



# Effects of Dietary Nitrate Supplementation on Performance during Single and Repeated Bouts of Short-Duration High-Intensity Exercise: A Systematic Review and Meta-Analysis of Randomised Controlled Trials

Nehal S. Alsharif<sup>1,2</sup>, Tom Clifford<sup>1</sup>, Abrar Alhebshi<sup>1,3</sup>, Samantha N. Rowland<sup>1</sup> and Stephen J. Bailey<sup>1,\*</sup>

- <sup>1</sup> School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK; n.alsharif@lboro.ac.uk (N.S.A.); t.clifford@lboro.ac.uk (T.C.); a.alhebshi@lboro.ac.uk (A.A.); s.rowland@lboro.ac.uk (S.N.R.)
- <sup>2</sup> Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- <sup>3</sup> Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia
- \* Correspondence: s.bailey2@lboro.ac.uk

Abstract: Inorganic nitrate (NO<sub>3</sub><sup>-</sup>) has emerged as a potential ergogenic aid over the last couple of decades. While recent systematic reviews and meta-analyses have suggested some small positive effects of NO<sub>3</sub><sup>-</sup> supplementation on performance across a range of exercise tasks, the effect of NO<sub>3</sub><sup>-</sup> supplementation on performance during single and repeated bouts of short-duration, high-intensity exercise is unclear. This review was conducted following PRISMA guidelines. MEDLINE and SPORTDiscus were searched from inception to January 2023. A paired analysis model for cross-over trials was incorporated to perform a random effects meta-analysis for each performance outcome and to generate standardized mean differences (SMD) between the NO<sub>3</sub><sup>-</sup> and placebo supplementation conditions. The systematic review and meta-analysis included 27 and 23 studies, respectively. Time to reach peak power (SMD: 0.75, *p* = 0.02), mean power output (SMD: 0.20, *p* = 0.02), and total distance covered in the Yo-Yo intermittent recovery level 1 test (SMD: 0.17, *p* < 0.0001) were all improved after NO<sub>3</sub><sup>-</sup> supplementation. Dietary NO<sub>3</sub><sup>-</sup> supplementation had small positive effects on some performance outcomes during single and repeated bouts of high-intensity exercise. Therefore, athletes competing in sports requiring single or repeated bouts of high-intensity exercise may benefit from NO<sub>3</sub><sup>-</sup> supplementation.

Keywords: nitric oxide; beetroot; exercise performance

# 1. Introduction

Inorganic nitrate (NO<sub>3</sub><sup>-</sup>) has been conventionally considered an environmental carcinogen and inert end-product of endogenous nitric oxide (NO) oxidation [1]. More recent research challenges these assertions and has revealed various potential health benefits afforded by increased dietary NO<sub>3</sub><sup>-</sup> intake [2]. Over the last couple of decades, dietary NO<sub>3</sub><sup>-</sup> supplementation has emerged as a potential nutritional strategy to improve exercise performance in healthy and moderately trained individuals [3,4]. The ergogenic effects of NO<sub>3</sub><sup>-</sup> supplementation have been attributed to its stepwise reduction to nitrite (NO<sub>2</sub><sup>-</sup>) and the subsequent reduction of NO<sub>2</sub><sup>-</sup> to NO [2,5]. Although initially recognised for its vasodilatory properties [6], it is now appreciated that NO can positively modulate a plethora of physiological responses in skeletal muscle [7–9], the conflation of which is likely to underpin improved exercise performance following dietary NO<sub>3</sub><sup>-</sup> supplementation [5].

Initial studies assessing the potential efficacy of NO<sub>3</sub><sup>-</sup> supplementation to enhance physiological and performance responses during exercise revealed improvements in exer-



Citation: Alsharif, N.S.; Clifford, T.; Alhebshi, A.; Rowland, S.N.; Bailey, S.J. Effects of Dietary Nitrate Supplementation on Performance during Single and Repeated Bouts of Short-Duration High-Intensity Exercise: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. *Antioxidants* 2023, 12, 1194. https://doi.org/10.3390/ antiox12061194

Academic Editor: Reto Asmis

Received: 13 May 2023 Revised: 25 May 2023 Accepted: 27 May 2023 Published: 31 May 2023



**Copyright:** © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).



cise economy and exercise tolerance [10-12]. These improvements in endurance exercise performance parameters after NO<sub>3</sub><sup>-</sup> supplementation were initially linked to a lower adenosine triphosphate (ATP) cost of muscle force production (improved contractile efficiency), an associated blunting in the perturbation to high-energy phosphate substrates and metabolites [13], and to a lower mitochondrial adenosine diphosphate/oxygen ratio (P/O ratio; a lower O<sub>2</sub> cost of ATP resynthesis), reflecting improved mitochondrial respiratory efficiency [14]. However, the mechanisms by which NO<sub>3</sub><sup>-</sup> supplementation can improve exercise economy and endurance exercise performance are still to be resolved in human skeletal muscle [15,16].

Following on from the initial human studies, experiments conducted using murine models indicated potential fibre-type-specific effects of NO<sub>3</sub><sup>-</sup> supplementation on physiological responses [17]. Indeed,  $NO_3^-$  supplementation was initially reported to increase calcium ( $Ca^{2+}$ ) handling proteins and evoked force production in type II skeletal muscle, but not slow-twitch (type I) skeletal muscle, in mice [18]. Subsequently,  $NO_3^-$  supplementation increased hindlimb blood flow in exercising rats, with this additional blood flow shunted towards more fast-twitch (type II) muscle fibres [19]. The potential for enhanced efficacy of  $NO_3^-$  supplementation to improve physiological and performance responses in murine type II muscle is consistent with data from human studies demonstrating enhanced pulmonary  $O_2$  uptake (VO<sub>2</sub>) and muscle deoxyhaemoglobin + deoxymyoglobin kinetics in exercise settings that evoke greater type II muscle fibre recruitment compared to exercise settings that evoke mostly type I muscle fibre recruitment [20]. Moreover, cross-sectional data have revealed that  $NO_3^-$  supplementation is less likely to improve exercise economy and endurance performance as aerobic fitness increases [21], an effect that has been attributed, at least in part, to a lower % and proportional recruitment of type II muscle fibres in endurance-trained participants with a more aerobic phenotype [22]. On this basis,  $NO_3^$ supplementation may have greater potential as an ergogenic aid in exercise settings which evoke greater type II muscle fibre recruitment.

It is well documented that type II skeletal muscle fibres are recruited in an intensitydependent manner, with greater recruitment of type II muscle fibres at higher exercise intensities [23–25]. In addition, the reduction of  $NO_2^-$  to NO is enhanced in conditions of acidosis and hypoxia [26–28]. The partial pressures of  $O_2$  (PO<sub>2</sub>) and pH are lower in contracting type II than type I muscles [29,30] and progressively decline with increasing exercise intensity [31]. Therefore, high-intensity exercise, which is supramaximal with regards to the power output required to elicit VO<sub>2max</sub>, and evokes significant recruitment of type II muscle fibres and declines in muscle pH and PO<sub>2</sub>, appears to have greater potential to elicit an ergogenic effect from NO<sub>3</sub><sup>-</sup> supplementation compared to continuous submaximal endurance exercise. There is also evidence to suggest that  $NO_3^-$  supplementation is more effective at improving physiological and functional responses at higher, compared to lower, movement velocities [32,33]. In addition, NO<sub>3</sub><sup>-</sup> supplementation has been reported to increase the peak contractile velocity of, and power output generated by, contracting skeletal muscle [33,34], and to lower the time taken to achieve peak power output [35,36]. Collectively, these improvements in skeletal muscle contractile function after  $NO_3^-$  supplementation would be expected to translate into enhanced single and repeated sprint performances. However, whilst there is some evidence to support an ergogenic effect of NO<sub>3</sub><sup>-</sup> supplementation on single and repeated bouts of short-duration large muscle mass exercise in humans (e.g., [37,38]), the existing evidence basis is equivocal (e.g., [39-41]). In part, these interstudy discrepancies may be attributable to disparate NO<sub>3</sub><sup>-</sup> supplementation and high-intensity exercise protocols, which complicates interpretation of the ergogenic potential of  $NO_3^-$  supplementation for high-intensity exercise.

Although the effects of  $NO_3^-$  supplementation on performance in a variety of exercise performance tests have been systematically reviewed and have undergone meta-analyses before [42–48], these have not yet considered the effects of  $NO_3^-$  supplementation on single and repeated bouts of short-duration large muscle mass exercise in humans. This is important to address to help improve understanding of the exercise settings in which  $NO_3^-$ 

supplementation is ergogenic and to inform recommendations for NO<sub>3</sub><sup>-</sup> supplementation to improve exercise performance. Therefore, the purpose of this study was to conduct a systematic review and meta-analysis of the effects of NO<sub>3</sub><sup>-</sup> supplementation on single and repeated bouts of short-duration large muscle mass exercise in healthy humans. A secondary purpose was to conduct sub-analyses to evaluate the influence of the NO<sub>3</sub><sup>-</sup> supplementation dose and duration, participant sex, exercise type (single vs. repeated sprints), exercise duration, and plasma NO<sub>3</sub><sup>-</sup> and NO<sub>2</sub><sup>-</sup> concentrations ([NO<sub>3</sub><sup>-</sup>] and [NO<sub>2</sub><sup>-</sup>], respectively) to further refine understanding of the experimental conditions in which NO<sub>3</sub><sup>-</sup> supplementation is more likely to enhance single and repeated bouts of short-duration large muscle mass exercise.

## 2. Materials and Methods

This systematic review and meta-analysis was reported according to Preferred Reporting items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines [49]. The study protocol was registered with the Center for Open Science organisation (registration number: 10.17605/OSF.IO/JSGKM).

## 2.1. Inclusion and Exclusion Criteria

Three researchers (N.S.A., S.J.B., and T.C.) agreed on the inclusion and exclusion criteria. These were based on a Population, Intervention, Comparator, Outcome, Study design (PICOS) methodology (see Online Supplementary Material). Briefly, studies were included if they met the following criteria: (1) participants were healthy adults  $\geq 16$  years old; (2) they administered oral inorganic NO<sub>3</sub><sup>-</sup> supplements such as beetroot juice or sodium/potassium NO<sub>3</sub><sup>-</sup> salts and provided information about the dose, frequency, and duration of supplementation; (3) they included exercise that recruited a large muscle mass such as running, cycling, and kayaking; (4) the exercise test included  $\geq 1$  high-intensity effort ( $\geq$ VO<sub>2peak</sub>), with each effort  $\leq 60$  s; (5) they measured performance as completion time, total distance covered, maximal or mean power output, total work performed, or maximal number of repetitions. Studies were excluded if participants were <16 years old or had a chronic medical condition; NO<sub>3</sub><sup>-</sup> was administered with another dietary supplement; there was insufficient information about the dose, frequency, and duration of supplementation; exercise was submaximal ( $\leq$ VO<sub>2max</sub>) or if any single effort was  $\geq 60$  s; and if exercise was performed in hypoxic or hot conditions.

## 2.2. Search Strategy

We searched Medline and SPORT discus databases for English language papers from inception to January 2023. Our search strategy was based on our PICOS methodology and the full search terms for both databases are presented in the Online Supplementary Material. The reference lists of eligible full text articles were also searched to identify any other potential studies for inclusion.

## 2.3. Study Selection

The search results were downloaded into Rayyan software, a web tool for screening abstracts [50]. After removing duplicates, two researchers (N.S.A. and S.N.R.) independently screened titles and abstracts for inclusion. Full texts of studies deemed eligible were retrieved and compared against the predefined PICOS criteria. Where there was disagreement on whether a study should be included or excluded from the systematic review and meta-analysis, this was discussed with, and resolved by, a third researcher (S.J.B.). The study selection process is summarised in Figure 1.



**Figure 1.** Preferred reporting items for systematic review and meta-analysis PRISMA flow diagram for study selection process. Nitrate; NO<sub>3</sub><sup>-</sup>.

#### 2.4. Data Extraction

Data were extracted into a Microsoft Excel Spreadsheet by one researcher (N.S.A.) and substantiated by a second researcher (S.N.R.). The spreadsheet was designed and trialled by three authors (N.S.A., T.C., and S.J.B.) and refined prior to extraction. The following data and information were extracted: study design, sample size, participant characteristics (age, training status,  $VO_{2peak/max}$ ), supplementation protocol (type, dose, frequency, duration, timing of last dose relative to exercise onset, total exposure, placebo, and washout period between trials), exercise protocol (mode, intensity, duration, recovery between bouts, and number of repetitions), and mean  $\pm$  SD of relevant outcomes, including the mean of all peak power outputs (PP), PP during the first sprint (PP<sub>First</sub>), PP during the last sprint (PP<sub>Last</sub>), time to reach PP (PP<sub>Time</sub>), mean power output from all repetitions (MP), MP during the first sprint (MP<sub>First</sub>), MP during the last sprint (MP<sub>Last</sub>), minimum power (P<sub>Min</sub>), total work performed in repeated cycling efforts (TWD), and total distance covered in the Yo-Yo IR1 running test (TDC). When standard error of the mean (SEM) was reported, SD was calculated as SD = SEM  $\times \sqrt{n}$ , where *n* represents the sample size. Authors of studies included in the meta-analysis were contacted to retrieve individual participants' data for the calculation of pooled SD and correlation coefficient. For 15 studies, data for individual participants were provided [35–38,41,51–60]. The correlation coefficient (Corr) was imputed for the studies with available individual participant data using the following formula:

$$Corr = SD_E^2 + SD_C^2 - SD_{diff}^2 / 2 \times SD_E \times SD_C$$

where:

Corr = correlation,  $SD_E$  = standard deviation for the  $NO_3^-$  trial,  $SD_C$  = standard deviation for the placebo trial,  $SD_{diff}$  = the difference between the standard deviation for the  $NO_3^-$  trial and standard deviation for the placebo trial.

Subsequently, the standard error of the SMD (SE(SMD)) was calculated using the formula:

$$SE(SMD) = \sqrt{1/n} + SMD^2/2n \times \sqrt{2(1 - Corr)},$$

where:

SE(SMD) = the standard error for the standardised mean difference, n = sample size, and Corr = correlation coefficient.

For the remaining studies (n = 10) [34,39,61–67], Corr was estimated as the average Corr from the studies in which individual data were available.

## 2.5. Quality Assessment

Risk of bias of included studies was assessed using the Revised Cochrane Collaboration risk of bias tool (ROB2) for crossover trials [68], which assesses studies based on five specific domains: (1) randomisation process; (2) deviations from the intended outcome; (3) missing outcome data; (4) measurement of the outcome; and (5) selection of the reported results. This was performed on the Cochrane excel tool available at https://www.riskofbias.info (accessed on 31 January 2022), which allows an entry for each domain in a risk of bias table rated as "low risk", "some concerns", or "high risk". Two researchers (N.S.A., and A.A.) independently evaluated the risk of bias for each study and any discrepancies were resolved through discussion. As previously recommended [69], funnel plot asymmetry was visually inspected to assess publication bias for meta-analyses that included  $\geq 10$  studies.

#### 2.6. Statistical Analysis

Quantitative synthesis was only performed if  $\geq 2$  studies measured the same outcome. The meta-analysis was conducted using RevMan 5.4v [70]. A separate meta-analysis was performed for each of the following continuous outcomes: PP, PP<sub>First</sub>, PP<sub>Last</sub>, MP, MP<sub>First</sub>, MP<sub>Last</sub>, PP<sub>Time</sub>, TWD, and TDC. Data are presented as forest plots with 95% confidence intervals. Due to significant between-study heterogeneity, effect sizes were calculated with an inverse variance random-effects model using the DerSimonian-Laird method [71]. Effect sizes were interpreted according to Cohen's guidelines where an SMD of 0.2, 0.5, and 0.8, respectively, reflect small, medium, and large effects [72]. Heterogeneity was assessed using the Chi<sup>2</sup> and I<sup>2</sup> statistics. A value of  $p \le 0.10$  on the Chi<sup>2</sup> test was considered significant. The  $I^2$  was interpreted as follows: <25%, low risk; 25–75%, moderate risk; and >75% high risk [69]. Additionally, forest plots were visually inspected to check for observable differences in study results. A sensitivity analysis was conducted by using a correlation coefficient of 0.5 for all studies [73], removing studies that had a high risk of bias for at least one domain, and those with elite endurance athletes, as previous studies have reported that dietary  $NO_3^-$  supplementation is less effective in this population [60,63]. For sub-group analysis, the influence of the  $NO_3^-$  supplementation dose (<8 mmol vs.  $\geq$ 8 mmol) and duration (single day vs. multiple days supplementation), exercise type (single vs. repeated sprints), and exercise duration ( $\leq 15$  s vs. > 15 s  $-\leq 30$  s) were assessed. Due to the low number of studies that measured plasma  $[NO_3^-]$  and  $[NO_2^-]$  and included female participants, a sub-group analysis on the influence of plasma  $[NO_3^-]$  and  $[NO_2^-]$ and biological sex could not be performed. Studies recruiting well-trained endurance athletes were omitted from sub-group analyses on the basis that this population group does not exhibit an ergogenic effect after  $NO_3^-$  supplementation [60,63]. Statistical significance was accepted at p < 0.05.

#### 3. Results

A total of 1538 articles were retrieved from the two databases; after duplicates were removed, 1328 articles remained. No studies were identified through searching the reference lists of included studies. Following initial screening of titles and abstracts, thirty-two

full-text articles were retrieved, of which five were excluded for failing to meet the inclusion criteria. Twenty-seven studies were identified as eligible for the systematic review and twenty-five for the meta-analysis. Results of the search strategy are presented in Figure 1.

## 3.1. Study Characteristics

Table 1 provides a summary of the studies included in the systematic review and metaanalysis. All studies employed a randomised, double (*n* = 23) [34–41,51,53–57,59–62,64,66,67,74,75] or single (n = 4) [52,58,63,65] blind, placebo controlled, crossover design. Studies were published between 2013 and 2022. The sample size varied between studies (range: 7-52 participants). Participants' ages ranged from 17 to 31 years. Participant training status was described as healthy or recreationally active (n = 4) [39,52,57,65], competing at a recreational or amateur standard (*n* = 18) [35–38,40,41,51,54–56,58,59,61,62,66,67,74,75], highly competitive (n = 5) [34,36,40,53,64], or elite (n = 3) [36,60,63]. Participants were involved in different types of sports, including team sports (*n* = 13) [34,37,38,41,51,52,55,56,62,65,66,74,75], cycling (n = 3) [34,36,60], resistance training (n = 4) [35,54,57,67], tennis (n = 2) [34,40], mixed martial arts (n = 1) [64], kayaking (n = 1) [53], speed skating (n = 1) [36], CrossFit (n = 1) [59], and sprinting (n = 1) [61]. The dose, duration, and type of NO<sub>3</sub><sup>-</sup> supplementation varied between studies.  $NO_3^-$  supplementation was administered as beetroot juice (n = 24) [34–41,51,53–58,60–66,74,75], potassium NO<sub>3</sub><sup>-</sup> (n = 1) [59], pomegranate extract (n = 1) [67], or as a high NO<sub>3</sub><sup>-</sup> diet (n = 1) [52]. The dose of NO<sub>3</sub><sup>-</sup> supplementation ranged from 4.8 to 16.4 mmol/day (mean; 8.5 mmol/day). Fifteen studies administered  $NO_3^-$  supplementation as a single dose 2.5-3 h before exercise [34,35,39,40,53,54,56,57,61,62,64,66,67,74,75] and twelve studies as repeated doses over 2–7 days [36–38,41,51,52,55,58–60,63,65]. In these latter studies, the last dose was administered 40-180 min before (n = 11) [36–38,41,51,52,55,58,60,63,65] or  $\geq$ 24 h before exercise (n = 1) [59]. Total NO<sub>3</sub><sup>-</sup> exposure in all studies ranged between 4.8 and 77.4 mmol. Most of the included studies recruited exclusively male participants (n = 22) [35,37–41,51–65,75], four studies recruited male and female participants [34,36,66,67], and one study recruited only female participants [74]. Of the 410 participants included in the review, 354 participants (86%) were reported as male, with 56 participants (14%) reported as female. The most frequent modality of exercise was cycling (n = 19) [34–36,39,41,51,52,54,56–61,63–67], followed by running (n = 7) [37,38,40,55,62,74,75] and kayaking (n = 1) [53]. Studies used different exercise protocols to assess performance: repeated all-out sprints with a fixed number of repetitions (*n* = 13) [34,36,39,41,51–53,56,60,64,67,74,75], high-intensity intervals (n = 3) [63,65,66], the 30 s Wingate test (n = 7) [34–36,54,57,59,61], and the Yo-Yo intermittent recovery level 1 test (Yo-Yo IR1) (n = 4) [37,38,55,62]. Different assessment methods were used to evaluate exercise performance, with each study measuring 1–4 performance variables. Performance variables included PP (n = 11) [34,35,41,54,56–60,64,66], PP during a single sprint (*n* = 7) [36,39,52,53,60,64,67], time to reach PP (*n* = 4) [35,36,54,57], MP (n = 13) [35,41,54,56–61,63–66], MP during a single sprint (n = 11) [36,39,41,54,56–58,60,61,64,67], TWD (*n* = 6) [34,51,56,61,65,66], minimum power (*n* = 3) [35,54,57], optimal pedalling cadence (n = 1) [34], number of completed repetitions (n = 3) [63,65,66], TDC (n = 4) [37,38,55,62], sprint time (n = 3) [40,74,75], best sprint time (n = 2) [74,75], slowest sprint time (n = 1) [75], and fatigue index (n = 6) [34,53,54,57,58,64]. Of the twenty-seven studies included, only eight studies measured plasma  $[NO_3^-]$  and  $[NO_2^-]$  [36–38,51–53,55,65], two studies measured only plasma  $[NO_3^{-}]$  [74,75], and one study only measured plasma  $[NO_2^{-}]$  [41].

| Study                               |               | Participants                                                                                                                              |                                     |                           | Supplem                          | entation Proto | col                  |                              |                                                                         |                                                       |                                                                         |
|-------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------|----------------------------------|----------------|----------------------|------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------|
|                                     | No.<br>(♂, ♀) | Health/Training<br>Status                                                                                                                 | Age (Years)                         | Type/Volume               | NO <sub>3</sub> – Dose<br>(mmol) | Duration       | Time<br>before Trial | Placebo                      | Exercise Protocol                                                       | Performance<br>Variables                              | Results                                                                 |
| Aucouturier<br>et al. (2015) [65]   | 17 ď          | Healthy, active in team sports                                                                                                            | $23\pm3$                            | BR juice/500 mL           | 10.9                             | 3 D            | 3 h                  | Apple-black<br>currant juice | 15 s cycling at 170% of MAP<br>to exhaustion, interspersed<br>with 30 s | MP, TWD, reps,<br>exercise<br>duration                | ND in MP, improved<br>TWD, reps and exercise<br>duration                |
| Bender et al.<br>(2018) [39]        | 16 đ          | Healthy,<br>recreationally active                                                                                                         | $17 \pm 1$                          | BR shot/2 $\times$ 70 mL  | 12.9                             | Single D       | 3 h                  | NR-depleted<br>BR shot       | $4 \times 20$ s all-out WAnT, interspersed with 240 s                   | PP, MP                                                | ND in PP and MP                                                         |
| Bernardi et al.<br>(2018) [64]      | 10 đ          | Well-trained mixed martial arts athletes                                                                                                  | $25\pm5$                            | BR juice/400 mL           | 9.3                              | Single D       | 2 h                  | Black current<br>juice       | $20 \times 6$ s all-out cycling interspersed with 24 s                  | PP, MP, FI                                            | ND in PP, MP, and FI                                                    |
| Buck et al. (2015)<br>[74]          | 13 <b>♀</b>   | Team sport players                                                                                                                        | $26\pm2$                            | BR shot/1 $\times$ 70 mL  | 6                                | Single D       | 3 h                  | NR-depleted<br>BR shot       | 6 × 20 m all-out effort<br>running, interspersed with<br>25 s recovery  | ST, best ST                                           | ND in ST and best ST                                                    |
| Christensen et al.<br>(2013) [60]   | 10 đ          | Elite cyclists                                                                                                                            | $29\pm4$                            | BR juice/500 mL           | 8                                | 4 D            | 3 h                  | Apple-black<br>currant juice | $6 \times 20$ s cycling at 0.75 N/kg,<br>interspersed with 100 s        | PP, MP                                                | ND in PP and MP                                                         |
| Corry et al.<br>(2015) [58]         | 10 đ          | Recreationally active                                                                                                                     | $20\pm1$                            | BR shot/2 $\times$ 70 mL  | 8                                | 2 D            | 40 min               | Black current<br>juice       | 30 s all-out WanT                                                       | PP, MP, FI                                            | Improved MP, ND in<br>PP and FI                                         |
| Cuenca et al.<br>(2018) [54]        | 15 đ          | Resistance trained                                                                                                                        | $22\pm2$                            | BR shot/1 $\times$ 70 mL  | 6                                | Single D       | 3 h                  | NR-depleted<br>BR juice      | 30 s all-out WAnT                                                       | PP, MP, PP <sub>Time</sub> ,<br>P <sub>Min</sub> , FI | Improved PP, MP and<br>PP <sub>Time</sub> , ND in FI                    |
| Domínguez et al.<br>(2017) [57]     | 15 đ          | Healthy trained                                                                                                                           | $22\pm2$                            | BR shot/1 $\times$ 70 mL  | 5.6                              | Single D       | 3 h                  | NR-depleted<br>BR juice      | 30 s all-out WAnT                                                       | PP, MP, PP <sub>Time</sub> ,<br>P <sub>Min</sub> , FI | Improved PP and MP,<br>ND in PP <sub>Time</sub> , P <sub>Min</sub> , FI |
| Dumar et al.<br>(2021) [61]         | 10 đ          | National level sprinters                                                                                                                  | $20.3\pm2$                          | BR shot/1 $\times$ 70 mL  | 6.4                              | Single D       | 2 h                  | Black current<br>juice       | $3 \times 15$ s all-out WAnT                                            | MP and TWD                                            | Improved MP and<br>TWD                                                  |
| Esen et al. (2022)<br>[62]          | 12 d'         | Recreational active                                                                                                                       | $27\pm10$                           | BR shot/1 $\times$ 140 mL | 12.8                             | Single D       | 3 h                  | BR shot/1 ×<br>70 mL         | Yo-Yo IR1 test                                                          | TDC                                                   | Longer TDC                                                              |
| Jodra et al.<br>(2020) [35]         | 15 ở          | Resistance trained                                                                                                                        | $23\pm2$                            | BR shot/1 $\times$ 70 mL  | 6.4                              | Single D       | 2.5-3 h              | NR-depleted<br>BR juice      | 30 s all-out WAnT                                                       | PP, MP,<br>PP <sub>Time</sub> ,P <sub>Min</sub>       | Improved PP and $PP_{Time}$ , ND in MP and $P_{Min}$                    |
| Jonvik et al.<br>(2018) [36]        | 29 ਰਾ<br>23 ਦ | Recreational cyclists<br>( $n = 20$ ), national<br>talent speed skaters<br>( $n = 23$ ), Olympic-<br>level track cyclists<br>( $n = 10$ ) | $\sigma^{n}$ = 22 ± 5<br>♀ = 26 ± 8 | BR shot/2 $\times$ 70 mL  | 12.9                             | 6 D            | 3 h                  | NR-depleted<br>BR juice      | 3 × 30 s all-out WAnT<br>interspersed with 240 s<br>recovery            | PP, MP, PPTime                                        | ND in PP and MP,<br>improved PPTime                                     |
| Kramer et al.<br>(2016) [59]        | 12 d'         | CrossFit athletes                                                                                                                         | $23\pm5$                            | KNR/2 capsules            | 8                                | 6 D            | ≥24 h                | KCL capsules                 | 30 s all-out WAnT                                                       | PP, MP                                                | Improved PP, ND in<br>MP                                                |
| López-Samanes<br>et al. (2020) [40] | 13 đ          | Highly competitive tennis players                                                                                                         | $25\pm5$                            | BR shot/1 $\times$ 70 mL  | 6.4                              | Single D       | 3 h                  | NR-depleted<br>BR juice      | 10 m Sprint                                                             | ST                                                    | ND in ST                                                                |
| Martin et al.<br>(2014) [66]        | 9 ♂<br>7 ♀    | Moderately trained team sport athletes                                                                                                    | ♂= 22 ± 2<br>♀= 21 ± 1              | BR shot/1 $\times$ 70 mL  | 4.8                              | Single D       | 2 h                  | NR-depleted<br>BR shot       | 8 s high intensity cycling to<br>exhaustion interspersed<br>with 30 s   | PP, MP, TWD, no<br>of reps                            | ND in PP, MP, TWD, no<br>of reps                                        |

**Table 1.** Summary of studies included in the systematic review and meta-analysis that examined the effects of nitrate supplementation on exercise performance during single and repeated bouts of short duration high-intensity exercise.

Table 1. Cont.

| Study                                    | Participants Supplementation Protocol |                                                   |                |                                                              |                                  |          |                      |                                  |                                                                                                                                                                                     |                                                              |                                                                                                                         |
|------------------------------------------|---------------------------------------|---------------------------------------------------|----------------|--------------------------------------------------------------|----------------------------------|----------|----------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                                          | No.<br>(♂, ♀)                         | Health/Training<br>Status                         | Age<br>(Years) | Type/Volume                                                  | NO <sub>3</sub> – Dose<br>(mmol) | Duration | Time<br>before Trial | Placebo                          | Exercise Protocol                                                                                                                                                                   | Performance<br>Variables                                     | Results                                                                                                                 |
| Muggeridge<br>et al. (2013) [53]         | 8 ೆ                                   | Trained kayakers                                  | $31\pm15$      | BR shot/1 $\times$ 70 mL                                     | 5                                | Single D | 3 h                  | Tomato juice                     | $5 \times 10$ s maximum effort<br>kayaking, interspersed with 50 s<br>recovery                                                                                                      | PP, FI                                                       | ND in PP and FI                                                                                                         |
| Nyakayiru et al.<br>(2017) [55]          | 32 đ                                  | Soccer players                                    | $23\pm1$       | BR shot/2 $\times$ 70 mL                                     | 12.9                             | 6 D      | 3 h                  | NR-depleted BR<br>shot           | Yo-Yo IR1 test                                                                                                                                                                      | TDC                                                          | Longer TDC                                                                                                              |
| Pawlak-<br>Chaouch et al.<br>(2019) [63] | 11 đ                                  | Elite endurance<br>athletes                       | $22\pm4$       | BR juice/500 mL                                              | 5.5                              | 3 D      | 3 h                  | Apple-black<br>currant juice     | 15 s cycling at 170% of MAP to exhaustion interspersed with 30 s                                                                                                                    | MP, TWD and no of reps                                       | ND in MP, TWD and no<br>of reps                                                                                         |
| Porcelli et al.<br>(2016) [52]           | 7 ീ                                   | Healthy<br>recreationally<br>active               | $25\pm2$       | High NR diet                                                 | 8.2                              | 6 D      | 3 h                  | Control diet<br>~2.9 mmol NR/day | $5 \times 6$ s all-out cycling, interspersed with 24 s recovery                                                                                                                     | PP                                                           | Improved PP                                                                                                             |
| Reynolds et al.<br>(2020) [75]           | 16 đ                                  | Team sport<br>athletes                            | $21\pm2$       | BR shot/1 $\times$ 70 mL                                     | 6                                | Single D | 3 h                  | NR-depleted BR<br>shot           | $10 \times 40$ m all-out running interspersed with 30 s recovery                                                                                                                    | ST, fastest ST,<br>slowest ST                                | ND in ST, fastest ST<br>and slowest ST                                                                                  |
| Rimer et al.<br>(2017) [34]              | 11 ♂<br>2 ♀                           | Competitively<br>trained athletes                 | $26\pm 8$      | BR shot/2 $\times$ 70 mL                                     | 11.2                             | Single D | 2.5 h                | NR-depleted BR<br>shot           | $4 \times 3$ -4 s all-out cycling<br>interspersed with 120 s. Followed<br>by 30 s WAnT after 300 s rest.                                                                            | PP, TW, optimal pedalling rate, FI                           | Improved PP and<br>optimal pedalling rate<br>during 4 × 3–4 s test.<br>ND in PP, TW, and FI<br>during 30 s Wingate test |
| Roelofs et al.<br>(2017) [67]            | 10 ♂<br>11 ♀                          | Recreationally resistance-trained                 | $22\pm2$       | Pomegranate<br>extract/capsule                               | 6.8                              | Single D | -                    | Maltodextrin<br>capsule          | $10 \times 6  s$ all-out, interspersed with $30  s$                                                                                                                                 | PP, MP                                                       | Improved PP and MP                                                                                                      |
| Smith et al.<br>(2019) [56]              | 12 ở                                  | Recreationally<br>trained, team sport<br>athletes | $22\pm4$       | BR shot/1 $\times$ 70 mL                                     | 6.2                              | Single D | 2.5 h                | NR-depleted BR<br>shot           | 2 halves of 20 $\times$ 6 s all out cycling interspersed with 114 s recovery                                                                                                        | PP, MP, TWD                                                  | ND in PP, MP, TW                                                                                                        |
| Thompson et al.<br>(2016)<br>[37]        | 32 đ                                  | Team-sport players                                | $24\pm4$       | BR shot/1 $\times$ 70 mL                                     | 6.4                              | 5 D      | 2.5 h                | NR-depleted BR<br>shot           | Yo-Yo IR1                                                                                                                                                                           | TDC, 20 m sprint<br>time, 5, 10, 5–10,<br>10–20 m split time | Longer TDC, improved<br>5, 10, 5–10 m split time,<br>ND in 10-20 m split time                                           |
| Thompson et al.<br>(2015) [51]           | 16 đ                                  | Recreational team-sport players                   | $24\pm 5$      | BR shot/2 $\times$ 70 mL                                     | 12.8                             | 7 D      | 2.5 h                | NR-depleted BR<br>shot           | 2 halves of $20 \times 6$ s all out cycling interspersed with 114 s recovery                                                                                                        | TWD                                                          | Improved TWD                                                                                                            |
| Wylie et al.<br>(2016) [41]              | 10 ്                                  | Recreational<br>team-sport players                | $21\pm1$       | BR shot/2 $\times$ 70 mL                                     | 8.2                              | 3 D      | 2.5 h                | NR-depleted BR<br>shot           | D3: $24 \times 6$ s all out cycling<br>interspersed with $24$ s<br>D4: $7 \times 30$ s all-out cycling<br>interspersed with $240$ s<br>D5: $6 \times 60$ s interspersed with $60$ s | PP, MP                                                       | Improved PP and MP<br>during $24 \times 6$ s. ND in<br>PP and MP during<br>$7 \times 30$ s and $6 \times 60$ s          |
| Wylie et al.<br>(2013) [38]              | 14 đ                                  | Recreational<br>team-sport players                | $22\pm2$       | Day 1, BR shot/<br>4 × 70 mL<br>Day 2, BR shot/<br>3 × 70 mL | D1:16.4<br>D2:12. 3              | 2 D      | 1.5 h                | NR-depleted BR<br>shot           | Yo-Yo IR1                                                                                                                                                                           | TDC                                                          | Longer TDC                                                                                                              |

NR, nitrate; BR, beetroot; PL, placebo; PP, peak power; PP<sub>Time</sub>, time to peak power; MP, mean power output; P<sub>Min</sub>, minimum power; TWD, total work done; TDC, total distance covered; ST; sprint time; TT; time trial; reps, number of repetitions; FI, fatigue index; MAP, maximal aerobic power, HI, high intensity; Yo-Yo IR1; Yo-Yo intermittent recovery level 1 test; WANT. Wingate anaerobic test; resistance, kg; kilograms; D, day; h, hour; s, second; min, minutes; ND, no difference; KNR, potassium nitrate; KCL, potassium chloride; -, no information provided; no., number of participants;  $\sigma$ , male biological sex;  $\rho$ , female biological sex.

#### 3.2. Quality Assessment

Five studies had a low risk of bias in the overall bias domain [34,39,54,59,67], fifteen studies had some concerns [35,37,38,40,41,51,53,55,56,61,62,64,66,74,75], and seven studies had a high risk of bias [36,52,57,58,60,63,65]. Seven studies had a low risk of bias in the randomisation process [34,36,39,54,59,63,67] and the remaining twenty studies had some concerns [35,37,38,40,41,51–53,55–58,60–62,64–66,74,75]. All studies had a low risk of bias for bias arising from period and carryover effects [34-41,51-67,74,75]. Twenty-five studies had low risk of bias [34–41,51–57,59–64,66,67,74,75], one study had a low risk of bias [58], and one study had some concerns [65] in the deviation from the intended intervention domain. For missing outcome data, twenty-five studies had a low risk of bias [34,35,37–41,51–59,61–67,74,75] and two studies had a high risk [36,60]. In the measurement of the outcome domain, six studies had a high risk of bias [52,57,58,60,63,65] and the remaining twenty-one had a low risk of bias [34-41,51,53-56,59,61,62,64,66,67,74,75]. One study had a low risk of bias [57] and twentysix studies had some concerns [34-41,51-56,58-67,74,75] in the selection of reported results domain. A summary of risk of bias for crossover trials is presented in Figure 2 and a risk of bias assessment for individual studies is presented in Figure S1 in the online Supplementary Materials. Funnel plots suggest little evidence of publication bias, as presented in the online Supplementary Materials (Figures S2-S5).



**Figure 2.** Summary risk of bias graph for crossover trials evaluating the effects of nitrate supplementation on different performance outcomes during single and repeated bouts of short-duration high-intensity exercise.

#### 3.3. Meta-Analysis

3.3.1. Time to Reach Peak Power

NO<sub>3</sub><sup>-</sup> supplementation lowered PP<sub>Time</sub> compared to placebo (SMD: 0.75, 95% CI: -1.38 to 0.11, p = 0.02) (Figure 3). There was a high risk of statistical heterogeneity between studies (Chi<sup>2</sup> = 23.29; I<sup>2</sup> = 87%, p < 0.0001). Removing a study with a high risk of bias [57] did not remove statistical heterogeneity but slightly changed the pooled SMD (SMD: 0.88, 95% CI: -1.90 to 0.13, p = 0.09).





#### 3.3.2. Peak Power

There was no difference between dietary NO<sub>3</sub><sup>-</sup> and placebo supplementation in PP (SMD: 0.01, 95% CI: -0.06 to 0.08, p = 0.75) (Figure S6a), PP<sub>First</sub> (SMD: 0.05, 95% CI: -0.05 to 0.15, p = 0.36) (Figure S6b), and PP<sub>Last</sub> (SMD: 0.10, 95% CI: -0.06 to 0.27, p = 0.23) (Figure S6c).

#### 3.3.3. Mean Power

Both MP (SMD: 0.20, 95% CI: 0.03 to 0.36, p = 0.02) (Figure 4a) and MP<sub>First</sub> (SMD: 0.11, 95% CI: 0.02 to 0.21, p = 0.02) (Figure 4b) were greater after dietary NO<sub>3</sub><sup>-</sup> compared to placebo supplementation, with no significant difference between dietary  $NO_3^-$  and placebo supplementation in MP<sub>Last</sub> (SMD: 0.06, 95% CI: -0.05 to 0.18, p = 0.29) (Figure 4c). There was a high risk of statistical heterogeneity between studies (Chi<sup>2</sup> = 57.13;  $I^2$  = 79%, p < 0.00001) measuring MP. Sensitivity analyses revealed that excluding studies in elite athletes [60,63] slightly increased the pooled SMD (SMD: 0.24, 95% CI: 0.06 to 0.42, p = 0.009) and reduced the statistical heterogeneity (Chi<sup>2</sup> = 32.89; I<sup>2</sup> = 70%, p < 0.0003), while excluding studies with a high risk of bias [57,58,60] slightly reduced statistical heterogeneity  $(Chi^2 \le 31.44; I^2 = 71\%, p < 0.0002)$  and the pooled SMD (SMD: 0.18, 95% CI: -0.01 to 0.36, p = 0.07). When the influence of NO<sub>3</sub><sup>-</sup> dose was isolated, MP was greater after NO<sub>3</sub><sup>-</sup> compared to placebo supplementation with high NO<sub>3</sub><sup>-</sup> doses  $\geq$  8 mmol (SMD: 0.27, 95% CI: 0.01 to 0.54, p = 0.04), but there were no differences between NO<sub>3</sub><sup>-</sup> and placebo supplementation when a NO<sub>3</sub><sup>-</sup> dose < 8 mmol was administered (SMD: 0.19, 95% CI: -0.02to 0.40, p = 0.08) (Figure S7a). There was no difference in MP between NO<sub>3</sub><sup>-</sup> and placebo supplementation when a single-day supplementation protocol was adopted (SMD: 0.12, 95% CI: -0.03 to 0.26, p = 0.11), but the increase in MP after NO<sub>3</sub><sup>-</sup> compared to placebo supplementation approached statistical significance when multiple-day supplementation was adopted (SMD: 0.27, 95% CI: 0.01 to 0.54, p = 0.05) (Figure S7b). When the influence of exercise type and duration was evaluated, MP was improved after  $NO_3^-$  compared to placebo supplementation during a single sprint (SMD: 0.31, 95% CI: 0.10 to 0.51, p = 0.004), but not during repeated sprints (SMD: 0.14, 95% CI: -0.04 to 0.32, p = 0.13) (Figure S7c) and when sprint time was >15 s- $\leq$ 30 (SMD: 0.31, 95% CI: 0.12 to 0.50, *p* = 0.001), but not when sprint time  $\leq 15$  s (SMD: 0.14, 95%, CI: -0.05 to 0.34, p = 0.15) (Figure S7d). There were no differences in any of these comparisons for MP<sub>First</sub>.

## 3.3.4. Total Work Done

NO<sub>3</sub><sup>−</sup> supplementation did not alter TWD compared to placebo (SMD: 0.06, 95% CI: -0.13 to 0.26, p = 0.52) (Figure S8). There was a high risk of statistical heterogeneity between studies (Chi<sup>2</sup> = 34.40; I<sup>2</sup> = 85%, p < 0.00001). Sensitivity analyses did not remove statistical heterogeneity or change the pooled SMD. Sub-group analysis on supplementation dose revealed a significant sub-group difference (p = 0.03) between high NO<sub>3</sub><sup>−</sup> doses  $\geq 8$  mmol (SMD: 0.23, 95% CI: -0.03 to 0.49, p = 0.08) and low NO<sub>3</sub><sup>−</sup> doses < 8 mmol (SMD: -0.14, 95% CI: -0.37 to 0.09, p = 0.22) (Figure 5a). The sub-group analysis on supplementation duration revealed a significant difference (p = 0.004) between multiple-day supplementation (SMD: 0.34, 95% CI: 0.09 to 0.60, p = 0.008) and single-day supplementation (SMD: -0.10, 95% CI: -0.28 to 0.07, p = 0.24) (Figure 5b).

#### 3.3.5. Total Distance Covered

NO<sub>3</sub><sup>-</sup> supplementation increased TDC compared to placebo (SMD: 0.17, 95% CI: 0.09 to 0.24, p < 0.0001) (Figure 6). There was a low risk of statistical heterogeneity between studies (Chi<sup>2</sup> = 4.01; I<sup>2</sup> = 25%, p = 0.26). Sub-group and sensitivity analyses could not be performed due to an insufficient number of studies measuring TDC (n = 4).

|                                                            |                         |        | (a)          |                      |                      |
|------------------------------------------------------------|-------------------------|--------|--------------|----------------------|----------------------|
|                                                            |                         |        | 5            | Std. Mean Difference | Std. Mean Difference |
| Study or Subgroup                                          | Std. Mean Difference    | SE     | Weight       | IV, Random, 95% CI   | IV, Random, 95% CI   |
| Aucouturier et al. (2015)                                  | 0.09                    | 0.2    | 7.2%         | 0.09 [-0.30, 0.48]   | <b>—</b> •—          |
| Bernardi et al. (2018)                                     | 0.44                    | 0.23   | 6.3%         | 0.44 [-0.01, 0.89]   | <b>—</b> •—          |
| Christensen et al. (2013)                                  | 0                       | 0.04   | 11.9%        | 0.00 [-0.08, 0.08]   | +                    |
| Corry et al. (2015)                                        | 0.53                    | 0.07   | 11.2%        | 0.53 [0.39, 0.67]    | -                    |
| Cuenca et al. (2018)                                       | 0.26                    | 0.12   | 9.7%         | 0.26 [0.02, 0.50]    |                      |
| Domínguez et al. (2017)                                    | 0.35                    | 0.23   | 6.3%         | 0.35 [-0.10, 0.80]   |                      |
| Dumar et al. (2021)                                        | 0.67                    | 0.24   | 6.1%         | 0.67 [0.20, 1.14]    |                      |
| Jodra et al. (2020)                                        | 0.14                    | 0.25   | 5.8%         | 0.14 [-0.35, 0.63]   | <b></b>              |
| Kramer et al. (2016)                                       | 0.02                    | 0.2    | 7.2%         | 0.02 [-0.37, 0.41]   |                      |
| Martin et al. (2014)                                       | 0.03                    | 0.19   | 7.5%         | 0.03 [-0.34, 0.40]   |                      |
| Pawlak-Chaouch et al. (2019)                               | 0.01                    | 0.23   | 6.3%         | 0.01 [-0.44, 0.46]   |                      |
| Smith et al. (2019)                                        | -0.07                   | 0.1    | 10.4%        | -0.07 [-0.27, 0.13]  | -                    |
| Wylie et al. (2016)                                        | 0.21                    | 0.34   | 4.0%         | 0.21 [-0.46, 0.88]   |                      |
| Total (95% CI)                                             |                         |        | 100.0%       | 0.20 [0.03, 0.36]    | •                    |
| Heterogeneity: Tau <sup>2</sup> = 0.06; Chi <sup>2</sup> = | 57.13. df = 12 (P < 0.0 | 0001); | $l^2 = 79\%$ | -                    |                      |
| Test for overall effect: Z = 2.35 (P =                     | 0.02)                   |        |              |                      | -Z -1 0 1 Z          |





|                                           |                              |         | ( '             | c)                   |                                 |
|-------------------------------------------|------------------------------|---------|-----------------|----------------------|---------------------------------|
|                                           |                              |         |                 | Std. Mean Difference | Std. Mean Difference            |
| Study or Subgroup                         | Std. Mean Difference         | SE      | Weight          | IV, Random, 95% CI   | IV, Random, 95% CI              |
| Bender et al. (2018)                      | -0.19                        | 0.18    | 8.0%            | -0.19 [-0.54, 0.16]  |                                 |
| Bernardi et al. (2018)                    | -0.18                        | 0.2     | 6.8%            | -0.18 [-0.57, 0.21]  |                                 |
| Christensen et al. (2013)                 | 0.11                         | 0.09    | 16.5%           | 0.11 [-0.07, 0.29]   | +                               |
| Corry et al. (2015)                       | 0.28                         | 0.22    | 5.9%            | 0.28 [-0.15, 0.71]   |                                 |
| Cuenca et al. (2018)                      | 0.25                         | 0.26    | 4.5%            | 0.25 [-0.26, 0.76]   |                                 |
| Domínguez et al. (2017)                   | 0.2                          | 0.26    | 4.5%            | 0.20 [-0.31, 0.71]   |                                 |
| Dumar et al. (2021)                       | 0.66                         | 0.22    | 5.9%            | 0.66 [0.23, 1.09]    |                                 |
| Jonvik et al. (2018)                      | -0.01                        | 0.04    | 23.1%           | -0.01 [-0.09, 0.07]  | +                               |
| Roelofs et al. (2017)                     | 0.08                         | 0.15    | 10.1%           | 0.08 [-0.21, 0.37]   | _ <b>-</b>                      |
| Smith et al. (2019)                       | -0.23                        | 0.17    | 8.6%            | -0.23 [-0.56, 0.10]  |                                 |
| Wylie et al. (2016)                       | 0.2                          | 0.22    | 5.9%            | 0.20 [-0.23, 0.63]   |                                 |
| Total (95% CI)                            |                              |         | 100.0%          | 0.06 [-0.05, 0.18]   | •                               |
| Heterogeneity: Tau <sup>2</sup> = 0.01; C | $hi^2 = 18.03, df = 10 (P =$ | = 0.05) | ); $I^2 = 45\%$ | 6                    |                                 |
| Test for overall effect: $Z = 1.0$        | 6 (P = 0.29)                 |         |                 |                      | -1 -0.5 0 0.5 I                 |
|                                           |                              |         |                 |                      | ravours riacebo ravours nitrate |

Figure 4. Forest plot for mean power from all sprints (a), mean power during the first sprint (b), and mean power during the last sprint (c) in the nitrate and placebo trials [35,36,39,41,54,56-61,63-67].

Favours Placebo Favours Nitrate

12 of 20

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                               |                                                                                                   | (                                                                                                                                                                                                                    | (a)                                                                                                                                                                                                                                                    |                                            |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                               |                                                                                                   |                                                                                                                                                                                                                      | Std. Mean Difference                                                                                                                                                                                                                                   | Std. Mean Difference                       |  |  |  |
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Std. Mean Difference                                                                                                                                                                                                                                          | SE                                                                                                | Weight                                                                                                                                                                                                               | IV, Random, 95% CI                                                                                                                                                                                                                                     | IV, Random, 95% CI                         |  |  |  |
| 3.7.1 Low dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                   |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                        |                                            |  |  |  |
| Dumar et al. (2021)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.25                                                                                                                                                                                                                                                          | 0.35                                                                                              | 7.5%                                                                                                                                                                                                                 | 0.25 [-0.44, 0.94]                                                                                                                                                                                                                                     |                                            |  |  |  |
| Martin et al. (2014)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.31                                                                                                                                                                                                                                                         | 0.1                                                                                               | 18.4%                                                                                                                                                                                                                | -0.31 [-0.51, -0.11]                                                                                                                                                                                                                                   |                                            |  |  |  |
| Smith et al. (2019)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.07                                                                                                                                                                                                                                                         | 0.09                                                                                              | 18.9%                                                                                                                                                                                                                | -0.07 [-0.25, 0.11]                                                                                                                                                                                                                                    |                                            |  |  |  |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                               |                                                                                                   | 44.8%                                                                                                                                                                                                                | -0.14 [-0.37, 0.09]                                                                                                                                                                                                                                    | •                                          |  |  |  |
| Heterogeneity: $Tau^2 = 0.02$ ; C<br>Test for overall effect: $Z = 1.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chi <sup>2</sup> = 4.62, df = 2 (P = 0<br>23 (P = 0.22)                                                                                                                                                                                                       | .10); l'                                                                                          | = 57%                                                                                                                                                                                                                |                                                                                                                                                                                                                                                        |                                            |  |  |  |
| 3.7.2 High dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                               |                                                                                                   |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                        |                                            |  |  |  |
| Aucouturier et al. (2015)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.48                                                                                                                                                                                                                                                          | 0.11                                                                                              | 17.9%                                                                                                                                                                                                                | 0.48 [0.26, 0.70]                                                                                                                                                                                                                                      |                                            |  |  |  |
| Rimer et al. (2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                             | 0.1                                                                                               | 18.4%                                                                                                                                                                                                                | 0.00 [-0.20, 0.20]                                                                                                                                                                                                                                     | -+-                                        |  |  |  |
| Thompson et al. (2015)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.22                                                                                                                                                                                                                                                          | 0.09                                                                                              | 18.9%                                                                                                                                                                                                                | 0.22 [0.04, 0.40]                                                                                                                                                                                                                                      |                                            |  |  |  |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                               |                                                                                                   | 55.2%                                                                                                                                                                                                                | 0.23 [-0.03, 0.49]                                                                                                                                                                                                                                     | ◆                                          |  |  |  |
| Heterogeneity: Tau <sup>2</sup> = 0.04; Chi <sup>2</sup> = 10.43, df = 2 (P = 0.005); I <sup>2</sup> = 81%<br>Test for overall effect: Z = 1.75 (P = 0.08)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                               |                                                                                                   |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                        |                                            |  |  |  |
| Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                                                                                                   | 100.0%                                                                                                                                                                                                               | 0.08 [-0.16, 0.31]                                                                                                                                                                                                                                     | •                                          |  |  |  |
| Heterogeneity: $Tau^2 = 0.07$ ; C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chi <sup>2</sup> = 34.15, df = 5 (P <                                                                                                                                                                                                                         | 0.000                                                                                             | ()1); $I^2 = 8$                                                                                                                                                                                                      | 5%                                                                                                                                                                                                                                                     |                                            |  |  |  |
| Test for overall effect: $Z = 0.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54 (P = 0.52)                                                                                                                                                                                                                                                 |                                                                                                   |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                        | Eavours Placebo Eavours Nitrate            |  |  |  |
| Test for subgroup differences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | : Chi <sup>2</sup> = 4.52, df = 1 (P =                                                                                                                                                                                                                        | 0.03)                                                                                             | $ 1^2 = 77.9$                                                                                                                                                                                                        | 9%                                                                                                                                                                                                                                                     | ravours naceso ravours natace              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                               |                                                                                                   | (                                                                                                                                                                                                                    | <b>b</b> )                                                                                                                                                                                                                                             |                                            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                               |                                                                                                   | (                                                                                                                                                                                                                    | D)                                                                                                                                                                                                                                                     |                                            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                               |                                                                                                   | 5                                                                                                                                                                                                                    | td Mean Difference                                                                                                                                                                                                                                     | Std Mean Difference                        |  |  |  |
| Study or Subaroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Std. Mean Difference                                                                                                                                                                                                                                          | SE                                                                                                | S<br>Weight                                                                                                                                                                                                          | td. Mean Difference<br>IV. Random. 95% CI                                                                                                                                                                                                              | Std. Mean Difference<br>IV. Random. 95% Cl |  |  |  |
| Study or Subgroup<br>4.7.1 Single day supplementa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Std. Mean Difference                                                                                                                                                                                                                                          | SE                                                                                                | S<br>Weight                                                                                                                                                                                                          | td. Mean Difference<br>IV, Random, 95% CI                                                                                                                                                                                                              | Std. Mean Difference<br>IV, Random, 95% Cl |  |  |  |
| Study or Subgroup<br>4.7.1 Single day supplementa<br>Dumar et al. (2021)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Std. Mean Difference<br>ation                                                                                                                                                                                                                                 | <b>SE</b>                                                                                         | S<br>Weight<br>7.5%                                                                                                                                                                                                  | itd. Mean Difference<br>IV, Random, 95% CI<br>0.25 [-0.44, 0.94]                                                                                                                                                                                       | Std. Mean Difference<br>IV, Random, 95% CI |  |  |  |
| Study or Subgroup<br>4.7.1 Single day supplementa<br>Dumar et al. (2021)<br>Martin et al. (2014)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Std. Mean Difference<br>ation<br>0.25<br>-0.31                                                                                                                                                                                                                | <b>SE</b><br>0.35<br>0.1                                                                          | S<br>Weight<br>7.5%<br>18.4%                                                                                                                                                                                         | td. Mean Difference<br>IV, Random, 95% CI<br>0.25 [-0.44, 0.94]<br>-0.31 [-0.51, -0.11]                                                                                                                                                                | Std. Mean Difference<br>IV, Random, 95% CI |  |  |  |
| Study or Subgroup<br>4.7.1 Single day supplementa<br>Dumar et al. (2021)<br>Martin et al. (2014)<br>Rimer et al. (2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Std. Mean Difference<br>ation<br>0.25<br>-0.31<br>0                                                                                                                                                                                                           | SE<br>0.35<br>0.1<br>0.1                                                                          | S<br>Weight<br>7.5%<br>18.4%<br>18.4%                                                                                                                                                                                | td. Mean Difference<br>IV, Random, 95% Cl<br>0.25 [-0.44, 0.94]<br>-0.31 [-0.51, -0.11]<br>0.00 [-0.20, 0.20]                                                                                                                                          | Std. Mean Difference<br>IV, Random, 95% Cl |  |  |  |
| Study or Subgroup<br>4.7.1 Single day supplementa<br>Dumar et al. (2021)<br>Martin et al. (2014)<br>Rimer et al. (2016)<br>Smith et al. (2019)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Std. Mean Difference<br>ation<br>0.25<br>-0.31<br>0<br>-0.07                                                                                                                                                                                                  | SE<br>0.35<br>0.1<br>0.1<br>0.09                                                                  | 5<br>Weight<br>7.5%<br>18.4%<br>18.4%<br>18.9%                                                                                                                                                                       | td. Mean Difference<br>IV, Random, 95% Cl<br>0.25 [-0.44, 0.94]<br>-0.31 [-0.51, -0.11]<br>0.00 [-0.20, 0.20]<br>-0.07 [-0.25, 0.11]                                                                                                                   | Std. Mean Difference<br>IV, Random, 95% CI |  |  |  |
| Study or Subgroup<br>4.7.1 Single day supplementa<br>Dumar et al. (2021)<br>Martin et al. (2014)<br>Rimer et al. (2016)<br>Smith et al. (2019)<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Std. Mean Difference<br>ation<br>0.25<br>-0.31<br>0<br>-0.07                                                                                                                                                                                                  | SE<br>0.35<br>0.1<br>0.1<br>0.09                                                                  | 5<br>Weight<br>7.5%<br>18.4%<br>18.4%<br>18.9%<br>63.2%                                                                                                                                                              | td. Mean Difference<br>IV, Random, 95% CI<br>0.25 [-0.44, 0.94]<br>-0.31 [-0.51, -0.11]<br>0.00 [-0.20, 0.20]<br>-0.07 [-0.25, 0.11]<br>-0.10 [-0.28, 0.07]                                                                                            | Std. Mean Difference<br>IV, Random, 95% CI |  |  |  |
| Study or Subgroup<br>4.7.1 Single day supplementa<br>Dumar et al. (2021)<br>Martin et al. (2014)<br>Rimer et al. (2016)<br>Smith et al. (2019)<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.02; Cl                                                                                                                                                                                                                                                                                                                                                                                                                                   | Std. Mean Difference<br>ation<br>0.25<br>-0.31<br>0<br>-0.07<br>hi <sup>2</sup> = 6.46, df = 3 (P = 0.1                                                                                                                                                       | <b>SE</b><br>0.35<br>0.1<br>0.1<br>0.09<br>09); I <sup>2</sup>                                    | 5<br>Weight<br>7.5%<br>18.4%<br>18.4%<br>18.9%<br>63.2%<br>= 54%                                                                                                                                                     | td. Mean Difference<br>IV, Random, 95% Cl<br>0.25 [-0.44, 0.94]<br>-0.31 [-0.51, -0.11]<br>0.00 [-0.20, 0.20]<br>-0.07 [-0.25, 0.11]<br>-0.10 [-0.28, 0.07]                                                                                            | Std. Mean Difference<br>IV, Random, 95% Cl |  |  |  |
| Study or Subgroup<br>4.7.1 Single day supplementa<br>Dumar et al. (2021)<br>Martin et al. (2014)<br>Rimer et al. (2016)<br>Smith et al. (2019)<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.02; Cl<br>Test for overall effect: Z = 1.12                                                                                                                                                                                                                                                                                                                                                                                              | Std. Mean Difference<br>ation<br>0.25 - 0.31<br>0 - 0.07<br>hi <sup>2</sup> = 6.46, df = 3 (P = 0.43)<br>8 (P = 0.24)                                                                                                                                         | SE<br>0.35<br>0.1<br>0.09<br>09); I <sup>2</sup>                                                  | S           7.5%           18.4%           18.9%           63.2%           = 54%                                                                                                                                     | td. Mean Difference<br>IV, Random, 95% Cl<br>0.25 [-0.44, 0.94]<br>-0.31 [-0.51, -0.11]<br>0.00 [-0.20, 0.20]<br>-0.07 [-0.25, 0.11]<br>-0.10 [-0.28, 0.07]                                                                                            | Std. Mean Difference<br>IV, Random, 95% Cl |  |  |  |
| Study or Subgroup<br>4.7.1 Single day supplementa<br>Dumar et al. (2021)<br>Martin et al. (2014)<br>Rimer et al. (2016)<br>Smith et al. (2019)<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.02; Cl<br>Test for overall effect: Z = 1.12<br>4.7.2 Multiple days supplemental                                                                                                                                                                                                                                                                                                                                                          | Std. Mean Difference<br>ation<br>0.25 - 0.31<br>0 - 0.07<br>hi <sup>2</sup> = 6.46, df = 3 (P = 0.48)<br>8 (P = 0.24)<br>entation                                                                                                                             | SE<br>0.35<br>0.1<br>0.09<br>09); I <sup>2</sup>                                                  | S           7.5%           18.4%           18.4%           18.9%           63.2%           = 54%                                                                                                                     | td. Mean Difference<br>IV, Random, 95% CI<br>0.25 [-0.44, 0.94]<br>-0.31 [-0.51, -0.11]<br>0.00 [-0.20, 0.20]<br>-0.07 [-0.25, 0.11]<br>-0.10 [-0.28, 0.07]                                                                                            | Std. Mean Difference<br>IV, Random, 95% CI |  |  |  |
| Study or Subgroup4.7.1 Single day supplementaDumar et al. (2021)Martin et al. (2014)Rimer et al. (2016)Smith et al. (2019)Subtotal (95% Cl)Heterogeneity: Tau <sup>2</sup> = 0.02; ClTest for overall effect: Z = 1.134.7.2 Multiple days supplementaAucouturier et al. (2015)                                                                                                                                                                                                                                                                                                                                                                      | Std. Mean Difference<br>ation<br>0.25 - 0.31<br>0 - 0.07<br>hi <sup>2</sup> = 6.46, df = 3 (P = 0.<br>8 (P = 0.24)<br>entation<br>0.48                                                                                                                        | <b>SE</b><br>0.35<br>0.1<br>0.09<br>09); I <sup>2</sup><br>0.11                                   | <b>Weight</b><br>7.5%<br>18.4%<br>18.4%<br>18.9%<br><b>63.2%</b><br>= 54%<br>17.9%                                                                                                                                   | td. Mean Difference<br>IV, Random, 95% CI<br>0.25 [-0.44, 0.94]<br>-0.31 [-0.51, -0.11]<br>0.00 [-0.20, 0.20]<br>-0.07 [-0.25, 0.11]<br>-0.10 [-0.28, 0.07]<br>0.48 [0.26, 0.70]                                                                       | Std. Mean Difference<br>IV, Random, 95% CI |  |  |  |
| Study or Subgroup<br>4.7.1 Single day supplementa<br>Dumar et al. (2021)<br>Martin et al. (2014)<br>Rimer et al. (2016)<br>Smith et al. (2019)<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.02; Cl<br>Test for overall effect: Z = 1.13<br>4.7.2 Multiple days supplementa<br>Aucouturier et al. (2015)<br>Thompson et al. (2015)                                                                                                                                                                                                                                                                                                    | Std. Mean Difference<br>ation<br>0.25 - 0.31<br>0 - 0.07<br>hi <sup>2</sup> = 6.46, df = 3 (P = 0.48)<br>8 (P = 0.24)<br>entation<br>0.48<br>0.22                                                                                                             | <b>SE</b><br>0.35<br>0.1<br>0.09<br>09); I <sup>2</sup><br>0.11<br>0.09                           | S           Weight           7.5%           18.4%           18.9%           63.2%           = 54%           17.9%           18.9%           26.9%                                                                    | td. Mean Difference<br>IV, Random, 95% Cl<br>0.25 [-0.44, 0.94]<br>-0.31 [-0.51, -0.11]<br>0.00 [-0.20, 0.20]<br>-0.07 [-0.25, 0.11]<br>-0.10 [-0.28, 0.07]<br>0.48 [0.26, 0.70]<br>0.22 [0.04, 0.40]<br>0.22 [0.04, 0.62]                             | Std. Mean Difference<br>IV, Random, 95% Cl |  |  |  |
| Study or Subgroup4.7.1 Single day supplementaDumar et al. (2021)Martin et al. (2014)Rimer et al. (2016)Smith et al. (2019)Subtotal (95% Cl)Heterogeneity: Tau <sup>2</sup> = 0.02; ClTest for overall effect: Z = 1.134.7.2 Multiple days supplementaAucouturier et al. (2015)Thompson et al. (2015)Subtotal (95% Cl)                                                                                                                                                                                                                                                                                                                               | Std. Mean Difference           ation $0.25$ $-0.31$ $0$ $0.25$ $-0.31$ $0$ $-0.07$ $hi^2 = 6.46$ , $df = 3$ (P = 0.43) $(P = 0.24)$ entation $0.48$ $0.22$ $0.24$                                                                                             | <b>SE</b><br>0.35<br>0.1<br>0.09<br>09); I <sup>2</sup><br>0.11<br>0.09                           | S           Weight           7.5%           18.4%           18.9%           63.2%           = 54%           17.9%           18.9%           36.8%           2000                                                     | td. Mean Difference<br>IV, Random, 95% Cl<br>0.25 [-0.44, 0.94]<br>-0.31 [-0.51, -0.11]<br>0.00 [-0.20, 0.20]<br>-0.07 [-0.25, 0.11]<br>-0.10 [-0.28, 0.07]<br>0.48 [0.26, 0.70]<br>0.22 [0.04, 0.40]<br>0.34 [0.09, 0.60]                             | Std. Mean Difference<br>IV, Random, 95% CI |  |  |  |
| Study or Subgroup<br>4.7.1 Single day supplementa<br>Dumar et al. (2021)<br>Martin et al. (2014)<br>Rimer et al. (2016)<br>Smith et al. (2019)<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.02; CI<br>Test for overall effect: $Z = 1.13$<br>4.7.2 Multiple days supplementa<br>Aucouturier et al. (2015)<br>Thompson et al. (2015)<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.02; CI<br>Test for overall effect: $Z = 2.6$                                                                                                                                                                                         | Std. Mean Difference           ation $0.25$ $-0.31$ $0$ $0$ $-0.07$ hi <sup>2</sup> = 6.46, df = 3 (P = 0.48) $P = 0.48$ entation $0.48$ $0.22$ $hi^2 = 3.35$ , df = 1 (P = 0.44)           4 (P = 0.008) $P = 0.48$                                          | <b>SE</b><br>0.35<br>0.1<br>0.09<br>09); I <sup>2</sup><br>0.11<br>0.09<br>07); I <sup>2</sup>    | S           Weight           7.5%           18.4%           18.9%           63.2%           = 54%           17.9%           18.9%           36.8%           = 70%                                                    | td. Mean Difference<br>IV, Random, 95% CI<br>0.25 [-0.44, 0.94]<br>-0.31 [-0.51, -0.11]<br>0.00 [-0.20, 0.20]<br>-0.07 [-0.25, 0.11]<br>-0.10 [-0.28, 0.07]<br>0.48 [0.26, 0.70]<br>0.22 [0.04, 0.40]<br>0.34 [0.09, 0.60]                             | Std. Mean Difference<br>IV, Random, 95% CI |  |  |  |
| Study or Subgroup<br>4.7.1 Single day supplementa<br>Dumar et al. (2021)<br>Martin et al. (2014)<br>Rimer et al. (2016)<br>Smith et al. (2019)<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.02; CI<br>Test for overall effect: Z = 1.13<br>4.7.2 Multiple days supplementa<br>Aucouturier et al. (2015)<br>Thompson et al. (2015)<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.02; CI<br>Test for overall effect: Z = 2.64<br>Total (95% CI)                                                                                                                                                                          | Std. Mean Difference<br>ation<br>0.25 - 0.31<br>0 - 0.07<br>hi <sup>2</sup> = 6.46, df = 3 (P = 0.<br>8 (P = 0.24)<br>entation<br>0.48<br>0.22<br>hi <sup>2</sup> = 3.35, df = 1 (P = 0.44)<br>4 (P = 0.008)                                                  | SE<br>0.35<br>0.1<br>0.09<br>09); I <sup>2</sup><br>0.11<br>0.09<br>07); I <sup>2</sup>           | S<br>Weight<br>7.5%<br>18.4%<br>18.4%<br>18.9%<br>63.2%<br>= 54%<br>17.9%<br>18.9%<br>36.8%<br>= 70%<br>100.0%                                                                                                       | td. Mean Difference<br>IV, Random, 95% Cl<br>0.25 [-0.44, 0.94]<br>-0.31 [-0.51, -0.11]<br>0.00 [-0.20, 0.20]<br>-0.07 [-0.25, 0.11]<br>-0.10 [-0.28, 0.07]<br>0.48 [0.26, 0.70]<br>0.22 [0.04, 0.40]<br>0.34 [0.09, 0.60]<br>0.08 [-0.16, 0.31]       | Std. Mean Difference<br>IV, Random, 95% CI |  |  |  |
| Study or Subgroup<br>4.7.1 Single day supplementa<br>Dumar et al. (2021)<br>Martin et al. (2014)<br>Rimer et al. (2016)<br>Smith et al. (2019)<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.02; CI<br>Test for overall effect: Z = 1.13<br>4.7.2 Multiple days supplementa<br>Aucouturier et al. (2015)<br>Thompson et al. (2015)<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.02; CI<br>Test for overall effect: Z = 2.64<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.07; CI                                                                                                                            | Std. Mean Difference<br>ation<br>0.25 - 0.31<br>0 - 0.07<br>hi <sup>2</sup> = 6.46, df = 3 (P = 0.18)<br>8 (P = 0.24)<br>entation<br>0.48<br>0.22<br>hi <sup>2</sup> = 3.35, df = 1 (P = 0.14)<br>4 (P = 0.008)<br>hi <sup>2</sup> = 34.15, df = 5 (P < 0.14) | SE<br>0.35<br>0.1<br>0.09<br>09); I <sup>2</sup><br>0.11<br>0.09<br>07); I <sup>2</sup><br>0.0000 | S<br>Weight<br>7.5%<br>18.4%<br>18.4%<br>18.9%<br>63.2%<br>= 54%<br>17.9%<br>18.9%<br>36.8%<br>= 70%<br>100.0%<br>1); l <sup>2</sup> = 8!                                                                            | td. Mean Difference<br>IV, Random, 95% Cl<br>0.25 [-0.44, 0.94]<br>-0.31 [-0.51, -0.11]<br>0.00 [-0.20, 0.20]<br>-0.07 [-0.25, 0.11]<br>-0.10 [-0.28, 0.07]<br>0.48 [0.26, 0.70]<br>0.22 [0.04, 0.40]<br>0.34 [0.09, 0.60]<br>0.08 [-0.16, 0.31]<br>5% | Std. Mean Difference<br>IV, Random, 95% CI |  |  |  |
| Study or Subgroup<br>4.7.1 Single day supplementa<br>Dumar et al. (2021)<br>Martin et al. (2014)<br>Rimer et al. (2016)<br>Smith et al. (2019)<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.02; CI<br>Test for overall effect: Z = 1.13<br>4.7.2 Multiple days supplementa<br>Aucouturier et al. (2015)<br>Thompson et al. (2015)<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.02; CI<br>Test for overall effect: Z = 2.67<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.07; CI<br>Test for overall effect: Z = 0.07; CI<br>Test for overall effect: Z = 0.07; CI<br>Test for overall effect: Z = 0.07; CI | Std. Mean Difference<br>ation<br>0.25 - 0.31<br>0 - 0.07<br>hi <sup>2</sup> = 6.46, df = 3 (P = 0.18)<br>8 (P = 0.24)<br>entation<br>0.48<br>0.22<br>hi <sup>2</sup> = 3.35, df = 1 (P = 0.18)<br>4 (P = 0.008)<br>hi <sup>2</sup> = 34.15, df = 5 (P < 02)   | SE<br>0.35<br>0.1<br>0.09<br>09); I <sup>2</sup><br>0.11<br>0.09<br>07); I <sup>2</sup>           | S           Weight           7.5%           18.4%           18.9%           63.2%           = 54%           17.9%           18.9%           36.8%           = 70%           100.0%           1); l <sup>2</sup> = 8! | td. Mean Difference<br>IV, Random, 95% Cl<br>0.25 [-0.44, 0.94]<br>-0.31 [-0.51, -0.11]<br>0.00 [-0.20, 0.20]<br>-0.07 [-0.25, 0.11]<br>-0.10 [-0.28, 0.07]<br>0.48 [0.26, 0.70]<br>0.22 [0.04, 0.40]<br>0.34 [0.09, 0.60]<br>0.08 [-0.16, 0.31]<br>5% | Std. Mean Difference<br>IV, Random, 95% CI |  |  |  |



|                                                                         |                                            |                         | Mean Difference    | Mean Difference    |
|-------------------------------------------------------------------------|--------------------------------------------|-------------------------|--------------------|--------------------|
| Study or Subgroup                                                       | Mean Difference                            | E Weight                | IV, Random, 95% CI | IV, Random, 95% CI |
| Esen et al. (2022)                                                      | 0.3 0.                                     | 1 12.9%                 | 0.30 [0.10, 0.50]  |                    |
| Nyakayiru et al. (2017)                                                 | 0.18 0.0                                   | 6 28.9%                 | 0.18 [0.06, 0.30]  | -                  |
| Thompson et al. (2016)                                                  | 0.11 0.0                                   | 4 47.2%                 | 0.11 [0.03, 0.19]  | -                  |
| Wylie et al. (2013)                                                     | 0.23 0.1                                   | 1 11.0%                 | 0.23 [0.01, 0.45]  |                    |
| Total (95% CI)                                                          |                                            | 100.0%                  | 0.17 [0.09, 0.24]  | ◆                  |
| Heterogeneity: $Tau^2 = 0.00$ ; C<br>Test for overall effect: $Z = 4.3$ | $hi^2 = 4.01, df = 3 (P = 4 (P < 0.0001))$ | 0.26); l <sup>2</sup> = | 25%                | -1 -0.5 0 0.5 1    |

Figure 6. Forest plot for total distance covered in the nitrate and placebo trials [37,38,55,62].

## 4. Discussion

The principal observations of this systematic review and meta-analyses are that, compared to a placebo condition, NO<sub>3</sub><sup>-</sup> supplementation lowered PP<sub>Time</sub> without impacting PP, increased MP and MP<sub>First</sub>, and increased TDC in the Yo-Yo IR1 test. The improvement in MP after NO<sub>3</sub><sup>-</sup> supplementation was more likely to occur when NO<sub>3</sub><sup>-</sup> was administered for multiple days at a dose  $\geq$  8 mmol as opposed to an acute serving of <8 mmol during a single bout rather than repeated bouts of high-intensity exercise, and when the high-intensity exercise duration was >15 s– $\leq$ 30 s versus  $\leq$ 15 s. The sub-group analysis also revealed that  $NO_3^-$  supplementation was more likely to improve TWD in a highintensity repeated bout protocol when NO<sub>3</sub><sup>-</sup> was administered at a dose  $\geq 8$  mmol and was supplemented for multiple days as opposed to an acute serving or a dose < 8 mmol. These observations improve our understanding of the effects of  $NO_3^-$  supplementation on single and repeated bouts of short-duration, high-intensity, large muscle mass exercise, and reveal two apparently distinct and supplementation-strategy-dependent effects of dietary  $NO_3^-$  on high-intensity exercise performance. Firstly,  $NO_3^-$  supplementation appears to improve PP<sub>Time</sub> and MP<sub>First</sub>, with the improvements in these variables not necessarily requiring multiple-day supplementation with  $\geq 8 \text{ mmol NO}_3^-$ , as such effects appear to be achievable after acute supplementation with  $\sim 6 \text{ mmol NO}_3^-$ . Secondly, TWD in a repeated sprint protocol was more likely to be improved when NO<sub>3</sub><sup>-</sup> was administered at a dose  $\geq$  8 mmol, and was supplemented for multiple days, consistent with the NO<sub>3</sub><sup>-</sup> supplementation regime administered in the studies assessing TDC in the Yo-Yo IR1 test, all of which reported improved performance. Therefore, it appears that a single bout of high-intensity exercise can be enhanced by acute  $NO_3^-$  supplementation, with high-intensity intermittent exercise performance more likely to improve after multiple day supplementation, with a NO<sub>3</sub><sup>-</sup> dose  $\geq$ 8 mmol. These findings may have implications for future study design and for improving performance in athletes participating in sports that require high-intensity bouts of exercise.

Although there are some examples of enhanced PP after NO3<sup>-</sup> supplementation [35,52,54,57–59,67], the current meta-analysis indicates that most previous studies did not report improved PP, PP<sub>First</sub>, or PP<sub>Last</sub> after NO<sub>3</sub><sup>-</sup> supplementation [36,39,41,53,56,60,64,66]. However, whilst PP was not altered, PP<sub>Time</sub> was lowered after NO<sub>3</sub><sup>-</sup> supplementation with all four studies assessing this variable observing a lower PP<sub>Time</sub> after NO<sub>3</sub><sup>-</sup> supplementation [35,36,54,57], with three of these studies administering an acute NO<sub>3</sub><sup>-</sup> dose of ~6 mmol [35,54,57]. This observation is compatible with an increase in muscle contractile velocity, which would be expected to contribute to lower  $PP_{Time}$  after acute  $NO_3^$ supplementation [33,34]. With regard to MP variables, MP and MP<sub>First</sub>, but not MP<sub>Last</sub>, were improved after  $NO_3^-$  supplementation. When the improvement in MP after  $NO_3^$ supplementation was explored further, MP was improved after NO<sub>3</sub><sup>-</sup> supplementation when doses  $\geq 8$  mmol were administered [41,64,65], when multiple day supplementation protocols were adopted [41,64,65], and when a single sprint >15 s- $\leq$ 30 s was performed [35,54,58,59]. The improvements in PP<sub>Time</sub> and MP<sub>First</sub> were exhibited after acute supplementation with  $\sim 6 \text{ mmol NO}_3^-$  [35,39,54,57]. All four studies assessing the effect of NO<sub>3</sub><sup>-</sup> supplementation on TDC in the Yo-Yo IR1 test revealed a greater TDC after NO<sub>3</sub><sup>-</sup> supplementation [37,38,55,62]. While TWD during high-intensity intermittent exercise was not improved after  $NO_3^-$  supplementation, the sub-group analysis revealed that TWD was increased when the NO<sub>3</sub><sup>-</sup> dose was  $\geq$ 8 mmol compared to <8 mmol [51,65], and with multiple-day supplementation compared to acute supplementation [51,65]. Importantly, the four studies reporting improved TDC in the Yo-Yo IR1 test all adopted a multiple-day supplementation protocol with a  $NO_3^-$  dose of >8 mmol [37,38,55,62]. Therefore, it appears that a multiple-day supplemental protocol with a  $NO_3^-$  dose of >8 mmol is important to elicit an ergogenic effect on repeated bouts of high-intensity exercise after NO<sub>3</sub><sup>-</sup> supplementation but that performance in single sprints (lower PP<sub>Time</sub> and higher MP) can be enhanced after acute ingestion of  $\sim 6 \text{ mmol NO}_3^-$ .

The ergogenic effect of  $NO_3^-$  supplementation has been attributed to its stepwise reduction to  $NO_2^-$  and the subsequent reduction of  $NO_2^-$  to NO [2,5]. It is now recognised that ~25% of ingested  $NO_3^-$  is extracted from the circulation by the salivary glands [76] via the  $NO_3^-/H^+$  cotransporter, sialin [77].  $NO_3^-$  is subsequently concentrated within salivary glands [78] with excreted salivary  $NO_3^-$  undergoing reduction to  $NO_2^-$  by certain species of the oral micobiome [79–81].  $NO_2^-$ -rich saliva is then swallowed and subsequently reduced to NO and various reactive nitrogen intermediates, including S-nitrosothiols

(RSNO) within the stomach [2,78], but it is also clear that circulating plasma [NO<sub>2</sub><sup>-</sup>] and [RSNO] are increased post NO<sub>3</sub><sup>-</sup> supplementation [78,82,83]. Circulating plasma NO<sub>2</sub><sup>-</sup> can undergo a one-electron reduction to NO in a reaction catalysed by numerous NO<sub>2</sub><sup>-</sup> reductases [84,85]. Although the relationship between exercise performance and plasma [NO<sub>3</sub><sup>-</sup>] is unclear, exercise responses are positively associated with the increases in plasma [NO<sub>2</sub><sup>-</sup>] [82,86], muscle [NO<sub>3</sub><sup>-</sup>], and muscle NO<sub>3</sub><sup>-</sup> utilisation [87] after NO<sub>3</sub><sup>-</sup> supplementation.

It is increasingly appreciated that skeletal muscle can serve as an important store of  $NO_3^-$  and  $NO_2^-$  for subsequent NO synthesis, as evidenced by higher [NO<sub>3</sub><sup>-</sup>] and  $[NO_2^-]$  in skeletal muscle than blood [88,89]. The  $NO_3^-$  transporter, sialin, has been identified in skeletal muscle [89,90] which, together with chloride channel 1 [90], facilitate the concentration of  $NO_3^-$  within skeletal muscle. Therefore, a portion of the increased circulating blood NO<sub>3</sub><sup>-</sup> after NO<sub>3</sub><sup>-</sup> supplementation, which is not extracted by the kidney for clearance in the urine or absorbed by the salivary glands for subsequent oral reduction to  $NO_2^-$ , can be accrued in skeletal muscle. Indeed, skeletal muscle  $[NO_3^-]$  and  $[NO_2^-]$  are increased following  $NO_3^-$  supplementation with duration-dependent increases at least up to 7 days of supplementation [88]. In addition to its role as a  $NO_2^-$  reductase [91], xanthine oxidoreductase (XOR) can function as a  $NO_3^-$  reductase to increase  $NO_2^-$  synthesis [92] and is present in skeletal muscle [89,90]. It has been reported that the increase in skeletal muscle  $[NO_2^-]$  after  $NO_3^-$  administration is enhanced by exercise and, as muscle pH is lowered, with both  $NO_3^-$  reduction to  $NO_2^-$  and  $NO_2^-$  reduction to NO abolished after XOR inhibition [93]. It is, therefore, possible that increased XOR activity during exercise, particularly high-intensity exercise [94], could contribute to enhanced muscle  $NO_3^-$  and  $NO_2^-$  reduction in such settings. Indeed, the increase in skeletal muscle [ $NO_3^-$ ] after  $NO_3^-$  supplementation is lowered following the completion of exhaustive cycling exercise [89] and maximal knee extensor contractions [87], suggesting that this elevated muscle  $NO_3^-$  pool is utilised as a substrate for sequential reduction to  $NO_2^-$  and then NO. There is also a positive arterial-venous difference in plasma  $[NO_3^-]$  and  $[NO_2^-]$  across contracting skeletal muscles after  $NO_3^-$  supplementation [95]. Since  $NO_2^-$  reduction to NO is augmented in hypoxia and acidosis [26-28], and given that such conditions develop within the muscle microvasculature during exercise in an intensity-dependent manner [31], elevating circulating plasma [NO<sub>2</sub><sup>-</sup>] is likely to increase NO synthesis in the muscle microvasculature during high-intensity exercise. Based on the existing evidence,  $NO_3^{-1}$ and  $NO_2^-$  can be increased systemically and within skeletal muscle following dietary  $NO_3^-$  supplementation with the potential to enhance NO synthesis, particularly during the hypoxic and acidic conditions that develop during high-intensity exercise, which might underpin the improvements in high-intensity exercise performance variables reported in this manuscript.

The improvements in PP<sub>Time</sub> and MP<sub>First</sub> during an all-out sprint after NO<sub>3</sub><sup>-</sup> supplementation are likely mediated by mechanisms intrinsic to the myocytes. The initial stages of a short-duration all-out sprint, during which PP<sub>Time</sub> will be determined, will involve maximal recruitment of, and proportion contribution to force production from, type II skeletal muscle fibres [96,97]. Previous research has indicated that 7 days NO<sub>3</sub><sup>-</sup> supplementation can increase calcium (Ca<sup>2+</sup>) handling proteins and evoke force production in type II skeletal muscle, but not slow-twitch (type I) skeletal muscle, in mice [18]. However, three [35,54,57] of the four [35,36,54,57] studies reporting improved PP<sub>Time</sub>, and six [39,54,56,57,64,67] of the eleven [36,39,41,54,56–58,60,61,64,67] studies reporting improved MP<sub>First</sub> after NO<sub>3</sub><sup>-</sup> supplementation administered NO<sub>3</sub><sup>-</sup> acutely, and it has been reported that increased evoked muscle force production can occur independently of changes in Ca<sup>2+</sup> handling proteins in human skeletal muscle [98]. Therefore, the improvements in PP<sub>Time</sub> and MP<sub>First</sub> after NO<sub>3</sub><sup>-</sup> supplementation are likely to be underpinned by NO-cyclic guanosine monophosphate (cGMP)-mediated signalling and/or post-translational modification of protein thiols [99].

In contrast to the  $NO_3^-$  supplementation regime required to improve  $PP_{Time}$  and  $MP_{First}$ , TWD during high-intensity intermittent exercise was improved after  $NO_3^-$  supple-

mentation when the NO<sub>3</sub><sup>-</sup> dose was  $\geq$ 8 mmol, but not <8 mmol, and only with multipleday supplementation. There was also a greater TDC in the Yo-Yo IR1 after  $NO_3^-$  supplementation with all studies reporting this ergogenic effect employing multiple-day NO<sub>3</sub><sup>-</sup> supplementation at a daily dose  $\geq 8$  mmol. Greater ergogenic effects during high-intensity intermittent exercise after multiple-day, higher dose NO<sub>3</sub><sup>-</sup> supplementation might be linked to the greater time course to increase muscle  $[NO_2^-]$  after  $NO_3^-$  supplementation as, unlike muscle  $[NO_3^-]$ , muscle  $[NO_2^-]$  is not increased after acute  $NO_3^-$  ingestion [87,89] but can be increased after 7 days of  $NO_3^-$  ingestion [88]. Indeed, when mouse single myocytes were acutely exposed to increased  $NO_2^-$ , contractile function and  $Ca^{2+}$  handling were not altered in the earlier stages of a fatigue-inducing contraction protocol, whereas time to task failure was extended as a result of better maintenance of myocyte contractility,  $Ca^{2+}$  sensitivity, and  $Ca^{2+}$  pumping towards the latter stages of the protocol [100]. In human skeletal muscle, greater potential for improved muscle contractile responses during a fatigue-inducing 60 maximum voluntary contraction protocol has been reported during the initial contractions after acute  $NO_3^-$  ingestion [87] and following completion of the fatiguing protocol after multiple-day  $NO_3^-$  supplementation [101]. Skeletal muscle  $[NO_3^-]$  and  $[NO_2^-]$  increase in a duration-dependent manner following  $NO_3^-$  supplementation [88], and muscle  $[NO_3^-]$  declines during sustained high-intensity exercise [87,89] and is correlated with improved muscle force production [87]. Therefore, multiple-day  $NO_3^-$  supplementation with a  $NO_3^-$  dose exceeding 8 mmol may be more effective at improving MP during a single 15-30 s bout of high-intensity exercise or at improving TWD or TDC during high-intensity intermittent exercise by eliciting greater increases in muscle  $[NO_3^-]$  and  $[NO_2^-]$  to support greater  $NO_3^-$  reduction and NO generating potential during these high-intensity exercise settings. As such, NO<sub>3</sub><sup>-</sup> may impact skeletal muscle contractile function in a supplementation-strategy-dependent manner that may be mediated by different muscle exposures to NO<sub>3</sub><sup>-</sup> and NO<sub>2</sub><sup>-</sup>.

Although the findings of the current study may have implications for improving NO<sub>3</sub><sup>-</sup> supplementation strategies to bolster performance in different types of high-intensity exercise, there are several limitations of, and experimental considerations from, the studies included in this systematic review and meta-analysis. Firstly, the SMD was typically small across all variables that did exhibit an ergogenic effect after  $NO_3^-$  supplementation, which underscores the importance of assessing the translational potential of these findings to improve in-competition performance in sports where performance outcomes are dictated by the capability to perform high-intensity exercise. Moreover, the meta-analysis conducted on PP<sub>Time</sub> and MP exhibited high heterogeneity, indicating a substantial variation in the results of the included studies. Since a limited number of studies assessed plasma [NO<sub>3</sub><sup>-</sup>] and  $[NO_2^{-1}]$  and included female participants, not all planned sub-analyses could be completed. There was also limited assessment of the physiological mechanisms for any improvement in high-intensity exercise performance in the studies included in the current systematic review and meta-analyses. Therefore, further research is required to resolve the putative mechanisms for improved performance during single and repeated bouts of short duration high-intensity exercise and the extent to which such mechanisms are influenced by acute and multiple-day  $NO_3^-$  ingestion and mediated by plasma and muscle [NO<sub>3</sub><sup>-</sup>] and [NO<sub>2</sub><sup>-</sup>] and different population groups

#### 5. Conclusions

The current study conducted a systematic review and completed several meta analyses to evaluate the effect of dietary NO<sub>3</sub><sup>-</sup> supplementation of different aspects of high-intensity exercise performance, with sub-analyses conducted to provide wider contextual insight. It was observed that NO<sub>3</sub><sup>-</sup> supplementation lowered PP<sub>Time</sub>, increased MP and MP<sub>First</sub>, and increased TDC in the Yo-Yo IR1 test, supporting the ergogenic potential of dietary NO<sub>3</sub><sup>-</sup> supplementation for some aspects of high-intensity exercise performance. Sub-group analyses revealed that MP was more likely to be improved during a single >15 s-≤30 s versus ≤15 s bout rather than repeated bouts of high-intensity exercise, and that MP, TWD,

and TDC were more likely to be improved after multiple-day supplementation with a daily NO<sub>3</sub><sup>-</sup> dose  $\geq$ 8 mmol compared to acute ingestion of <8 mmol NO<sub>3</sub><sup>-</sup>. These findings improve our understanding of the ergogenic potential of dietary NO<sub>3</sub><sup>-</sup> supplementation for high-intensity exercise and can help inform NO<sub>3</sub><sup>-</sup> supplementation strategies to improve high-intensity exercise performance.

**Supplementary Materials:** The following supporting information can be downloaded at: https: //www.mdpi.com/article/10.3390/antiox12061194/s1: Search strategy; Table S1: Population, Intervention, Comparator, Outcome, Study design (PICOS) framework for study eligibility; Figure S1: Risk of bias summary for individual for crossover trials; Figure S2: Funnel plot evaluating publication bias of trials assessing mean peak power output (n = 12); Figure S3: Funnel plot evaluating publication bias of trials assessing mean of the mean power output (n = 12); Figure S4: Funnel plot evaluating publication bias of trials assessing mean power output during the first sprint (n = 10); Figure S5: Funnel plot evaluating publication bias of trials assessing mean power output during the first sprint (n = 10); Figure S6: Forrest plot for mean peak power output (a), peak power during the first sprint (b), and peak power during the last sprint (c) in the nitrate and placebo trials; Figure S7: Forrest plot for mean power output a supplementation compared to high nitrate dose  $\geq 8 \mod (a)$ , single day nitrate supplementation compared multiple days nitrate supplementation (b), single sprint compared to repeated sprints (c), exercise duration  $\leq 15$  s compared to exercise duration  $>15 \text{ s}-\leq 30 \text{ s}$  (d); Figure S8: Forrest plot for total work done in the nitrate and placebo trials.

Author Contributions: Conceptualization, S.J.B., N.S.A. and T.C.; methodology, S.J.B., N.S.A. and T.C; formal analysis, N.S.A., S.N.R., A.A. and T.C.; writing—original draft preparation, S.J.B. and N.S.A.; writing-review and editing, S.J.B., N.S.A., T.C., S.N.R. and A.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the NIHR Leicester Biomedical Research Centre.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: Data can be provided at reasonable request from corresponding authors.

**Conflicts of Interest:** The authors declare no conflict of interest.

## References

- Lundberg, J.O.; Weitzberg, E.; Gladwin, M.T. The Nitrate-Nitrite-Nitric Oxide Pathway in Physiology and Therapeutics. *Nat. Rev.* Drug Discov. 2008, 7, 156–167. [CrossRef] [PubMed]
- Kapil, V.; Khambata, R.S.; Jones, D.A.; Rathod, K.; Primus, C.; Massimo, G.; Fukuto, J.M.; Ahluwalia, A. The Noncanonical Pathway for in Vivo Nitric Oxide Generation: The Nitrate-Nitrite-Nitric Oxide Pathway. *Pharmacol. Rev.* 2020, 72, 692–766. [CrossRef] [PubMed]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC Consensus Statement: Dietary Supplements and the High-Performance Athlete. *Int. J. Sport Nutr. Exerc. Metab.* 2018, 52, 439–455. [CrossRef]
- 4. Peeling, P.; Binnie, M.J.; Goods, P.S.R.; Sim, M.; Burke, L.M. Evidence-Based Supplements for the Enhancement of Athletic Performance. *Int. J. Sport Nutr. Exerc. Metab.* 2018, 28, 178–187. [CrossRef]
- 5. Jones, A.M.; Vanhatalo, A.; Seals, D.R.; Rossman, M.J.; Piknova, B.; Jonvik, K.L. Dietary Nitrate and Nitric Oxide Metabolism: Mouth, Circulation, Skeletal Muscle, and Exercise Performance. *Med. Sci. Sports Exerc.* **2021**, *53*, 280–294. [CrossRef]
- 6. Ignarro, L.J.; Buga, G.M.; Wood, K.S.; Byrns, R.E. Artery and Vein Is Nitric Oxide. Sci. York 1987, 84, 9265–9269.
- Moon, Y.; Balke, J.E.; Madorma, D.; Siegel, M.P.; Knowels, G.; Brouckaert, P.; Buys, E.S.; Marcinek, D.J.; Percival, J.M. Nitric Oxide Regulates Skeletal Muscle Fatigue, Fiber Type, Microtubule Organization, and Mitochondrial ATP Synthesis Efficiency Through CGMP-Dependent Mechanisms. *Antioxid. Redox Signal.* 2017, 26, 966–985. [CrossRef]
- 8. Stamler, J.S.; Meissner, G. Physiology of Nitric Oxide in Skeletal Muscle. Physiol. Rev. 2001, 81, 209–237. [CrossRef]
- Suhr, F.; Gehlert, S.; Grau, M.; Bloch, W. Skeletal Muscle Function during Exercise-Fine-Tuning of Diverse Subsystems by Nitric Oxide. Int. J. Mol. Sci. 2013, 14, 7109–7139. [CrossRef]
- Bailey, S.J.; Winyard, P.; Vanhatalo, A.; Blackwell, J.R.; DiMenna, F.J.; Wilkerson, D.P.; Tarr, J.; Benjamin, N.; Jones, A.M. Dietary Nitrate Supplementation Reduces the O2 Cost of Low-Intensity Exercise and Enhances Tolerance to High-Intensity Exercise in Humans. J. Appl. Physiol. 2009, 107, 1144–1155. [CrossRef]
- Larsen, F.J.; Weitzberg, E.; Lundberg, J.O.; Ekblom, B. Effects of Dietary Nitrate on Oxygen Cost during Exercise. *Acta Physiol.* 2007, 191, 59–66. [CrossRef]

- 12. Bailey, S.; Vanhatalo, A.; Winyard, P.; Jones, A. The Nitrate-Nitrite-Nitric Oxide Pathway: Its Role in Human Exercise Physiology. *Eur. J. Sport Sci.* 2012, *12*, 309–320. [CrossRef]
- Bailey, S.J.; Fulford, J.; Vanhatalo, A.; Winyard, P.G.; Blackwell, J.R.; DiMenna, F.J.; Wilkerson, D.P.; Benjamin, N.; Jones, A.M. Dietary Nitrate Supplementation Enhances Muscle Contractile Efficiency during Knee-Extensor Exercise in Humans. J. Appl. Physiol. 2010, 109, 135–148. [CrossRef]
- 14. Larsen, F.J.; Schiffer, T.A.; Borniquel, S.; Sahlin, K.; Ekblom, B.; Lundberg, J.O.; Weitzberg, E. Dietary Inorganic Nitrate Improves Mitochondrial Efficiency in Humans. *Cell Metab.* **2011**, *13*, 149–159. [CrossRef]
- Betteridge, S.; Bescós, R.; Martorell, M.; Pons, A.; Garnham, A.P.; Stathis, C.C.; McConell, G.K. No Effect of Acute Beetroot Juice Ingestion on Oxygen Consumption, Glucose Kinetics, or Skeletal Muscle Metabolism during Submaximal Exercise in Males. J. Appl. Physiol. 2016, 120, 391–398. [CrossRef]
- Whitfield, J.; Ludzki, A.; Heigenhauser, G.J.F.; Senden, J.M.G.; Verdijk, L.B.; van Loon, L.J.C.; Spriet, L.L.; Holloway, G.P. Beetroot Juice Supplementation Reduces Whole Body Oxygen Consumption but Does Not Improve Indices of Mitochondrial Efficiency in Human Skeletal Muscle. J. Physiol. 2016, 594, 421–435. [CrossRef]
- Jones, A.M.; Ferguson, S.K.; Bailey, S.J.; Vanhatalo, A.; Poole, D.C. Fiber Type-Specific Effects of Dietary Nitrate. *Exerc. Sport Sci. Rev.* 2016, 44, 53–60. [CrossRef]
- Hernández, A.; Schiffer, T.A.; Ivarsson, N.; Cheng, A.J.; Bruton, J.D.; Lundberg, J.O.; Weitzberg, E.; Westerblad, H. Dietary Nitrate Increases Tetanic [Ca 2+] i and Contractile Force in Mouse Fast-Twitch Muscle. J. Physiol. 2012, 590, 3575–3583. [CrossRef]
- 19. Ferguson, S.K.; Hirai, D.M.; Copp, S.W.; Holdsworth, C.T.; Allen, J.D.; Jones, A.M.; Musch, T.I.; Poole, D.C. Impact of Dietary Nitrate Supplementation via Beetroot Juice on Exercising Muscle Vascular Control in Rats. J. Physiol. 2013, 591, 547–557. [CrossRef]
- Breese, B.C.; Mcnarry, M.A.; Marwood, S.; Blackwell, J.R.; Bailey, S.J.; Jones, A.M. Beetroot Juice Supplementation Speeds O2 Uptake Kinetics and Improves Exercise Tolerance during Severe-Intensity Exercise Initiated from an Elevated Metabolic Rate. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 2013, 305, R1441–R1450. [CrossRef]
- Porcelli, S.; Ramaglia, M.; Bellistri, G.; Pavei, G.; Pugliese, L.; Montorsi, M.; Rasica, L.; Marzorati, M. Aerobic Fitness Affects the Exercise Performance Responses to Nitrate Supplementation. *Med. Sci. Sports Exerc.* 2015, 47, 1643–1651. [CrossRef] [PubMed]
- 22. Jones, A.M. Dietary Nitrate Supplementation and Exercise Performance. Sport. Med. 2014, 44, 35–45. [CrossRef] [PubMed]
- 23. Krustrup, P.; Söderlund, K.; Mohr, M.; Bangsbo, J. The Slow Component of Oxygen Uptake during Intense, Sub-Maximal Exercise in Man Is Associated with Additional Fibre Recruitment. *Pflugers Arch. Eur. J. Physiol.* **2004**, 447, 855–866. [CrossRef] [PubMed]
- Krustrup, P.; Söderlund, K.; Relu, M.U.; Ferguson, R.A.; Bangsbo, J. Heterogeneous Recruitment of Quadriceps Muscle Portions and Fibre Types during Moderate Intensity Knee-Extensor Exercise: Effect of Thigh Occlusion. *Scand. J. Med. Sci. Sport.* 2009, 19, 576–584. [CrossRef]
- Vøllestad, N.K.; Blom, P.C.S. Effect of Varying Exercise Intensity on Glycogen Depletion in Human Muscle Fibres. *Acta Physiol.* Scand. 1985, 125, 395–405. [CrossRef]
- Castello, P.R.; David, P.S.; McClure, T.; Crook, Z.; Poyton, R.O. Mitochondrial Cytochrome Oxidase Produces Nitric Oxide under Hypoxic Conditions: Implications for Oxygen Sensing and Hypoxic Signaling in Eukaryotes. *Cell Metab.* 2006, *3*, 277–287. [CrossRef]
- 27. Li, H.; Cui, H.; Kundu, T.K.; Alzawahra, W.; Zweier, J.L. Nitric Oxide Production from Nitrite Occurs Primarily in Tissues Not in the Blood: Critical Role of Xanthine Oxidase and Aldehyde Oxidase. *J. Biol. Chem.* **2008**, *283*, 17855–17863. [CrossRef]
- Modin, A.; Björne, H.; Herulf, M.; Alving, K.; Weitzberg, E.; Lundberg, J.O.N. Nitrite-Derived Nitric Oxide: A Possible Mediator of "acidic-Metabolic" Vasodilation. *Acta Physiol. Scand.* 2001, 171, 9–16. [CrossRef]
- 29. Harkema, S.J.; Adams, G.R.; Meyer, R.A. Acidosis Has No Effect on the ATP Cost of Contraction in Cat Fast- and Slow-Twitch Skeletal Muscles. *Am. J. Physiol. Cell Physiol.* **1997**, 272, 485–490. [CrossRef]
- McDonough, P.; Behnke, B.J.; Padilla, D.J.; Musch, T.I.; Poole, D.C. Control of Microvascular Oxygen Pressures in Rat Muscles Comprised of Different Fibre Types. J. Physiol. 2005, 563, 903–913. [CrossRef]
- 31. Richardson, R.S.; Noyszewski, E.A.; Kendrick, K.F.; Leigh, J.S.; Wagner, P.D. Myoglobin O2 Desaturation during Exercise: Evidence of Limited O2 Transport. *J. Clin. Investig.* **1995**, *96*, 1916–1926. [CrossRef]
- Bailey, S.J.; Varnham, R.L.; DiMenna, F.J.; Breese, B.C.; Wylie, L.J.; Jones, A.M. Inorganic Nitrate Supplementation Improves Muscle Oxygenation, O2 Uptake Kinetics, and Exercise Tolerance at High but Not Low Pedal Rates. J. Appl. Physiol. 2015, 118, 1396–1405. [CrossRef]
- Coggan, A.R.; Leibowitz, J.L.; Kadkhodayan, A.; Thomas, D.P.; Ramamurthy, S.; Spearie, C.A.; Waller, S.; Farmer, M.; Peterson, L.R. Effect of Acute Dietary Nitrate Intake on Maximal Knee Extensor Speed and Power in Healthy Men and Women. *Nitric. Oxide Biol. Chem.* 2015, 48, 16–21. [CrossRef]
- Rimer, E.G.; Peterson, L.R.; Coggan, A.R.; Martin, J.C. Acute Dietary Nitrate Supplementation Increases Maximal Cycling Power in Athletes. *Physiol. Behav.* 2017, 176, 139–148. [CrossRef]
- Jodra, P.; Domínguez, R.; Sánchez-Oliver, A.J.; Veiga-Herreros, P.; Bailey, S.J. Effect of Beetroot Juice Supplementation on Mood, Perceived Exertion, and Performance during a 30-Second Wingate Test. Int. J. Sports Physiol. Perform. 2020, 15, 243–248. [CrossRef]
- Jonvik, K.L.; Nyakayiru, J.; Van Dijk, J.W.; Maase, K.; Ballak, S.B.; Senden, J.M.G.; Van Loon, L.J.C.; Verdijk, L.B. Repeated-Sprint Performance and Plasma Responses Following Beetroot Juice Supplementation Do Not Differ between Recreational, Competitive and Elite Sprint Athletes. *Eur. J. Sport Sci.* 2018, 18, 524–533. [CrossRef]

- 37. Thompson, C.; Vanhatalo, A.; Jell, H.; Fulford, J.; Carter, J.; Nyman, L.; Bailey, S.J.; Jones, A.M. Dietary Nitrate Supplementation Improves Sprint and High-Intensity Intermittent Running Performance. *Nitric. Oxide Biol. Chem.* **2016**, *61*, 55–61. [CrossRef]
- Wylie, L.J.; Mohr, M.; Krustrup, P.; Jackman, S.R.; Ermidis, G.; Kelly, J.; Black, M.I.; Bailey, S.J.; Vanhatalo, A.; Jones, A.M. Dietary Nitrate Supplementation Improves Team Sport-Specific Intense Intermittent Exercise Performance. *Eur. J. Appl. Physiol.* 2013, 113, 1673–1684. [CrossRef]
- Bender, D.; Townsend, J.R.; Vantrease, W.C.; Marshall, A.C.; Henry, R.N.; Heffington, S.H.; Johnson, K.D. Acute Beetroot Juice Administration Improves Peak Isometric Force Production in Adolescent Males. *Appl. Physiol. Nutr. Metab.* 2018, 43, 816–821. [CrossRef]
- López-Samanes, Á.; Pérez-López, A.; Moreno-Pérez, V.; Nakamura, F.Y.; Acebes-Sánchez, J.; Quintana-Milla, I.; Sánchez-Oliver, A.J.; Moreno-Pérez, D.; Fernández-Elías, V.E.; Domínguez, R. Effects of Beetroot Juice Ingestion on Physical Performance in Highly Competitive Tennis Players. *Nutrients* 2020, *12*, 584. [CrossRef]
- 41. Wylie, L.J.; Bailey, S.J.; Kelly, J.; Blackwell, J.R.; Vanhatalo, A.; Jones, A.M. Influence of Beetroot Juice Supplementation on Intermittent Exercise Performance. *Eur. J. Appl. Physiol.* **2016**, *116*, 415–425. [CrossRef] [PubMed]
- Alvares, T.S.; de Oliveira, G.V.; Volino-Souza, M.; Conte-Junior, C.A.; Murias, J.M. Effect of Dietary Nitrate Ingestion on Muscular Performance: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. *Crit. Rev. Food Sci. Nutr.* 2021, 62, 5284–5306. [CrossRef]
- 43. Coggan, A.R.; Baranauskas, M.N.; Hinrichs, R.J.; Liu, Z.; Carter, S.J. Effect of Dietary Nitrate on Human Muscle Power: A Systematic Review and Individual Participant Data Meta-Analysis. J. Int. Soc. Sports Nutr. 2021, 18, 66. [CrossRef] [PubMed]
- Van De Walle, G.P.; VUKOVICH, M.D.; VanDeWalle, G.P.; VUKOVICH, M.D. The Effect of Nitrate Supplementation on Exercise Tolerance and Performance: A Systematic Review and Meta-Analysis. J. Strength Cond. Res. 2018, 32, 1796–1808. [CrossRef] [PubMed]
- Gao, C.; Gupta, S.; Adli, T.; Hou, W.; Coolsaet, R.; Hayes, A.; Kim, K.; Pandey, A.; Gordon, J.; Chahil, G.; et al. The Effects of Dietary Nitrate Supplementation on Endurance Exercise Performance and Cardiorespiratory Measures in Healthy Adults: A Systematic Review and Meta-Analysis. J. Int. Soc. Sports Nutr. 2021, 18, 55. [CrossRef]
- 46. McMahon, N.F.; Leveritt, M.D.; Pavey, T.G. The Effect of Dietary Nitrate Supplementation on Endurance Exercise Performance in Healthy Adults: A Systematic Review and Meta-Analysis. *Sport. Med.* **2017**, *47*, 735–756. [CrossRef] [PubMed]
- Campos, H.O.; Drummond, L.R.; Rodrigues, Q.T.; Machado, F.S.M.; Pires, W.; Wanner, S.P.; Coimbra, C.C. Nitrate Supplementation Improves Physical Performance Specifically in Non-Athletes during Prolonged Open-Ended Tests: A Systematic Review and Meta-Analysis. *Br. J. Nutr.* 2018, *119*, 636–657. [CrossRef]
- Senefeld, J.W.; Wiggins, C.C.; Regimbal, R.J.; Dominelli, P.B.; Baker, S.E.; Joyner, M.J.; Wiggins, C.C.; Regimbal, R.J.; Dominelli, P.B.; Baker, S.E.; et al. Ergogenic Effect of Nitrate Supplementation: A Systematic Review and Meta-Analysis. *Med. Sci. Sport. Exerc.* 2020, 52, 2250–2261. [CrossRef]
- 49. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. *BMJ* **2009**, *339*, *332*–*336*. [CrossRef]
- 50. Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—a Web and Mobile App for Systematic Reviews. *Syst. Rev.* **2016**, *5*, 210. [CrossRef]
- Thompson, C.; Wylie, L.J.; Fulford, J.; Kelly, J.; Black, M.I.; McDonagh, S.T.J.; Jeukendrup, A.E.; Vanhatalo, A.; Jones, A.M. Dietary Nitrate Improves Sprint Performance and Cognitive Function during Prolonged Intermittent Exercise. *Eur. J. Appl. Physiol.* 2015, 115, 1825–1834. [CrossRef]
- 52. Porcelli, S.; Pugliese, L.; Rejc, E.; Pavei, G.; Bonato, M.; Montorsi, M.; La Torre, A.; Rasica, L.; Marzorati, M. Effects of a Short-Term High-Nitrate Diet on Exercise Performance. *Nutrients* **2016**, *8*, 534. [CrossRef]
- 53. Muggeridge, D.J.; Howe, C.C.F.; Spendiff, O.; Pedlar, C.; James, P.E.; Easton, C. The Effects of a Single Dose of Concentrated Beetroot Juice on Performance in Trained Flatwater Kayakers. *Int. J. Sport Nutr. Exerc. Metab.* **2013**, *23*, 498–506. [CrossRef]
- 54. Cuenca, E.; Jodra, P.; Pérez-López, A.; González-Rodríguez, L.G.; da Silva, S.F.; Veiga-Herreros, P.; Domínguez, R.; Fernandes da Silva, S.; Veiga-Herreros, P.; Domínguez, R. Effects of Beetroot Juice Supplementation on Performance and Fatigue in a 30-s All-Out Sprint Exercise: A Randomized, Double-Blind Cross-Over Study. *Nutrients* 2018, 10, 1222. [CrossRef]
- Nyakayiru, J.; Jonvik, K.L.; Trommelen, J.; Pinckaers, P.J.M.; Senden, J.M.; van Loon, L.J.C.; Verdijk, L.B. Beetroot Juice Supplementation Improves High-Intensity Intermittent Type Exercise Performance in Trained Soccer Players. *Nutrients* 2017, *9*, 314. [CrossRef]
- 56. Smith, K.; Muggeridge, D.J.; Easton, C.; Ross, M.D. An Acute Dose of Inorganic Dietary Nitrate Does Not Improve High-Intensity, Intermittent Exercise Performance in Temperate or Hot and Humid Conditions. *Eur. J. Appl. Physiol.* **2019**, *119*, 723–733. [CrossRef]
- 57. Domínguez, R.; Garnacho-Castaño, M.V.; Cuenca, E.; García-Fernández, P.; Muñoz-González, A.; de Jesús, F.; Lozano-Estevan, M.D.C.; da Silva, S.F.; Veiga-Herreros, P.; Maté-Muñoz, J.L.; et al. Effects of Beetroot Juice Supplementation on a 30-s High-Intensity Inertial Cycle Ergometer Test. *Nutrients* 2017, 9, 1360. [CrossRef]
- 58. Corry, L.R.; Gee, T.I. Dietary Nitrate Enhances Power Output During the Early Phases of Maximal Intensity Sprint Cycling. *Int. J. Coach. Sci.* 2015, *9*, 87–97.
- 59. Kramer, S.J.; Baur, D.A.; Spicer, M.T.; Vukovich, M.D.; Ormsbee, M.J. The Effect of Six Days of Dietary Nitrate Supplementation on Performance in Trained CrossFit Athletes. *J. Int. Soc. Sport. Nutr.* **2016**, *13*, 39. [CrossRef]

- 60. Christensen, P.M.; Nyberg, M.; Bangsbo, J. Influence of Nitrate Supplementation on VO2 Kinetics and Endurance of Elite Cyclists. *Scand. J. Med. Sci. Sport.* 2013, 23, 21–31. [CrossRef] [PubMed]
- 61. Dumar, A.M.; Huntington, A.F.; Rogers, R.R.; Kopec, T.J.; Williams, T.D.; Ballmann, C.G. Acute Beetroot Juice Supplementation Attenuates Morning-Associated Decrements in Supramaximal Exercise Performance in Trained Sprinters. *Int. J. Environ. Res. Public Health* **2021**, *18*, 412. [CrossRef] [PubMed]
- 62. Esen, O.; Domínguez, R.; Karayigit, R. Acute Beetroot Juice Supplementation Enhances Intermittent Running Performance but Does Not Reduce Oxygen Cost of Exercise among Recreational Adults. *Nutrients* **2022**, *14*, 2839. [CrossRef]
- Pawlak-Chaouch, M.; Boissière, J.; Munyaneza, D.; Gamelin, F.X.; Cuvelier, G.; Berthoin, S.; Aucouturier, J. Beetroot Juice Does Not Enhance Supramaximal Intermittent Exercise Performance in Elite Endurance Athletes. J. Am. Coll. Nutr. 2019, 38, 729–738. [CrossRef]
- 64. Bernardi, B.B.; Schoenfeld, B.J.; Alves, R.C.; Urbinati, K.S.; McAnulty, S.R.; Junior, T.P.S. Acute Supplementation with Beetroot Juice Does Not Enhance Exercise Performance among Well-Trained Athletes: A Randomized Crossover Study. J. Exerc. Physiol. Online **2018**, 21, 1–12.
- 65. Aucouturier, J.; Boissière, J.; Pawlak-Chaouch, M.; Cuvelier, G.; Gamelin, F.-X.X. Effect of Dietary Nitrate Supplementation on Tolerance to Supramaximal Intensity Intermittent Exercise. *Nitric Oxide Biol. Chem.* **2015**, *49*, 16–25. [CrossRef]
- 66. Martin, K.; Smee, D.; Thompson, K.G.; Rattray, B. No Improvement of Repeated-Sprint Performance with Dietary Nitrate. *Int. J. Sport. Physiol. Perform.* 2014, 9, 845–850. [CrossRef]
- 67. Roelofs, E.J.; Smith-Ryan, A.E.; Trexler, E.T.; Hirsch, K.R.; Mock, M.G. Effects of Pomegranate Extract on Blood Flow and Vessel Diameter after High-Intensity Exercise in Young, Healthy Adults. *Eur. J. Sport Sci.* **2017**, *17*, 317–325. [CrossRef] [PubMed]
- 68. Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A Revised Tool for Assessing Risk of Bias in Randomised Trials. *BMJ* **2019**, *366*, 14898. [CrossRef]
- 69. Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring Inconsistency in Meta-Analyses. *Br. Med. J.* 2003, 327, 557–560. [CrossRef]
- 70. The Cochrane Collaboration Review Manager Web (RevMan Web) 5.4 2020. Available online: revman.cochrane.org (accessed on 31 January 2022).
- 71. DerSimonian, R.; Laird, N. Meta-Analysis in Clinical Trials. Control. Clin. Trials 1986, 7, 177–188. [CrossRef]
- 72. Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Erlbaum: Hillsdale, NJ, USA, 1988; pp. 11–13.
- 73. Elbourne, D.R.; Altman, D.G.; Higgins, J.P.T.; Curtin, F.; Worthington, H.V.; Vail, A. Meta-Analyses Involving Cross-over Trials: Methodological Issues. *Int. J. Epidemiol.* **2002**, *31*, 140–149. [CrossRef]
- 74. Buck, C.L.; Henry, T.; Guelfi, K.; Dawson, B.; McNaughton, L.R.; Wallman, K. Effects of Sodium Phosphate and Beetroot Juice Supplementation on Repeated-Sprint Ability in Females. *Eur. J. Appl. Physiol.* **2015**, *115*, 2205–2213. [CrossRef] [PubMed]
- Reynolds, C.M.E.E.; Evans, M.; Halpenny, C.; Hughes, C.; Jordan, S.; Quinn, A.; Hone, M.; Egan, B. Acute Ingestion of Beetroot Juice Does Not Improve Short-Duration Repeated Sprint Running Performance in Male Team Sport Athletes. J. Sport. Sci. 2020, 38, 2063–2070. [CrossRef]
- 76. Spiegelhalder, B.; Eisenbrand, G.; Preussmann, R. Influence of Dietary Nitrate on Nitrite Content of Human Saliva: Possible Relevance to in Vivo Formation of N-Nitroso Compounds. *Food Cosmet. Toxicol.* **1976**, *14*, 545–548. [CrossRef]
- 77. Qin, L.; Liu, X.; Sun, Q.; Fan, Z.; Xia, D.; Ding, G.; Ong, H.L.; Adams, D.; Gahl, W.A.; Zheng, C.; et al. Sialin (SLC17A5) Functions as a Nitrate Transporter in the Plasma Membrane. *Proc. Natl. Acad. Sci. USA* **2012**, *109*, 13434–13439. [CrossRef] [PubMed]
- Lundberg, J.O.; Govoni, M. Inorganic Nitrate Is a Possible Source for Systemic Generation of Nitric Oxide. *Free Radic. Biol. Med.* 2004, 37, 395–400. [CrossRef]
- Burleigh, M.C.; Liddle, L.; Monaghan, C.; Muggeridge, D.J.; Sculthorpe, N.; Butcher, J.P.; Henriquez, F.L.; Allen, J.D.; Easton, C. Salivary Nitrite Production Is Elevated in Individuals with a Higher Abundance of Oral Nitrate-Reducing Bacteria. *Free Radic. Biol. Med.* 2018, 120, 80–88. [CrossRef]
- Hyde, E.R.; Andrade, F.; Vaksman, Z.; Parthasarathy, K.; Jiang, H.; Parthasarathy, D.K.; Torregrossa, A.C.; Tribble, G.; Kaplan, H.B.; Petrosino, J.F.; et al. Metagenomic Analysis of Nitrate-Reducing Bacteria in the Oral Cavity: Implications for Nitric Oxide Homeostasis. *PLoS ONE* 2014, 9, e88645. [CrossRef]
- Vanhatalo, A.; Blackwell, J.R.; Heureux, J.E.L.; Williams, D.W.; Smith, A.; Van Der Giezen, M.; Winyard, P.G.; Kelly, J.; Jones, A.M. Free Radical Biology and Medicine Nitrate-Responsive Oral Microbiome Modulates Nitric Oxide Homeostasis and Blood Pressure in Humans. *Free Radic. Biol. Med.* 2018, 124, 21–30. [CrossRef]
- 82. Wylie, L.J.; Kelly, J.; Bailey, S.J.; Blackwell, J.R.; Skiba, P.F.; Winyard, P.G.; Jeukendrup, A.E.; Vanhatalo, A.; Jones, A.M. Beetroot Juice and Exercise: Pharmacodynamic and Dose-Response Relationships. *J. Appl. Physiol.* **2013**, *115*, 325–336. [CrossRef]
- Abu-Alghayth, M.; Vanhatalo, A.; Wylie, L.J.; McDonagh, S.T.; Thompson, C.; Kadach, S.; Kerr, P.; Smallwood, M.J.; Jones, A.M.; Winyard, P.G. S-Nitrosothiols, and Other Products of Nitrate Metabolism, Are Increased in Multiple Human Blood Compartments Following Ingestion of Beetroot Juice. *Redox Biol.* 2021, 43, 101974. [CrossRef] [PubMed]
- 84. Bender, D.; Schwarz, G. Nitrite-Dependent Nitric Oxide Synthesis by Molybdenum Enzymes. *FEBS Lett.* **2018**, *592*, 2126–2139. [CrossRef] [PubMed]
- 85. van Faassen, E.E.; Bahrami, S.; Feelisch, M.; Hogg, N.; Kelm, M.; Kim-Shapiro, D.B.; Kozlov, A.V.; Li, H.; Lundberg, J.O.; Mason, R.; et al. Nitrite as Regulator of Hypoxic Signaling in Mammalian Physiology. *Med. Res. Rev.* **2009**, *29*, 683–741. [CrossRef]

- 86. Coggan, A.R.; Broadstreet, S.R.; Mahmood, K.; Mikhalkova, D.; Madigan, M.; Bole, I.; Park, S.; Leibowitz, J.L.; Kadkhodayan, A.; Thomas, D.P.; et al. Dietary Nitrate Increases VO 2 Peak and Performance but Does Not Alter Ventilation or Efficiency in Patients With Heart Failure With Reduced Ejection Fraction. J. Card. Fail. 2018, 24, 65–73. [CrossRef]
- Kadach, S.; Won, J.; Zdravko, P.; Matthew, S.; Vanhatalo, A.; Burnley, M.; Walter, P.J.; Cai, H.; Schechter, A.N.; Piknova, B.; et al. 15 N-Labeled Dietary Nitrate Supplementation Increases Human Skeletal Muscle Nitrate Concentration and Improves Muscle Torque Production. *Acta Physiol.* 2023, 237, e13924. [CrossRef]
- 88. Gilliard, C.N.; Lam, J.K.; Cassel, K.S.; Park, J.W.; Schechter, A.N.; Piknova, B.; Branch, M. Effect of Dietary Nitrate Levels on Nitrate Fluxes in Rat Skeletal Muscle and Liver. *Nitric. Oxide* **2018**, *75*, 1–7. [CrossRef]
- Wylie, L.J.; Park, J.W.; Vanhatalo, A.; Kadach, S.; Black, M.I.; Stoyanov, Z.; Schechter, A.N.; Jones, A.M.; Piknova, B. Human Skeletal Muscle Nitrate Store: Influence of Dietary Nitrate Supplementation and Exercise. J. Physiol. 2019, 597, 5565–5576. [CrossRef]
- 90. Srihirun, S.; Park, J.W.; Teng, R.; Sawaengdee, W.; Piknova, B.; Schechter, A.N.; Branch, M.; Diseases, K. Nitrate Uptake and Metabolism in Human Skeletal Muscle Cell Cultures. *Nitric. Oxide Biol. Chem.* **2020**, *94*, 1–8. [CrossRef]
- 91. Zhang, Z.; Naughton, D.; Winyard, P.G.; Benjamin, N.; Blake, D.R.; Symons, M. Generation of Nitric Oxide by a Nitrite Reductase Activity of Xanthine Oxidase: A Potential Pathway for Nitric Oxide Formation in the Absence of Nitric Oxide Synthase Activity. *Biochem. Biophys. Res. Commun.* **1998**, 249, 767–772. [CrossRef]
- Jansson, E.A.; Huang, L.; Malkey, R.; Govoni, M.; Nihlén, C.; Olsson, A.; Stensdotter, M.; Petersson, J.; Holm, L.; Weitzberg, E.; et al. A Mammalian Functional Nitrate Reductase That Regulates Nitrite and Nitric Oxide Homeostasis. *Nat. Chem. Biol.* 2008, 4, 411–417. [CrossRef]
- 93. Piknova, B.; Park, J.W.; Kwan Jeff Lam, K.; Schechter, A. Nitrate as a Source of Nitrite and Nitric Oxide during Exercise Hyperemia in Rat Skeletal Muscle. *Nitric. Oxide* 2016, 55–56, 54–61. [CrossRef]
- 94. Hellsten, Y.; Frandsen, U.; Ørthenblad, N.; Sjødin, B.; Richter, E.A. Xanthine Oxidase in Human Skeletal Muscle Following Eccentric Exercise: A Role in Inflammation. *J. Physiol.* **1997**, *498*, 239–248. [CrossRef]
- 95. Nyberg, M.; Christensen, P.M.; Blackwell, J.R.; Hostrup, M.; Jones, A.M.; Bangsbo, J. Nitrate-Rich Beetroot Juice Ingestion Reduces Skeletal Muscle O2 Uptake and Blood Flow during Exercise in Sedentary Men. J. Physiol. 2021, 599, 5203–5214. [CrossRef]
- 96. Smith, J.C.; Hill, D.W. Contribution of Energy Systems during a Wingate Power Test. Br. J. Sport. Med. 1991, 25, 196–199. [CrossRef]
- Bogdanis, G.C.; Nevill, M.E.; Boobis, L.H.; Lakomy, H.K.A. Contribution of Phosphocreatine and Aerobic Metabolism to Energy Supply during Repeated Sprint Exercise. J. Appl. Physiol. 1996, 80, 876–884. [CrossRef]
- 98. Whitfield, J.; Gamu, D.; Heigenhauser, G.J.F.; Van Loon, L.J.C.; Spriet, L.L.; Tupling, A.R.; Holloway, G.P. Beetroot Juice Increases Human Muscle Force without Changing Ca2+-Handling Proteins. *Med. Sci. Sport. Exerc.* 2017, 49, 2016–2024. [CrossRef]
- Coggan, A.R.; Peterson, L.R. Dietary Nitrate Enhances the Contractile Properties of Human Skeletal Muscle. *Exerc. Sport Sci. Rev.* 2018, 46, 254–261. [CrossRef]
- 100. Bailey, S.J.; Gandra, P.G.; Jones, A.M.; Hogan, M.C.; Nogueira, L. Incubation with Sodium Nitrite Attenuates Fatigue Development in Intact Single Mouse Fibres at Physiological PO2. *J. Physiol.* **2019**, *597*, *5429–5443*. [CrossRef]
- Tillin, N.A.; Moudy, S.; Nourse, K.M.; Tyler, C.J. Nitrate Supplement Benefits Contractile Forces in Fatigued but Not Unfatigued Muscle. *Med. Sci. Sport. Exerc.* 2018, 50, 2122–2131. [CrossRef]

**Disclaimer/Publisher's Note:** The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.