucus secretion, luminal accumulation,
and destruction of lung parenchyma and alveoli are typical alterations. These overlap-
ping phenotypes may manifest with varying severity and might dominate the clinical
picture of individual patients [52,53]. The aging vasculature is characterized by fibrotic
remodeling and thickening of the arterial wall, intima-media hyperplasia, and endothelial
dysfunction [39,54–56]. The aging arteries stiffen, and the consequential alteration in their
biomechanical properties is a critical factor in developing hypertension, one of the signifi-
cant CV comorbidities in COPD [54,57]. Early vascular aging is best detected by measuring
pulse wave velocity (PWV), as pulse propagation is typically faster in stiffer, aged arteries.
Numerous studies have found that PWV is abnormally high in COPD patients [58,59].
Arterial stiffness, as measured by PWV, was independently associated with the severity
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of emphysema [60] and airway obstruction [59,61–64]. Furthermore, it was established by
studying twins that the link between lung function and arterial stiffness is not genetically
determined. However, there is a phenotypic association between spirometric parameters
used to assess airway obstruction, such as forced vital capacity (FVC) and forced expiratory
volume in 1 s (FEV1), and augmentation index, a marker of pulse wave reflection point-
ing towards shared pathways of their co-development in COPD [65]. The observations
that arterial stiffness seems more severe in frequently exacerbating COPD patients and
to intensify acutely during exacerbation suggest a dynamic, reversible component of this
relationship that is not fully characterized [66]. COPD rehabilitation programs have been
shown to benefit arterial stiffness in a subpopulation of patients significantly but not in
general [67]. This observation is similar to those demonstrating that lung function values or
even regulatory molecules known as part of antioxidant defense cannot be improved much
by these programs despite their well-documented positive effects on the overall health
status of involved patients [68]. It is also worth mentioning that COPD often associates with
obstructive sleep apnea (OSA) [69]. OSA is widely recognized as a significant risk factor
for developing arterial hypertension and its complications [70]. Among the underlying
mechanisms, the contribution of hypoxic periods during sleep in OSA to oxidative stress
has the utmost relevance [71].

Among the common underlying mechanisms of vascular aging and COPD, persistent
systemic low-grade inflammation, oxidative stress (i.e., overproduction of reactive oxygen
species and decreased antioxidant capacity) and deterioration of anti-aging mechanisms
have critical relevance.

3.1.1. Oxidative Stress in COPD and Vascular Aging

Enhanced oxidative stress plays a significant role in COPD and vascular aging patho-
genesis. It is attributable to various pathophysiological mechanisms involving mitochon-
drial senescence, NADPH oxidase (NOX) overactivation, endothelial dysfunction, overacti-
vation of the tissue renin-angiotensin-aldosterone system (RAAS), and also to COPD-related
hypoxia [1,2,39,54–57,72].

The sources of oxidative stress are manifold in both conditions. Cigarette smoke
exposure, a significant risk factor in COPD and vascular aging, is a direct source of inhaled
oxidants and irritants that generate inflammation. In COPD, dysfunctional mitochondria
of structural cells (airway epithelium, fibroblasts), NADPH oxidases (NOX) of airway
epithelial cells, and myeloperoxidase enzymes of neutrophils and macrophages produce a
substantial amount of reactive oxygen species [1,2,26,52]. An increased ROS production by
mitochondria and NOX enzymes is also typical in the aging vasculature [54,73]. Inflam-
matory cytokines, adipokines, activation of endothelin1 and angiotensin1 receptors, and
dysfunctional NO synthase operation further aggravate oxidative stress by activating NOX
enzymes both in the vasculature and the lung [2,26,36,55,57,74,75].

Oxidative stress is further amplified by the decreased antioxidant capacity of the lung
and vascular tissue [39,55,56,75–77]. Reduced superoxide dismutase (SOD) activity has
been observed in relation to vascular aging [57,75,78]. Though acute exacerbations in COPD
are associated with increased extracellular SOD activity [49], altered SOD function due to
SOD2 and SOD3 gene polymorphism has been implicated in the etiology of COPD [79,80].
Lower antioxidant capacity is also reflected by lower circulating and cellular glutathione
concentrations in COPD and during vascular aging [39,81]. However, glutathione concen-
trations measured in BAL fluid and sputum are elevated in COPD [82]. In addition, the
transcription factor Nrf2 is downregulated and exhibits impaired activation in response to
oxidative stress [37–39]. This results in decreased expression of several antioxidant enzymes
in the lung and vascular tissue [33–36] and ROS production by NOX in the vasculature [37].
Catalase activity is reduced in COPD patients [83,84], and a decreased expression was
found in the bronchial epithelium [50].

In contrast, during acute exacerbation, enhanced catalase activity can be observed
in the sputum [49]. Decreased catalase activity has been linked to several age-related
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diseases, including cardiovascular disorders [32]. Concerning GPx activity, a decrease
was observed in erythrocytes [83,85–87], and blood and plasma samples [88–90] of COPD
sufferers. Aging and vascular abnormalities have also been related to depressed GPx
functioning by several studies [91–93]. Nitrative stress is also well-documented in COPD
and is further aggravated during exacerbations [94]. Defected heme-oxygenase-1 (HO-1)
signaling also contributes to decreased antioxidant and anti-inflammatory defense in lung
and cardiovascular diseases. HO-1 is an inducible stress protein implicated in chronic
airway inflammation [95]. The major activity of HO-1 is to eliminate the high oxidant-free
heme by converting it to biliverdin, ferrous iron and carbon monoxide. Its expression is
strongly influenced by Nrf2 [95].

3.1.2. The Consequences and Aggravators of Oxidative Stress

The consequences of oxidative stress include inflammation, disruption of anti-aging
processes and endothelial injury, which typically manifest in a systemic form in COPD.
Though oxidative burden is a key factor in igniting these processes, they also fuel and
aggravate oxidative stress by activating signaling pathways that induce ROS production
and/or downregulate antioxidant defense mechanisms.

Systemic inflammation. Oxidative stress induces redox-sensitive proinflammatory
signaling in various cell types. Increased generation of ROS species is associated with the
activation of proinflammatory transcription factors and proteins such as NF-κB, activator
protein 1, transforming growth factor-β (TGF-β), different isoforms of matrix metallopro-
teinases, p38MAPK both in the lung and vascular tissue. Activation of these pathways
results in the upregulation and release of inflammatory cytokines (i.e., TGF-β, TNF-α, IL-1,
IL-6), chemokines and adhesion molecules that perpetuate inflammation locally and sys-
temically [2,35,36,52,55,57,73–75,96]. In addition, local inflammation triggers maladaptive
remodeling. Activation of MMPs breaks down elastic fibers, and profibrotic processes
(activation of local RAAS and fibroblasts) operate to give rise to small airway fibrosis
and emphysema in the lung, and intima-media thickening and calcification in the arterial
wall [39,52,54,57,58,72,97].

Endothelial abnormalities. Endothelial injury and dysfunction are also obligate
consequences of long-term oxidative stress in the lung and vasculature and common
features of COPD and arterial aging [96]. The normal endothelium releases. NO, is
a gaseous signaling molecule which has beneficial effects on systemic and pulmonary
vasculature. It decreases vascular tone, has an antiproliferative impact on smooth muscle
cells, and inhibits platelet aggregation and the release of inflammatory mediators. In
oxidative stress, superoxide species react with NO to form peroxynitrite, a short-lived,
highly potent oxidant that induces cell injury and mediates proinflammatory processes [18].
In addition, in oxidative stress, tetrahydrobiopterin, a cofactor of NO synthase (NOS), gets
oxidized leading to NOS uncoupling. The uncoupled NOS produces superoxide instead of
NO, further exacerbating oxidative stress. As a result, the bioavailability of NO decreases
and its beneficial effects deteriorate [98,99].

Furthermore, NOS activity is reduced due to the accumulation of its endogenous
inhibitor, asymmetric dimethylarginine (ADMA) [100]. Elevated plasma ADMA levels
have been associated with endothelial dysfunctions and cardiovascular diseases, includ-
ing ischemic stroke, pulmonary hypertension, and heart failure [101]. In addition, the
bioavailability of NO is further aggravated by the upregulation of arginase, the enzyme
that cleaves l-arginine, the precursor of NO [102]. Elevation of arginase activity reduces
the availability of l-arginine to NOS, which can reduce NO formation, uncouple NOS, and
increase peroxynitrite production contributing to airway hypercontractility and vascular
remodeling [100,103–105]. Moreover, NOS expression and activity are directly reduced
by cigarette smoke exposure, oxidative stress, and inflammatory processes [99,106,107].
Besides uncoupled eNOS, activation of xanthine oxidase and NADH/NADPH oxidase
pathways by ROS and RNS contained in cigarette smoke and generated by inflammatory
cells makes endothelial cells an important source of further ROS production [18].
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Oxidative stress contributes to endothelial dysfunction also by inducing increases
in lipid peroxidation [108,109] and AGE-RAGE activation [110]. In addition, decreased
antioxidant capacity in the lung tissue (Nrf2 downregulation in epithelial cells [111,112]),
the direct toxic effect of cigarette smoke exposure (by stimulating endothelial cell apopto-
sis) [113,114], and endothelial cell senescence induced by oxidative stress and smoking also
may play a role in the pathogenesis of endothelial dysfunction [96].

As a result of endothelial derangement, proliferative and fibrotic processes domi-
nate vascular homeostasis and vascular contractility increases. Endothelial injury has
been reported to affect the etiology of various COPD-related vascular disorders, such as
pulmonary arterial hypertension, hypertension, renal dysfunction, and venous throm-
boembolism [96,99]. The damaged endothelium is a critical factor in developing CVD
complications and promotes the progression of emphysema. Several human and animal
model studies provided evidence for a link between endothelial damage and emphy-
sema [96,115]. Moreover, a model study with rats showed that treatment with vascular
endothelial growth factor (VEGF—a trophic factor promoting endothelial cell survival)
inhibitors initiated emphysema development without inflammation [116]. However, stim-
ulators of soluble guanylate cyclase (a target enzyme of NO in smooth muscle cells) in
a rodent model exposed to cigarette smoke were beneficial for pulmonary vascular re-
modeling and prevented emphysema progression [117]. Another potential link between
emphysema and endothelial dysfunction in COPD might be the aberrant purinergic signal-
ing and elevated pulmonary ATP levels with plausible interactions with ongoing oxidative
stress [118–120].

Accelerated aging. Oxidative stress contributes to the development of COPD and
related CV disorders by weakening and disrupting certain anti-aging processes, such as
sirtuin activity and balance of the Klotho protein—fibroblast growth factor (FGF) 23 system,
and also by aggravating processes that stimulate cellular senescence, such as telomere
shortening and adverse epigenetic modifications. Sirtuins (SIRTs) are enzymes of the silent
information regulator 2 (Sir2) class III deacetylase family. As their activity is regulated by
NAD+, they are highly redox-sensitive. They participate in biological processes, which
include cellular response mechanisms against a wide range of stressors. SIRTs modu-
late transcription, cell growth, oxidative stress-tolerance and metabolism and thereby
help to alleviate aging-related mitochondrial dysfunction, genomic instability, and inflam-
mation [121,122]. Among the seven mammalian sirtuins, SIRT1 and SIRT6 have been
implicated to have protective effects against COPD. SIRT1 and SIRT6 are downregulated
by cigarette smoke exposure and in the lungs of COPD patients [123–125]. SIRT1 is known
to deactivate redox-sensitive transcription factor NF-κB by deacetylating its RelA/p65
subunit [126]. NF-κB stimulates the transcription of proinflammatory genes (e.g., IL-8, IL6,
TNFα) [126]. Therefore, reduced levels of SIRT1 enhance the proinflammatory effects of
oxidative stress and contribute to the pathogenesis of COPD. Lower SIRT1 activity may
participate in COPD development by promoting senescence in different cell types of the
lung tissue, as SIRT1 is also known to deacetylate p53 and negatively regulate the forkhead
box O3 (FOXO3) pathway that is involved in the transcription of genes responsible for
cellular senescence [127,128]. SIRT6 has also been shown to have effects which may be
protective against COPD by antagonizing the senescence of human bronchial epithelial
cells [129].

Impaired sirtuin activity also plays a crucial role in aging-associated vascular remodel-
ing [39,55,56,130]. SIRT1 is highly expressed in endothelial cells, and it directly activates
eNOS in the cytoplasm and increases eNOS expression. By inhibiting p53, forkhead box O1
(FOXO1) [131], and plasminogen activator inhibitor-1 pathways [132], it protects against
endothelial senescence. Acting in vascular smooth muscle cells inhibits migration and
proliferation, tunica media remodeling, and protects against DNA damage, neointima for-
mation and atherosclerosis [133–135]. SIRT6 inhibits proprotein convertase subtilisin/kexin
type 9 (PCSK9) and insulin-like growth factor (IGF)-Akt signaling in the vasculature,
thereby reducing senescence and protecting against vascular aging [39,130].
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The FGF23—α Klotho (KL) system has emerged as an endocrine axis essential for
maintaining phosphate homeostasis. FGF23 is a bone-derived hormone, and its binding
to its FGF receptor in the kidney and parathyroid gland requires KL as an obligate co-
receptor [136]. KL is a transmembrane protein, but it also occurs in a soluble form in the
blood produced by either alternative splicing or proteolytic cleavage [137,138]. KL has been
attributed to anti-inflammatory and anti-senescence effects [136]. In addition, the Klotho
protein protects cells and tissues from oxidative stress. The mechanisms include activating
FOXO transcription factors and the NF-κB and Nrf2 pathways [139–141]. Transgenic
mice are deficient in Klotho exhibit phosphate retention, accelerated aging, and lung
emphysema [142]. Therefore, it has been postulated that Klotho is protective against COPD
development. Despite this, studies investigating the association between KL and COPD
are scarce in the literature, and the findings are controversial. Gao et al. found that KL
expression was decreased in the lungs of smokers and further reduced in patients with
COPD [139].

Moreover, they found that KL depletion increased cell sensitivity to cigarette smoke-
induced inflammation and oxidative stress-induced cell damage in a mouse model. In the
blood, a slightly lower KL level was measured by Patel et al. in COPD patients [143], while
Pako et al. detected decreased KL levels in OSA [144]. However, other studies found that
plasma KL levels did not correlate with clinical parameters in stable COPD patients [145],
and their levels were not affected by pulmonary rehabilitation [68].

The FGF 23—KL axis has also been shown to be associated with cardiovascular
health [146]. Several studies have found an inverse relationship between KL concentrations
and the likelihood of having CVD [147,148]. Arking et al. identified a KL gene variant
(KL-VS) which conferred cardioprotective advantages on heterozygous subjects concerning
high-density lipoprotein cholesterol levels, systolic blood pressure, stroke, and longevity.
Interestingly, they found that homozygosity for KL-VS is disadvantageous compared to
wild-type genetic background [149]. Using mouse models, Hu et al. proved an associa-
tion between KL levels and vascular calcification. They found that overexpression was
protective, whereas KL deficiency promoted calcium deposition in the vessel wall [150].
KL deficiency was also found to participate in the development of salt-sensitive hyper-
tension through vascular non-canonical Wnt5a/RhoA activation [151]. The significant
cardioprotective effect of KL may be the suppression of inflammation and oxidative stress
in vascular smooth muscle (VSMC) and endothelial cells. KL inhibits phosphate entry in
VSMCs through the PiT1 carrier, which is known to stimulate the production of ROS. In
addition, KL inhibits sodium overload-induced ROS production in endothelial cells [152].

Telomere shortening and epigenetic modifications of the DNA are hallmarks of aging,
and both are accelerated by oxidative stress [153,154]. Oxidative stress and inflammation
influence the cell’s epigenetic machinery, from DNA and histones to histone modifiers
resulting in adverse modifications, such as hydroxylation of pyrimidines and impaired
DNA demethylation [154]. Enhanced tissue and leukocyte telomere shortening and vari-
ous epigenetic modifications be associated with the development of COPD and vascular
remodeling [56,155–157].

Alfa-1 antitrypsin deficiency. Alfa-1 antitrypsin deficiency (A1ATD) is a hereditary
disease that is the consequence of the genetic mutations of the SERPINA1 gene and pre-
disposes homozygous and heterozygous subjects to the development of emphysema and
liver disease. Although it is considered a rare disease, several authors have proposed
that it might not be rare but severely underdiagnosed [158]. The genetic disorder leads
to the accumulation of misfolded proteins in α1-antitrypsin producing cells, mainly in
hepatocytes and, to a lesser extent, in lung epithelial cells. The main function of alfa-1
antitrypsin is to antagonize neutrophil elastase activity, but it also operates as an acute
phase protein with anti-inflammatory effects. In its absence, the degradation of elastin
fibers and extracellular tissue matrix in the lung overactivates upon activation of neutrophil
cells and promotes the development and progression of emphysema [159,160]. In addition,
the additive effect of cigarette smoke exposure multiplies the risk of emphysema.
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The effect of A1ATD on the cardiovascular system is also manifold but controversial.
The degradation of elastic elements in the vessel wall impairs its physiological distensibility.
As a result, arterial compliance increases and the Windkessel function gets compromised.
A recent study of 91,353 subjects has shown that this decreases systolic and diastolic
blood pressure values [161]. Losing elastic properties can also lead to aorta distension
and aneurysms [162,163]. In addition, the absence or lower level of alfa-1 antitrypsin
is associated with inflammatory vascular diseases such as fibromuscular dysplasia and
ANCA-positive vasculitis [164,165].

Several studies in animal models and humans indicate that AA1TD is associated with
enhanced oxidative stress and decreased antioxidant defense even at early stages of disease
progression [166–169].

3.2. COPD and Pulmonary Arterial Hypertension (PAH)

Pulmonary arterial hypertension and consequential right heart failure are common car-
diovascular complications in COPD. The prevalence of PAH is 5% in moderate (GOLD stage
II), 27% in severe (GOLD stage III), and 53% in very severe (GOLD stage IV) COPD [170].
As the diagnostic criterion for PAH is mean pulmonary arterial pressure ≥25 mmHg
at rest, these statistics reflect an advanced stage of pulmonary circulation abnormality.
Several studies on animal models as well as human studies, however, have shown that
pulmonary vascular changes occur in mild COP, or even before the development of lung
emphysema [171–173]. Moreover, right ventricular dysfunction and remodeling have been
observed in COPD patients without PAH [174,175].

Vascular changes in COPD are characterized by remodeling the pulmonary vessels and
endothelial dysfunction [176,177]. In addition, vascular derangement in emphysema may
also contribute to the pathogenesis of PAH [176]. Pulmonary arterial remodeling affects
mainly the intimal layer. Intimal hyperplasia develops due to the proliferation of poorly
differentiated smooth muscle cells and extracellular matrix deposition [9,178]. In addition,
pulmonary arterial stiffening increases right ventricular afterload and the pulsatile load
on the pulmonary microcirculation [177]. The latter induces endothelial dysfunction and
inflammation in the distal pulmonary vasculature [179,180].

Pulmonary endothelial dysfunction is an early injury in PAH development and has
similar mechanisms and consequences as in systemic circulation (see above). It is charac-
terized by reduced expression of eNOS, diminished production of NO and prostacyclin,
increased secretion of endothelin, and expression of TGFβ receptors. These alterations
promote vasoconstriction and contribute to pulmonary vascular remodeling.

Several underlying factors have been identified that precipitate vascular changes in
COPD-related PAH, such as hypoxia, activation of sympathetic nerves, cigarette smoking,
biomass smoke exposure, and epithelial cell injury [176]. Hypoxia is a well-established
cause of pulmonary vascular remodeling and PAH. However, its role in COPD-related PAH
is debated, as vascular abnormalities are present even in patients with mild COPD and
without hypoxemia [176]. Acting on smooth muscle cells, endothelial cells and fibroblasts,
hypoxia can induce cell proliferation by inhibiting antimitogenic and stimulating mitogenic
stimuli and increasing the production of inflammatory mediators. [181] A key factor linking
hypoxia to the activation of these pathways and oxidative stress is the hypoxia-inducible
factor 1 (HIF-1) [182], the serum level of which is elevated in COPD patients [183,184].
COPD is also associated with increased sympathetic tone and activation of the renin-
angiotensin-aldosterone system. This neurohormonal imbalance favors increased oxidative
stress and activation of inflammatory and fibrogenic responses, which lead to adverse
remodeling in the heart and vasculature [185]. Cigarette smoke and biomass smoke stim-
ulate vascular remodeling by direct toxic effects on the endothelial cells by enhancing
gene expression and release of inflammatory cytokines locally and systemically [186,187],
downregulating eNOS [188] and inducing oxidative and nitrative stress [2,96,176]. In
addition, injured bronchial epithelial cells in COPD are considered to orchestrate many
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immune and inflammatory processes in COPD pathogenesis, also contributing to vascular
remodeling [189,190].

3.3. COPD and Accelerated Atherosclerosis

Atherosclerosis is the leading cause of stroke, coronary heart disease and peripheral
arterial disease, which are responsible for a high percentage of mortality in COPD patients.
COPD and atherosclerosis share several common risk factors and underlying mechanisms,
such as cigarette smoking, sedentary lifestyle, oxidative stress, endothelial dysfunction,
high blood pressure and adverse platelet activation [4,11]. In addition, several studies
indicate that the severity of COPD and airflow limitation correlate with the severity of
atherosclerotic disease [191,192].

Indeed, several pathophysiological mechanisms observed in COPD participate in the
progression of atherosclerosis [10]. The impaired endothelial function has relevance at the
early stages of plaque formation, as the inflammatory profile of the injured endothelium
enhances the secretion of adhesion molecules, increases the permeability of the endothelial
barrier, and aids the recruitment of inflammatory immune cells to the lesion [193]. In addi-
tion, systemic inflammation and increased oxidative stress can fuel plaque development
by aggravating local inflammatory processes in vulnerable sites of the arterial tree and
promoting the oxidization of low-density lipoprotein particles [10,194–196].

3.4. COPD and Cardiac Diseases

COPD often associates with various abnormalities of cardiac function that lead to
heart failure (HF). The prevalence of HF in COPD ranges from 7–42% [8]. The effect of PAH
on right ventricular function is well documented. The increased afterload of the right heart
initiates maladaptive remodeling processes, and right heart failure develops [177,197]. The
early signs of right ventricular dysfunction begin to develop at the early stages of PAH
progression, even when pulmonary arterial pressures are in the normal range, but signs of
pulmonary vascular derangement are already present [174,175,198]. COPD exacerbations
impose an additional load on the heart due to hypoxic pulmonary vasoconstriction and
hyperinflation of the lung [199,200]. Maladaptive alteration in the right heart also led to
dilatation and electrical remodeling of the right atrium and ventricle, which increases the
risk of cardiac arrhythmias [197,201].

Abnormal lung function in COPD also affects the function of the left heart. Emphysema-
related hyperinflation of the lung and depressed right ventricular function impairs left
ventricular filling and reduces cardiac output [197,202]. Hypoxemia observed in more
severe COPD and during exacerbations can increase the risk of cardiac ischemia, and
due to altered repolarization, the risk of ventricular arrhythmias and sudden cardiac
death [199,201,203]. In addition, cardiac ischemia exposes the heart to oxidative stress that
causes derangements in cardiomyocyte homeostasis, such as disturbed calcium handling
and lipid signaling [204–206]. Cardiac dysfunction further aggravates tissue hypoxia that
perpetuates systemic oxidative stress.

COPD-related systemic inflammation, oxidative stress and accelerated cardiovascular
aging can directly act on the ventricular muscle and activate signaling pathways leading to
maladaptive remodeling and HF [197,207]. In addition, arterial stiffness and hypertension
developing in COPD increases left ventricular load and impairs ventriculo-arterial coupling,
which also contributes to the development of HF [208]. Accelerated atherosclerosis and
endothelial dysfunction increase the occurrence of coronary heart disease (CHD), too.
Indeed, approximately 15% of COPD patients also suffer from concomitant CHD [209,210].

4. Biomarkers of Oxidative Stress in COPD and Cardiovascular Diseases
4.1. Biological Biomarkers

A multitude of studies is available in the literature that addressed characterize systemic
and local oxidative stress in association with COPD and various forms of cardiovascular
diseases [1,2,211–213]. In addition, several biomarkers of oxidative stress are available in
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the blood, tissues, and other biological samples, such as exhaled breath condensate and
sputum [1,211,214]. However, the direct measurement of ROS production is challenging
because of the short half-life of reactive oxidants. Therefore, it is more feasible to assess
oxidative stress by measuring oxidation target products, such as lipid peroxidation end
products and oxidized proteins, as well as the activities of enzymes of the oxidant and
antioxidant pathways [215].

Regarding COPD, circulating biomarkers have been widely assessed to correlate with
disease and disease severity. These studies relate the systemic manifestation of oxidative
stress to COPD rather than local oxidative stress of the lungs. However, samples obtained
directly from the respiratory system, such as exhaled breath condensate and sputum,
are more informative about the local oxidative burden [1,211]. Table 1 summarizes the
biological samples and biomarkers used for evaluating oxidative stress in COPD. Among
these, the measurement of a lipid peroxidation product, malondialdehyde (MDA) level,
and its reaction with thiobutyric acid to obtain thiobutyric acid reactive substances (TBARS)
is the most frequently applied approach to assess oxidative damage. The elevation of MDA
in COPD is the most consistent finding among studies which relate oxidative stress to
COPD [76,83,86,89,90,216–230]. Measurement of protein and non-protein thiols in various
biological samples is also an comprehensive tool to evaluate ROS activity. Thiols undergo
oxidation in the presence of ROS, constituting an essential component of the intra- and
extracellular antioxidant defense system. Therefore, the level and ratio of reduced and
oxidized thiols can characterize the oxidative state of the body. In COPD, glutathione (GSH)
and its oxidized products are widely used markers of oxidative stress (Table 1) [1,213].
Assessment of antioxidant pathways in COPD has been undertaken by measuring the
total antioxidant capacity and enzymatic antioxidant activity of SOD, CAT and GPx. Most
studies found decreased antioxidant activity, especially when circulating markers were
measured [83,86,88–90,216,228,230–233]. However, higher CAT and SOD activity in sputum
was found in exacerbated COPD, most probably due to compensatory response during
infectious inflammation [49]. In addition, protein oxidation products, lipid peroxidation
products of membrane lipids and phospholipids (hexanal, heptanal, nonanal, acrolein,
8-isoprostane), as well as markers of inflammatory processes induced by oxidative stress,
such as leukotrienes can also be used to characterize oxidative burden in COPD (for selected
studies see Table 1) [1,213].

Oxidative stress in cardiovascular diseases can also be assessed by measurement of
circulating blood biomarkers similar to COPD. In addition, the measurement of fluorescent
oxidation products (FlOPs), as a stable biomarker of global oxidative damage reflecting
oxidation of lipids, proteins, DNA, and carbohydrates, has been used to assess oxidative
stress in various CVDs [234–237], and may also be of growing interest in respiratory
disorders [238,239]. However, the evaluation of local oxidative stress in the heart and
vasculature has limited relevance due to the limited availability of tissue samples. The wide
literature on oxidative stress in cardiovascular diseases (including reports on human and
animal studies) also shows increased oxidant and decreased antioxidant activity in various
disease conditions, including hypertension, atherosclerosis, vascular aging, ischemic heart,
and cerebral diseases [39,55,57,74,75,77,212]. Interestingly, in atherosclerotic conditions,
several studies have shown increased antioxidant activity using blood markers, which
may show the compensatory upregulation of antioxidant defense mechanisms in this
condition [240–242]. The findings of selected representative studies are summarized in
Table 2.

4.2. Heart Rate Variability—A Potential Non-Conventional Biomarker of Oxidative Stress in
COPD and CVD

Impaired autonomic control is a shared characteristic of COPD and cardiovascular
diseases and is also associated with inflammation and oxidative stress [243–245]. The
strong association between bronchial and cardiac vagal tone is also established in the
literature [246]. Autonomic dysfunction can be detected by alterations in heart rate variabil-
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ity (HRV). HRV describes the fluctuation in the time interval between heartbeats brought
about by oscillating regulatory mechanisms which affect heart rate mainly by modifying the
balance of sympathetic and parasympathetic effects on the heart. Numerous parameters—
time-domain, frequency-domain and non-linear HRV indices, can be used to characterize
the HRV complexly. These parameters are calculated by defining interbeat intervals from
continuous ECG recordings obtained over a specified period (2 min to 24 h). High HRV
generally represents better body resilience to physiological and pathological challenges
and is associated with better health and cardiovascular status [247,248].

In COPD, decreased HRV has been detected in several studies. Moreover, depressed
HRV is related to the risk of exacerbations [249–251]. Although cardiovascular diseases are
also associated with decreased HRV, alterations of certain HRV indices have been proposed
to be applicable for assessing prognosis in post-infarction patients and in patients with
congestive heart failure [252–255]. Not surprisingly, several studies also found a correlation
between HRV depression and oxidative stress [256–258]. These observations suggest that
HRV parameters could be used as a non-invasive biomarker of oxidative stress in COPD
and CVDs. However, this requires further extensive research. The rationale for the idea is
that parameters similar to HRV indices can be obtained from peripheral arterial pulse wave
recordings, which are extensively available for analysis, as a wide variety of smart wearable
accessories are equipped with photoplethysmographic detectors capable of capturing pulse
wave signals [259].
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Table 1. Biomarkers of systemic and local oxidative stress in COPD. Representative studies reporting the association of oxidative stress biomarkers in various
biological samples with COPD. Abbreviations: GSH—reduced glutathione, SOD—superoxide dismutase, CAT—catalase, GPx—glutathion peroxidase, MDA—
malondialdehyde, AOPP—advanced oxidation protein products, LTB4—leukotriene B4. ↓: decrease in level/activity;→: unchanged level; ↑: increased level/activity.

Sample Biomarker Finding Reference

Blood (systemic oxidative stress)
erythrocytes reduced GSH ↓ in COPD patients (n = 236) vs controls (n = 150) and correlates with disease severity—all patients are smokers or ex-smokers [216]

↓ in stable COPD patients (n = 41) vs. controls (n = 30); and further decreased in exacerbated COPD (n = 21)—varying smoking status [218]
SOD activity ↓ in COPD patients (n = 140) vs. healthy controls (n = 75)—varying smoking status [83]

↓ in COPD patients (n = 234) vs. healthy controls (n = 182)—varying smoking status [233]
↓ in COPD patients (n = 82) vs. non-smoking healthy controls (n = 22) [86]
↓ in stable COPD patients (n = 21) vs. non-smoking healthy controls (n = 24) [88]

CAT activity ↓ in COPD patients (n = 236) vs controls (n = 150) and correlates with disease severity—all patients are smokers or ex-smokers [216]
↓ in COPD patients (n = 140) vs. healthy controls (n = 75)—varying smoking status [83]
→ comparable in COPD patients (n = 82) and non-smoking healthy controls (n = 22) [86]

GPx activity ↓ in COPD patients (n = 236) vs. controls (n = 150)—all patients are smokers or ex-smokers [216]
↓ in COPD patients (n = 140) vs. healthy controls (n = 75)—varying smoking status [83]
↓ in COPD patients (n = 82) vs. non-smoking healthy controls (n = 22) [86]
↓ in COPD patients (n = 20) vs. healthy controls (n = 50)—varying smoking status [232]

plasma MDA ↑ in COPD patients (n = 236) vs. controls (n = 150)—and correlates with disease severity. All patients are smokers or ex-smokers [216]
↑ in stable COPD patients (n = 41) vs. controls (n = 30); and further decreased in exacerbated COPD (n = 21)—varying smoking status [218]
↑ in COPD patients (n = 140) vs. healthy controls (n = 75)—varying smoking status [83]
↑ in COPD patients (n = 82) vs. non-smoking healthy controls (n = 22) [86]
↑ in COPD patients (n = 20) vs. healthy controls (n = 50)—varying smoking status [232]
↑ in COPD patients (n = 100) vs. controls (n = 100)—varying smoking status [221]
↑ in COPD patients (n = 100) vs. controls (n = 100)—varying smoking status [222]
↑ in healthy smokers (n = 30) and in patients with stable (n = 7) and exacerbated COPD (n = 31) than in healthy non-smokers (n = 30) [223]
↑ in COPD patients (n = 106) vs. controls (n = 45)—varying smoking status [225]
↑ in COPD patients exposed to wood smoke (n = 30) and tobacco smoking (n = 30) vs. healthy controls (n = 30) [226]
↑ in COPD patients (n = 815) vs. controls (n = 530)—varying smoking status—meta-analysis [227]
↑ in severe COPD patients (n = 74) vs. controls (n = 41)—varying smoking status [228]
↑ in COPD patients (n = 26) vs. controls (n = 28) –smoking status n.a. [229]
↑ in smoker COPD patients (n = 202) vs. smoker controls without COPD (n = 136) [89,230]
↑ in patients with exacerbated (n = 43) and stable (n = 35), and in healthy smokers (n = 14) vs. healthy non-smokers (n = 14) [90]
→ comparable in ex-smoker COPD patients (n = 11) and non-smoking healthy controls (n = 12), exercise induces increase only in COPD [260]
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Table 1. Cont.

Sample Biomarker Finding Reference

AOPP ↑ in severe COPD patients (n = 74) vs. controls (n = 41)—varying smoking status [228]
reduced GSH ↓ in COPD patients (n = 20) vs. healthy controls (n = 50)—varying smoking status [232]

↓ in chronic smokers with stable COPD (n = 20) and without COPD (n = 20) vs. healthy non-smokers (n = 20) [261]
↓ in smoker COPD patients (n = 202) vs. smoker controls without COPD (n = 136) [89,230]
↓ in patients with exacerbated (n = 43) and stable (n = 35), and in healthy smokers (n = 14) vs. healthy non-smokers (n = 14) [90]

SOD activity ↓ in severe COPD patients (n = 74) vs. controls (n = 41)—varying smoking status [228]
↓ in patients with exacerbated (n = 43) and stable (n = 35), and in healthy smokers (n = 14) vs. healthy non-smokers (n = 14) [90]
↓ in patients with stable COPD (n = 96) vs. controls without COPD (n = 96)—varying smoking status [231]

CAT activity ↓ in smoker COPD patients (n = 202) vs. smoker controls without COPD (n = 136) [89,230]
→ comparable in patients with stable COPD (n = 96) and without COPD (n = 96)—varying smoking status [231]

GPx activity ↓ in smoker COPD patients (n = 202) vs. smoker controls without COPD (n = 136) [89,230]
↓ in patients with exacerbated (n = 43) and stable (n = 35), and in healthy smokers (n = 14) vs. healthy non-smokers (n = 14) [90]
↓ in COPD patients (n = 82) vs. non-smoking healthy controls (n = 22) [86]

whole blood total glutathione ↑ in COPD patients (n = 140) vs. healthy controls (n = 75)—varying smoking status [83,86]
↑ in COPD patients (n = 82) vs. non-smoking healthy controls (n = 22) [86]

GPx activity ↓ in stable COPD patients (n = 21) vs. non-smoking healthy controls (n = 24) [88]

Exhaled air (systemic/local oxidative stress)
CO ↑ in ex-smokers with COPD (n = 15) and in smokers with COPD (n = 15) vs. non-smoking healthy controls (n = 10) [262]
ethane ↑ COPD (n = 12) vs. healthy (n = 14) (all ex-smokers) [263]

Exhaled breath condensate (systemic/local oxidative stress)
hexanal,
heptanal,
nonanal

↑ in patients with stable COPD (n = 20) vs. non-smoking healthy subjects (n = 20), but not vs. smoking controls (n = 12) [220]

↑ in patients with COPD (n = 11; smokers and ex-smokers) vs. non-smoking controls (n = 9) [219]
MDA ↑ in patients with stable COPD (n = 20) vs. non-smoking healthy subjects (n = 20), and also vs. smoking controls (n = 12) [220]

↑ in patients with COPD (n = 11; smokers and ex-smokers) vs. non-smoking controls (n = 9) [219]
↑ in patients with COPD (n = 73) vs. healthy non-smokers (n = 14); an inverse correlation between MDA concentrations and FEV1(%) was
found [217]

→ comparable values in patients with exacerbated COPD (n = 34), stable COPD (n = 21) and healthy controls (n = 20)—all ex-smokers [76]
↑ in patients with COPD (n = 53) vs. healthy (n = 10); MDA correlates with disease severity—all patients were retired coal miners with
varying smoking status [224]

H2O2 ↑ in patients with COPD (n = 30) vs. healthy (n = 10) and increases with disease severity—all smokers [264]
↑ in patients with stable COPD (n = 12) and with exacerbated COPD (n = 19) (smokers and ex-smokers) vs. healthy never-smokers (n = 10) [265]
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Table 1. Cont.

Sample Biomarker Finding Reference

pH ↓ in COPD exacerbation vs. recovery (n = 29)—current and ex-smokers [266]
Condensate pH remained unchanged during COPD exacerbation, both in smokers (n = 21) and ex-smokers (n = 17) [267]

nitrotyrosine ↑ in patients with COPD (n = 53) vs. healthy (n = 10)—patients were retired coalminers with varying smoking status [224]
8-isoprotane ↑ in exacerbating COPD patients (n = 21) and fell after treatment with antibiotics [268]

↑ in patients with COPD (n = 30) vs. healthy (n = 10)—all smokers [264]
LTB4 ↑ in exacerbating COPD patients (n = 21) and fell after treatment with antibiotics [268]

↑ in steroid naïve (n = 20) and steroid treated patients with COPD (n = 25) compared to control subjects (n = 15)—all ex-smokers [269]

Sputum (local oxidative stress)
hexanal,
heptanal,
nonanal

↑ in patients with COPD (n = 11; smokers and ex-smokers) vs. non-smoking controls (n = 9) [219]

MDA ↑ in patients with stable COPD (n = 21) vs. healthy controls (n = 20); increased further iv exacerbated COPD patients and decreased during
recovery (n = 34)—all ex-smokers [76]

↑ in patients with COPD (n = 11; smokers and ex-smokers) vs. non-smoking controls (n = 9) [219]

SOD SOD activity was comparable between stable COPD patients and (n = 24) and healthy controls (n = 23); but it increased in COPD
exacerbation (n = 36)—all patients were ex-smokers [49]

CAT CAT activity was comparable between stable COPD patients and (n = 24) and healthy controls (n = 23); but it increased in COPD
exacerbation (n = 36)—all patients were ex-smokers [49]
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Table 2. Circulating biomarkers in cardiovascular diseases. Selected studies show the associa-
tion between blood biomarkers of oxidative stress and various cardiovascular disease conditions.
Abbreviations: CV—cardiovascular, GSH—reduced glutathione, CAD—coronary artery disease,
SOD—superoxide dismutase, BMI—body mass index, IHD—ischemic heart disease, CAT—catalase,
GPx—glutathione peroxidase, ox-LDL—oxidized low-density lipoprotein, TIA—transient ischemic
attack, FlOPs—fluorescent oxidation products, CHD—coronary heart disease. ↓: decrease in
level/activity; ↑: increased level/activity.

Biomarker CV Disease Finding Reference

Reduced GSH Atherosclerosis, arterial aging lower GSH is a predictor of intima/media thickness [270,271]

Hypertension ↑ GSH increased glutathione-related antioxidant
defense in treated hypertensives [272]

CAD ↓ in angiographically proven CAD [240]

SOD activity Arterial aging negatively correlated with systolic and diastolic
blood pressure, low serum SOD activity is an
independent predictor of carotid intima/media
thickening

[273]

Hypertension ↓ in hypertensive patients regardless of BMI [274]
IHD, CAD ↑ in angiographically proven CAD and IHD [240–242]

CAT activity Hypertension ↓ in hypertensive patients regardless of BMI [274]
IHD ↑ in men with IHD [242]

GPx activity Atherosclerosis ↓ in prevalent atherosclerosis and lower values are
associated with an increased risk of future
cardiovascular events

[275]

Hypertension lower levels associated with high blood pressure in
black women [276]

IHD ↓ in men with IHD [242]

any cardiovascular events lower GPx is associated with a higher risk of
CV events [277]

MDA Atherosclerosis, arterial aging ↑ with carotid intima/media thickening [271]
Hypertension ↑ in untreated hypertension [278,279]
CAD ↑ in angiographically proven CAD [240]

ox-LDL Atherosclerosis, arterial aging ↑ associated with carotid intima/media thickening,
and higher arterial stiffness [271,280]

Hypertension ↑ in hypertensive men and prehypertensive subjects
of both genders [281,282]

CAD
↑ ox-LDL associated with CAD, with the severity of
CAD and was found to be prognostic for
CAD events

[283–286]

Stroke
higher values are associated with cerebrovascular
events and increased risk of recurrent stroke in
TIA patients

[287–289]

FlOPS CHD an independent predictor of CHD events in men [236]
higher levels associated with the risk of
CHD in women [235]

5. Conclusions and Future Perspectives

The pathogenesis of COPD and its most frequent cardiovascular comorbidities is
linked via shared genetic, environmental and lifestyle risk factors and numerous patho-
physiological processes, including systemic inflammation, endothelial dysfunction, and
accelerated aging. Many of these are strongly related to oxidative stress in a complex
manner. On the one hand, they are activated by exogenous and endogenous oxidative
radicals. On the other, they impose a further oxidative burden on the body by inducing
ROS production and weakening antioxidant defense mechanisms. As oxidative stress is
a common mechanism driving and perpetuating COPD and coexisting CVD progression
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that can be monitored successfully by several biological and other potential physiological
biomarkers, therapeutic approaches to restore oxidative balance have been the focus of
extensive research in the last few decades. Strategies to influence oxidative balance with
dietary supplementation and drugs targeted at different oxidative stress pathways have
been extensively reviewed recently [2,290]. Though there are promising observations with
dietary supplementation of antioxidants such as vitamin C, vitamin E, resveratrol and
flavonoids and with the application of thiol-based antioxidants, such as N-acetylcysteine
and carbocysteine, the exact place of these treatments in COPD and CVD prevention and
therapy is still not established [2,291]. There are also attempts to normalize oxidative
balance with antioxidant mimetics (SOD, catalase, GPx), NOX and MPO inhibitors, and
Nrf2 activators, but their application is in the phase of preclinical and clinical studies [2].
The antioxidant capacity of the body can also be influenced positively by supporting anti-
aging processes. Indeed, activation of SIRTs with NAD+ precursor supplementation has
been shown to benefit the respiratory and cardiovascular systems [292–296]. Also, there is
evidence to show the potential benefit of Klotho treatment/supplementation [297,298]. For
completeness, physical activity and pulmonary rehabilitation should not be excluded from
the possible therapeutic approaches to restore redox status. Exercise enhances antioxidant
response, decreases age-related oxidative stress, improves endothelial function, and reduces
inflammatory and oxidative signaling, thereby protecting cardiovascular health [299,300].
Pulmonary rehabilitation has also benefited redox responses in COPD patients [301–303].
As restoration of oxidative balance is a preventive/therapeutic approach which could fa-
vorably influence the underlying processes driving COPD and CVD development, studies
to understand better signaling pathways that orchestrate the derangement of oxidative-
antioxidative balance are essential to establish antioxidant therapy in COPD patients.
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