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Abstract: Diabetic nephropathy (DN) remains the leading cause of vascular morbidity and mortality
in diabetes patients. Despite the progress in understanding the diabetic disease process and advanced
management of nephropathy, a number of patients still progress to end-stage renal disease (ESRD).
The underlying mechanism still needs to be clarified. Gaseous signaling molecules, so-called gaso-
transmitters, such as nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), have been
shown to play an essential role in the development, progression, and ramification of DN depending
on their availability and physiological actions. Although the studies on gasotransmitter regulations
of DN are still emerging, the evidence revealed an aberrant level of gasotransmitters in patients
with diabetes. In studies, different gasotransmitter donors have been implicated in ameliorating
diabetic renal dysfunction. In this perspective, we summarized an overview of the recent advances in
the physiological relevance of the gaseous molecules and their multifaceted interaction with other
potential factors, such as extracellular matrix (ECM), in the severity modulation of DN. Moreover, the
perspective of the present review highlights the possible therapeutic interventions of gasotransmitters
in ameliorating this dreaded disease.
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1. Introduction
1.1. Diabetic Nephropathy

Diabetic nephropathy (DN) is one of the leading causes of end-stage renal disease
(ESRD) in developed and developing countries and is predicted to grow to 20–30% of
the patients with type 1 diabetes (T1D) and type 2 diabetes (T2D) combined. The various
risk factors responsible for the development of renal disease in individuals with renal
dysfunction include the time span of diabetes, age at diagnosis, race, poor glycemic control,
hypertension, genetic susceptibility, and dietary composition, among others [1–4]. How-
ever, the precise pathogenic mechanisms associated with the initiation and progression of
DN remained incompletely understood. One of the hallmarks of DN is the progressive
expansion of the mesangial matrix, which is developed by the accumulation of the compo-
nents of the extracellular matrix (ECM) [5]. Alteration in local gene expression of humoral
growth factors, such as transforming growth factor-β (TGF-β), connective tissue growth
factor (CTGF), and platelet-derived growth factor (PDGF), may promote elevated produc-
tion of the ECM component, e.g., fibronectin and collagen IV, or decreased degradation by
matrix metalloproteinases, e.g., MMP-1 and MMP-2, in DN [6–8].

DN in humans undergoes several distinct pathophysiological changes, including an
early stage of glomerular hyperfiltration, which is followed by the so-called silent phase
when the glomerular filtration rate (GFR) becomes normal [9]. Subsequent development of
microalbuminuria, dipstick-positive proteinuria, and thereafter a continuous decrease in
the GFR leads to ESRD [10,11].
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Nonetheless, the pathogenesis of DN is a multifactorial disease where hyperglycemia
initiates and triggers a number of pathophysiological events. Recent advances in diabetes
research provide us with many key insights into DN at the molecular and cellular level
that involve oxidant and antioxidant balance, extracellular matrix turnover, matrix met-
alloproteinases and their tissue inhibitors, gap junction proteins, noncoding RNAs, and
the microbiome, to name a few. In addition, a variety of gasotransmitters, such as CO, NO,
and H2S, play a vital role in the development and progression of DN (Figure 1). In light
of the current literature, we summarize the biology of these gaseous molecules and their
interaction and involvement in modulating DN in this review. In the end, we also discuss
their potential therapeutic implications to intervene this devastating disease.
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thionine γ-lyase (CSE), as well as by the combined action of 3-mercaptopyruvate sulfurtransferase 
(3-MST) and cysteine aminotransferase (CAT). (B) NO is synthesized by the catalytic activity of ni-
tric oxide synthase (NOS) via a series of redox reactions, with degradation of L-arginine to L-citrul-
line in the presence of NADPH. (C) In the presence of functional heme oxygenase (HO), the por-
phyrin ring of heme is broken and oxidized to produce CO, ferrous iron, and biliverdin. These gas-
otransmitters exert several responses, some of them mentioned in the figure, which help to prevent 
deleterious effects of DN. 

1.2. Gaseous Molecules (CO, NO, and H2S) and DN 
1.2.1. Carbon Monoxide (CO) and DN 

Over the years, carbon monoxide (CO) has emerged as a gasotransmitter that is pro-
duced by the different heme oxygenases (HOs) as a product of heme metabolism [12]. 
There are three different isoforms of HO, viz., the inducible form, HO-1, and the two con-
stitutive isoforms, HO-2 and HO-3. Among the three isoforms, HO-1 and HO-2 are phys-
iologically active, while the physiological relevance of HO-3 is yet to be confirmed [13,14]. 
In the kidney, HO-1 and HO-2 render cytoprotection and act as physiologic regulators of 

Figure 1. Diabetic nephropathy and gaseous molecules. Schematic representations of the pathway of
synthesis of the gasotransmitters and their beneficial effects in diabetic nephropathy: (A) H2S is syn-
thesized from L-cysteine by the enzymatic action of cystathionine β-synthase (CBS) and cystathionine
γ-lyase (CSE), as well as by the combined action of 3-mercaptopyruvate sulfurtransferase (3-MST)
and cysteine aminotransferase (CAT). (B) NO is synthesized by the catalytic activity of nitric oxide
synthase (NOS) via a series of redox reactions, with degradation of L-arginine to L-citrulline in the
presence of NADPH. (C) In the presence of functional heme oxygenase (HO), the porphyrin ring of
heme is broken and oxidized to produce CO, ferrous iron, and biliverdin. These gasotransmitters
exert several responses, some of them mentioned in the figure, which help to prevent deleterious
effects of DN.

1.2. Gaseous Molecules (CO, NO, and H2S) and DN
1.2.1. Carbon Monoxide (CO) and DN

Over the years, carbon monoxide (CO) has emerged as a gasotransmitter that is pro-
duced by the different heme oxygenases (HOs) as a product of heme metabolism [12]. There
are three different isoforms of HO, viz., the inducible form, HO-1, and the two constitutive
isoforms, HO-2 and HO-3. Among the three isoforms, HO-1 and HO-2 are physiologically
active, while the physiological relevance of HO-3 is yet to be confirmed [13,14]. In the
kidney, HO-1 and HO-2 render cytoprotection and act as physiologic regulators of heme-
dependent protein synthesis. HO converts heme into biliverdin, iron, and CO. Various
physiological functions have been assigned to CO, such as vasodilation and inhibition of
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platelet aggregation. In skeletal muscle and leukocytes from T2D patients, HO-1 mRNA
was found to be dramatically decreased compared to that of non-diabetic controls [15,16].
Contrarily, in spite of an upregulated HO-1 expression, a reduction in the vasorelaxant
function of CO was observed in STZ-induced T1D rats [17]. CO production was found to
be decreased in aortic tissue in Zucker diabetic fatty (ZDF) rats, compared to that of con-
trols. Moreover, increasing HO-1 activity with cobalt protoporphyrin resulted in elevated
CO, which contributed to the decreased glucose levels and enhanced insulin sensitivity
in ZDF rats [18]. These findings suggest that increased insulin sensitivity might mediate
reduced vascular risk in the presence of elevated CO levels [18]. Hemin, an inducer of the
HO pathway, was found to be protective against renal inflammation and facilitated the
amelioration of DN [19–21]. The antioxidant effect of HO-1 seems to render renoprotection
in diabetes [22]. On the contrary, HO-2 deficiency leads to increased superoxide anion
and renal dysfunction following STZ-induced diabetes [23]. Thus, induction of HO-1 and
-2 activity has been beneficial to improve glucose metabolism and mitigate DN by attenuat-
ing hyperglycemia-induced oxidative injury [22,23].

In a nutshell, a reduced CO level is accompanied by insulin resistance and a reduction
in endothelial health, whereas an elevated level of CO remains beneficial in DN [24]. These
findings clearly suggest a plausible role of the HO-1/CO pathway, which can be exploited
for therapeutic intervention to restrict the development and progression of diabetes and its
complications. The effects of CO in DN are graphically represented in Figure 1C.

1.2.2. Nitric Oxide (NO) and DN

Nitric oxide (NO) is a short-lived lipophilic gaseous molecule produced in almost
all tissues and organs and involved in different biological functions under physiological
and pathological conditions. NO is a paracrine regulator, which was initially recognized
as an endothelium-derived relaxing factor [25]. It is endogenously produced from its
substrate L-arginine by three distinct nitric oxide synthase (NOS) enzymes, i.e., neuronal,
inducible, and endothelial NOSs (nNOS or NOS-1, iNOS or NOS-2, and eNOS or NOS-3,
respectively) [26]. All three forms of NOS are expressed by the kidney [27]. The nNOS
resides in neurons and skeletal muscle cells, and it mediates important neuronal cell–cell
interactions [28]. The iNOS remains in the vascular system and is predominantly active in
the immune system under oxidative stress and promotes inflammation [29]. In the kidney,
iNOS is produced in the proximal tubules and medulla during inflammation or sepsis and
may lead to oxidant injury [30]. The eNOS is expressed in the arterioles and glomerular
capillaries and is mainly involved in maintaining and regulating vascular tone [27,31]. NO
has been recognized to function as a vasodilator, inhibits platelet aggregation, and stabilizes
atherosclerotic plaques [32].

In diabetes, endothelial dysfunction leads to the impaired production of vascular
NO [33], and endothelial NO synthase gene (eNOS) polymorphisms have been identified
in a meta-analysis [34]. In addition, an association between eNOS polymorphisms leading
to reduced eNOS expression and the development of advanced nephropathy in T1D [35,36]
and T2D patients has been reported [37]. Contrarily, other studies did not find any potential
link between eNOS polymorphisms and DN [38–40].

However, dysfunctional eNOS has been shown to act as a common pathogenic path-
way in diabetic vascular complications, although the functional mechanism is unclear. In
induced diabetic eNOS KO mice, a study showed that hyperglycemia severity was similar
to diabetic WT mice. In contrast, the diabetic eNOS KO mice developed overt albuminuria,
hypertension, and glomerular mesangiolysis compared to diabetic WT and non-diabetic
control mice [41]. In addition, a significant reduction in glomerular hyperfiltration, en-
dothelial injury thickened GBM, and effacement of the focal foot process in the diabetic
eNOS KO mice were also observed [41]. These findings indicate a pivotal role of NO in the
pathogenesis of DN.

Additionally, differential production of NO has been evidenced in DN. Although an
increase in intra-renal NO synthesis was observed in the early stages of DN, a progressive
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decline in renal production, as well as the bioavailability of NO, was reported in the ad-
vanced stages of renal failure [42]. In the serum of DN patients with microalbuminuria,
significantly higher concentrations of NO end products, i.e., nitrite/nitrate, have been
reported [43]. Increased NO level either indicates an upregulated inflammatory response
by iNOS or a protective response against eNOS-mediated renal injury. Deficiency of eNOS
leading to accelerated nephropathy in diabetic mice [44,45] also supports a protective role
for NO in DN [46]. Moreover, in T2D rats, supplementation of a NOS cofactor, tetrahy-
drobiopterin (BH4), mitigated renal damage [47]. Reduced eNOS expression and NO
production have been suggested as the rationale for impaired NO-dependent vasodilata-
tion in T2D patients [48,49]. In a rat model, blockade of NOS results in insulin resistance,
indicating that loss of NO synthesis precedes T2D [50]. Reduced NO production was
observed in spontaneous as well as streptozotocin (STZ)-induced T1D rats [51,52]. The
therapeutic effect of a NO donor, molsidomine, was demonstrated in STZ-induced DN in
rats [53]. In the T2D mouse model, NO’s bioavailability is reduced, resulting in endothelial
dysfunction and impairment in the NO-mediated vasodilatation [54,55]. Apart from these
protective effects, NO is an important regulator in inducing nitrosative stress and inflam-
mation in diabetes. Therefore, NO plays a dual role in the development and progression
of diabetes and vascular dysfunction [56]. Some modes of NO action in DN are depicted
in Figure 1B.

The above findings clearly reveal that NO production is differentially modulated in
DN, and the lower expression of this gasotransmitter indicates a significant regulatory
role in DN. Enhancement of the redox potential by scavenging the ROS may be indicated
as the mechanistic insight of these findings. NO-based interventions have already been
applied in humans. Sodium nitroprusside (SNP) is clinically used as a direct NO donor
without any need for enzymatic action [57]. Nitroglycerin and other organic nitrates are
also well-established for their vasodilatory effects [58]. Organic nitrates act as NO donors
by breaking down nitrates into nitrite and NO [58]. Molsidomine and linsidomine have
been registered in many European countries as vasodilators by the non-enzymatic release
of NO. Moreover, high nitrate-rich dietary products can act as NO donors to reduce blood
pressure. For example, the intake of beetroot juice significantly lowers blood pressure,
accompanied by higher levels of total urinary nitrite/nitrate [59].

1.2.3. Hydrogen Sulfide (H2S) and DN

Over the last three decades, hydrogen sulfide (H2S) has overcome its past reputation
as a toxic gas and gained much attention as a molecule of various biological roles spanning
from neurotransmission, vasorelaxation [60], nociception [61,62], cytoprotection [63,64],
cardiovascular modulation [65], atherosclerosis [66], and ischemia-reperfusion injuries [67]
to diabetes complications [68,69]. In mammalian tissue, H2S is synthesized from L-cysteine
by two cytosolic pyridoxal 5′-phosphate (PLP)-dependent enzymes, i.e., cystathionine
β-synthase (CBS) and cystathionine γ-lyase (CSE) [70–72]. A PLP-independent enzyme
3-mercaptopyruvate sulfurtransferase (3MST) has also recently been identified to produce
H2S from 3-mercaptopyruvate [73,74] (Figure 1A).

A significant amount of H2S is produced in various mammalian tissues. H2S concen-
trations in the brain of mammals, including cows, rats, and humans, were found to be
very high, as high as 46 µM in serum and 50–160 µM in the brain of rats [75], though later
it was suggested that these recorded concentrations were seemingly high due to the lack
of standardized measurement methods [76]. Despite the controversy over the actual H2S
concentration present in blood, it is generally accepted that H2S acts as an endogenous
regulator of vasorelaxation and cardiovascular function [77,78]. H2S is also regarded as the
first gaseous KATP channel opener, since H2S injection triggered a transient yet significant
reduction in mean arterial blood pressure, which was antagonized by the application of
a specific KATP channel blocker, i.e., glibenclamide, and mimicked by pinacidil, a specific
KATP channel opener [79,80]. Thus, the hypotensive effect of H2S was supposed to be stim-
ulated by the relaxation of resistance blood vessels through the opening of KATP channels.
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Although the mechanism of KATP channel opening is not clear, it does not influence the
concentration of ATP. KATP channel activity is mainly involved in insulin secretion. KATP
channel opening of the pancreatic β cells inhibits insulin secretion, whereas its closure
augments the secretion. Though H2S acts as the gaseous KATP channel opener, it has no
channel specificity, and therefore, H2S exhibits some effect on insulin secretion.

In humans, diabetes is associated with lower levels of H2S. In a group of patients
having T2D, median plasma H2S levels were found to be decreased by 73% compared to
those in healthy individuals [81]. It is noteworthy to mention that obesity is correlated with
lower levels of H2S compared to those of healthy individuals. Taken together, human and
experimental diabetes are associated with decreased H2S bioavailability, which might be
linked to increased cardiovascular risk, as observed in diabetic patients.

Contrarily, elevated H2S concentration in Zucker diabetic rats indicates that H2S re-
mains high during insulin resistance conditions [82]. Similarly, streptozotocin-induced
diabetic rats showed elevated production of H2S in the pancreas [83] and increased expres-
sion of H2S-producing enzymes [84,85]. Although the nonspecific KATP channel opening
activity of H2S evokes some inhibitory effect on insulin secretion, the H2S level remains
high in hyperinsulinemia. On the other hand, we found that H2S-producing enzymes are
markedly lowered in the kidney of Ins2Akita diabetic mice [86]. Others have found similar
results in T1D patients [87]. Moreover, in spontaneously hypertensive rats, intraperitoneal
injection of exogenous H2S reduces blood pressure and prevents the progression of DN [88].
In STZ-induced T1D mice, intraperitoneal H2S administration attenuated oxidative stress,
inflammation, and mesangial cell proliferation [89]. However, these seemingly conflicting
results need to be confirmed by further evidence, and there remains a consensus that H2S
is associated with diabetic disease conditions.

Unfortunately, H2S has not yet been clinically used in humans, albeit intravenous Na2S
being administered in a phase 1 trial [90]. However, thiosulfate is used for the treatment
of end-stage renal disease [91], and it shows a protective role in a mice model of heart
failure [92] and hypertensive heart and renal disease in rats through H2S generation [93,94].
In addition, zofenopril and captopril, the sulfhydrylated ACE inhibitors, showed additional
beneficial responses in the trials [95], and the beneficial effects of sulfhydrylated ACE
inhibitors have been recently explained by the H2S release [96]. Since sulfate-reducing
bacteria produce H2S in the gut and significantly lower levels of H2S were observed in
germ-free mice [97], the dietary supplementation of sulfate or sulfur-containing amino
acids may act as natural H2S donors. Thus, H2S may be an excellent tool to treat various
disease conditions depending on the relative abundance of H2S availability associated with
the specific disease states, for example, DN.

In Table 1, we summarized the experimental models, their intervention strategies,
whether their levels were increased or decreased, overall outcomes, and the cited references
of all three gasotransmitters.

Table 1. Effect of gasotransmitters in diabetic nephropathy: ↑ indicates elevated gasotransmitters, ↓
indicates reduced gasotransmitters.

Gasotransmitter Experimental Model Intervention Level Outcome Refs.

NO

STZ-induced diabetic
mouse/rat

eNOS−/− ↓ Enhanced vascular damage
and renal insufficiency [45]

NO donor sodium nitrite
NO precursor, L-arginine ↑

Ameliorated collagen
accumulation and renal

function
[98]

Leprdb/db mouse eNOS−/− ↓
Augmented glomerular
injury, proteinuria, and

renal insufficiency
[44]
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Table 1. Cont.

Gasotransmitter Experimental Model Intervention Level Outcome Refs.

OLETF rat

NOS co-factor BH4 ↑ Decreased glomerular injury
and proteinuria [47]

L-NAME ↓
Enhanced glomerular injury,

proteinuria, and
inflammation

[46]

STZ-induced diabetic rat L-NAME ↓
Induced collagen

accumulation and renal
dysfunction

[98]

CO

STZ-induced diabetic mouse
HO-2−/− ↓ Increased renal injury and

loss of renal function [23]

HO inducer CoPP ↑ Mitigated glomerular injury
and renal insufficiency [23]

STZ-induced diabetic rat

HO inducers hemin
and CoPP ↑

Ameliorated renal injury,
inflammation, and renal

function
[20–22]

HO inhibitors SnMP
and CrMP ↓

Increased renal injury and
prevented protective effects

of hemin
[20,21]

ZDF rat

Hemin ↑
Ameliorated renal injury,

inflammation, and
renal function

[19]

HO inhibitor SnMP ↓ Increased renal injury and
renal insufficiency [19]

H2S

C57BL/6J-Ins2Akita

H2S donor
N-acetyl-cysteine ↑ Decreased ROS [86]

H2S donor GYY4137 ↑ Ameliorated renal fibrosis
and vasoconstriction [99]

H2S donor
NaHS ↑ Mitigated renovascular

remodeling and dysfunction [1]

STZ-induced diabetic rat H2S donor
NaHS ↑

Reduced ROS and
autophagy and ameliorated
renal injury, inflammation,
fibrosis, and renal function

[88,89]

Abbreviations: STZ, streptozotocin; Leprdb/db, mice homozygous for the diabetes spontaneous mutation (Lep-
rdb); OLETF, Otsuka Long-Evans Tokushima Fatty; ZDF, Zucker diabetic fatty; CrMP, chromium mesoporphyrin;
SnMP, stannous mesoporphyrin; CoPP, cobalt protoporphyrin; NaHS, sodium hydrosulfide.

1.2.4. DN and Polysulfides

Exogenous as well as endogenously derived H2S is stored in the tissue as bound
sulfane sulfur through sulfuration [100–102]. Endogenously bound sulfane sulfur was ob-
served in several tissues, including the brain and liver [101,102], but to date, it has not been
explored whether bound sulfane sulfur is protein specific and under which physiological
condition release of bound H2S is regulated. Recently, the role of garlic-derived polysulfide
production and its prospective physiological relevance in cardiovascular protection through
H2S and NO was elucidated [103]. It has been presumed that garlic-derived polysulfides,
viz., diallyl sulfide, diallyl disulfide, and diallyl trisulfide, are the potent H2S donors, which
facilitate increased bioavailability of NO through phosphorylation of eNOS, leading to
cardiovascular protection [104]. However, a similar renoprotective role of garlic-derived
polysulfides and simultaneous intervention of H2S in DN may be a subject of interest in
future research.
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2. Receptor-Mediated DN and Gaseous Molecules
2.1. NMDA Receptors, Diabetes, and Gaseous Molecules (CO, NO, and H2S)

The N-methyl-D-aspartate receptor (NMDA-R) is a heterotetrameric protein com-
plex that functions as a membrane calcium channel. In mammals, functional NMDA-
Rs consist of an obligatory subunit NMDA-R1 (NR1) interacting with a second class
of subunits of proteins NR2A-NR2D, which provide the functional variability of the
receptor [105–108]. The existence of renal NMDA-Rs has been confirmed through im-
munoblot, immunostaining, and renal hemodynamic studies in rat kidney cortexes [109].
It has also been demonstrated that significant functional inhibition of the renal NMDA-R is
not connected to the central nervous system effects [109]. Instead, renal NMDA receptors
have been reported to stimulate proximal reabsorption and glomerular filtration, and inhi-
bition of these receptors resulted in distinct renal vasoconstriction and reduction in renal
blood flow [110].

A confirmatory role for renal NMDA-R in maintaining normal renal function has also
been reported, suggesting that the activation of NMDA-R mediates the renal response
to glycine infusion. The requirement of the NMDA-R for the co-agonist glycine gives
reliability to the latter suggestion, as does the ability of systemically administered NMDA-R
inhibitors to selectively alter renal hemodynamics [111]. Moreover, inhibitors of the NMDA-
R attenuated successive glycine response independent of their effects on the baseline renal
blood flow. Renal sympathetic nerve activity may lead to renal vasoconstriction [112], while
centrally active NMDA antagonists may augment peripheral sympathetic activity [109].

Available information on the NMDA-R antagonists indicates that these drugs do not
cross the blood–brain barrier, and no evidence for generalized sympathetic overactivity in
these experiments was obtained [109,113]. In addition, renal denervation did not modify
the renal response to either NMDA-R inhibitor. Immunostaining revealed that NMDA-
R remains in proximal tubules, where they are positioned to account for the effects of
NMDA-R antagonists on basal renal blood flow and the GFR by increasing the tubular
reabsorption and decreasing the macula densa signal for the tubuloglomerular feedback.
The micropuncture study revealed that increased tubular reabsorption accounts for nearly
half of the vasodilatory response to the glycine infusion [114,115]. However, the existence
of NMDA-R in other renal cells may be discovered in future research.

NO primarily mediates glutamate action at NMDA-Rs, while CO is mainly involved
in glutamate effects at metabotropic receptors [12]. However, studies have revealed that CO
may be involved in the glutamate and NMDA-agonist-induced vasodilation of newborn
pig cerebral arterioles. The study further suggested that CO-induced cerebral vasodilation
can be dependent on NO action [116]. However, to our knowledge, the role of CO in the
modulation of NMDA receptors in diabetes has not been studied.

The activation of NMDA leads to calcium entry and stimulates the activity of neuronal
NO synthase (nNOS). The major agonists, glutamate and glycine, facilitate the activation
and opening of the channel. In addition, renal blood flow/GFR response to the common
agonist, glycine, which generally enhances renal blood flow, was abrogated in the rats
pretreated with different NMDA-R antagonists [117]. These findings indicate that glycine-
induced activation of the NMDA-R in the kidney may lead to vasodilation via NO effects or
indirectly by modifying agonist activity, such as angiotensin II [118]. It is worth mentioning
that although nNOS is expressed in the kidney and influences glomerular hemodynamics,
future research may confirm whether the hemodynamic effects of the renal NMDA-R are
intervened via nNOS. Moreover, linkage to nNOS in arcuate/interlobular arteries appears
to be unexpected. Detailed studies are necessary to unravel the downstream consequences
of the NMDA-R in the future [109].

NMDA receptors are one of the major targets of H2S in the brain. It has been reported
that H2S specifically potentiates the activity of NMDA-Rs and facilitates the induction
of hippocampal long-term potentiation (LTP), which appears to have a protective role
in cognitive decline during aging and neurodegenerative disorders [70]. The basal level
of NMDA-Rs maintains normal kidney function, while elevated expression may induce
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pathophysiological changes [119]. It has been observed that NMDA-Rs are stimulated
in acute kidney injury [120]. The NMDA-R1 subunit is the main subunit responsible for
the channel activity of NMDA-Rs, which is predominant in renal glomeruli and proximal
tubules [121]. Along the same line, we reported that elevated expression of NMDA-R1
in both mRNA and protein levels was observed in the diabetic kidney as well as in high
glucose-induced mouse glomerular endothelial cells (MGECs) [86]. We also reported
that higher expression of NMDA-R1 was associated with a lower level of H2S in diabetic
conditions [86]. Furthermore, through an in vitro study, we demonstrated that supple-
mentation of H2S mitigated NMDA-R1 expression in HG [86]. More recently, we have
also shown that NMDA-R1 mediates Ca2+ influx, which results in the activation of cy-
clophilin D and opening of the mitochondrial permeability transition pore leading to the
oxidative outburst and renal endothelial injury, while H2S treatment mitigates NMDA-R1
expression and thus prevents renal damage [122]. Therefore, it is plausible that H2S may
mitigate NMDA-R1 expression and ameliorate diabetic renal remodeling. A possible link
of NMDA-R, NO, CO, and H2S in DN is depicted in Figure 2.

Antioxidants 2023, 12, x FOR PEER REVIEW 8 of 27 
 

conditions [86]. Furthermore, through an in vitro study, we demonstrated that supple-
mentation of H2S mitigated NMDA-R1 expression in HG [86]. More recently, we have also 
shown that NMDA-R1 mediates Ca2+ influx, which results in the activation of cyclophilin 
D and opening of the mitochondrial permeability transition pore leading to the oxidative 
outburst and renal endothelial injury, while H2S treatment mitigates NMDA-R1 expres-
sion and thus prevents renal damage [122]. Therefore, it is plausible that H2S may mitigate 
NMDA-R1 expression and ameliorate diabetic renal remodeling. A possible link of 
NMDA-R, NO, CO, and H2S in DN is depicted in Figure 2. 

 
Figure 2. Receptor-mediated DN and gaseous molecules. Schematic representations of the role of 
gaseous molecules in receptor-mediated DN. Elevated expression of NMDAR-1 induces pathophys-
iological changes leading to the DN, while H2S treatment ameliorates such effects. Activation of 
NMDA-R stimulates neuronal NO synthase (nNOS) leading to the synthesis of NO, which mitigates 
pathophysiological changes in diabetic kidney and maintains normal renal functions. H2S and CO 
can activate PPARγ, which helps in the alleviation of renovascular remodeling and confers renal 
protection. Together, renoprotection is also associated with the activation of PPARγ, simultaneous 
increase in NO production, and reduction in systemic blood pressure. 

2.2. PPARγ, Diabetes, and Gaseous Molecules (CO, NO, and H2S) 
The peroxisome proliferator-activated receptor-γ (PPARγ) is a member of the ster-

oid/thyroid nuclear receptor superfamily of ligand-activated transcription factors. PPARγ 
is predominantly expressed in adipose tissues and plays a critical role in adipocyte differ-
entiation, fat deposition, and glucose and lipid homeostasis [123,124]. Expression of 
PPARγ at low levels has been observed in many non-adipose tissues along with the vas-
culature and kidney [125,126], suggesting that PPARγ might be playing a crucial role in 
renal function and regulation of blood pressure. 

Over the last decade, growing evidence has suggested that activation of PPARγ is 
involved with the attenuation of DN. Apart from their effects on the amelioration of insu-
lin resistance and T2D, synthetic ligands of PPARγ, i.e., TZDs (thiazolidinediones), have 
emerged as a promising drug to reduce proteinuria and mitigate the progression of DN, 
irrespective of glycemic control [127–129]. TZDs also mediate direct anti-atherogenic 

Figure 2. Receptor-mediated DN and gaseous molecules. Schematic representations of the role of
gaseous molecules in receptor-mediated DN. Elevated expression of NMDAR-1 induces pathophys-
iological changes leading to the DN, while H2S treatment ameliorates such effects. Activation of
NMDA-R stimulates neuronal NO synthase (nNOS) leading to the synthesis of NO, which mitigates
pathophysiological changes in diabetic kidney and maintains normal renal functions. H2S and CO
can activate PPARγ, which helps in the alleviation of renovascular remodeling and confers renal
protection. Together, renoprotection is also associated with the activation of PPARγ, simultaneous
increase in NO production, and reduction in systemic blood pressure.

2.2. PPARγ, Diabetes, and Gaseous Molecules (CO, NO, and H2S)

The peroxisome proliferator-activated receptor-γ (PPARγ) is a member of the
steroid/thyroid nuclear receptor superfamily of ligand-activated transcription factors.
PPARγ is predominantly expressed in adipose tissues and plays a critical role in adipocyte
differentiation, fat deposition, and glucose and lipid homeostasis [123,124]. Expression
of PPARγ at low levels has been observed in many non-adipose tissues along with the
vasculature and kidney [125,126], suggesting that PPARγ might be playing a crucial role in
renal function and regulation of blood pressure.
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Over the last decade, growing evidence has suggested that activation of PPARγ is
involved with the attenuation of DN. Apart from their effects on the amelioration of
insulin resistance and T2D, synthetic ligands of PPARγ, i.e., TZDs (thiazolidinediones),
have emerged as a promising drug to reduce proteinuria and mitigate the progression of
DN, irrespective of glycemic control [127–129]. TZDs also mediate direct anti-atherogenic
effects in the diabetic vasculature independent of their metabolic actions [130]. In the
pathogenesis of diabetic vasculopathy, such as glomerulosclerosis, downregulated PPARγ
expression is associated with matrix accumulation and glomerulonephritis [124]. Numerous
studies have elucidated the efficacy of PPARγ agonists in ameliorating the progression
of glomerulosclerosis [131] and have indicated the direct involvement of PPARγ ligands
in renoprotection [132].

Previous studies reported the intimate functional relationships between PPARγ and
gaseous molecules, such as NO and CO [133,134]. Renoprotective effects of PPARγ were
found to be associated with the modulation of the release of vasodilator substances, such as
NO [135,136]. PPARγ activation has also been demonstrated in response to CO [134]. The
activation of HO/CO/PPARγ signaling was shown to play a critical role in the manifesta-
tion of the beneficial effect of PPARγ agonist pioglitazone against the cyclosporine-induced
detrimental effect on renovascular activity [136]. This study also highlighted the therapeu-
tic potential of CO or NO donors in the management of cyclosporine A (CsA)-induced
impaired renal vasodilation [136].

In a relatively recent study, we reported that ciglitazone, a PPAR agonist, was found
to ameliorate DN by reducing glomerular tissue homocysteine (Hcy), which is also a
precursor of H2S [137]. We also reported that H2S could prevent hyperhomocysteinemia
(HHcy)-induced renal failure by regulating MMP-2, -9, and collagen in mice [138,139]. Our
recent study revealed that H2S supplementation by GYY4137 reinstated decreased PPARγ
levels and improved adverse ECM remodeling in type 1 DN [140]. Therefore, a therapeutic
intervention involving gasotransmitters may pave the way for the treatment of DN by
regulating PPARγ in the future. A possible link of PPARγ, NO, CO, and H2S in DN is
depicted in Figure 2.

3. Matrix Remodeling in DN: Role of Gaseous Molecules
3.1. Structural Protein (Collagen and Elastin) Regulation by Gaseous Molecules in DN

During the development and progression of DN, glycation of the extracellular matrix
(ECM) leads to the deposition of the ECM proteins in the mesangium, renal tubulointersti-
tium, and glomerular basement membranes (GBMs) [141]. Increased expression of ECM
causes thickening of the GBM as well as the tubular basement membrane (TBM) and ex-
panded mesangial matrix, leading to glomerulosclerosis and tubulointerstitial fibrosis [141].
Therefore, the accumulation of ECM proteins plays an important role in the development
of DN.

The ECM glycoproteins that are increased in DN include collagen, laminin, fibronectin,
and proteoglycans. Initially, glycation affects the interactions of collagen with the cells and
other matrix components, but the most damaging effects are caused by the formation of
glucose-mediated intermolecular cross-links, which greatly hampers the critical flexibil-
ity and permeability of the tissues and reduces turnover. The principal perturbations of
ECM components in the GBM include upregulation of collagen IV (α3 and α4 chains), V,
VI, laminin, and fibronectin, while there is a downregulation in heparan sulfate proteo-
glycans [141–143]. In addition, the changes in the ECM proteins of the tubulointerstitial
compartment include elevated expression of collagen I and small leucine-rich (SLR) proteo-
glycans, viz., decorin and biglycans [144]. On the other hand, mesangial matrix changes
comprise increased expression of collagen I, III, IV (α1 and α2 chains), V, VI, laminin,
fibronectin, and SLR proteoglycans [141,142]. As collagen and elastin are the two major
structural protein components in the ECM, the changes in these proteins and the role of
gaseous molecules in DN are discussed below. In addition, the modulation of several other
ECM proteins by their gaseous regulators NO, CO, and H2S are depicted in Figure 3.
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Figure 3. Matrix protein and gaseous molecules. Schematic representations of role of matrix proteins
and their differential regulations by gaseous molecules in DN. During development of DN, deposition
of the ECM proteins in the mesangium, renal tubulointerstitium of the glomerulus, and the glomerular
basement membranes (GBMs) leads to renal fibrosis. Gasotransmitters, i.e., CO, NO, and H2S,
facilitate amelioration of the adverse effect of matrix remodeling through differential regulations of
the matrix proteins during DN.

3.1.1. Collagen and Gaseous Molecules in DN

The collagen family of proteins is the most abundant in humans and provides the
framework for the most vulnerable tissues in the kidney, such as the renal basement
membrane. The optimal functioning of the kidney tissues is dependent on the integrity of
their supporting framework of collagen.

An earlier study demonstrated that the exogenous application of a low dose (250 ppm)
of CO in a glass exposure chamber inhibits the development of renal fibrosis in obstructive
nephropathy by attenuating the induction of key ECM proteins, such as type 1 collagen,
in mice [145]. Moreover, it has also been demonstrated that the low dose of CO treatment
inhibits progressive chronic allograft nephropathy by reducing collagen 1 in rats [146].

Previous reports showed that arginine increases plasma levels of nitrate/nitrite in
diabetic patients [147]. Arginine has been shown to increase nitrates and exhale NO
in both control as well as insulin-dependent diabetes mellitus (IDDM) patients [148].
Moreover, it was also indicated that L-arginine inhibits collagen accumulation in the
kidney [149], heart [150], and GBM [151] of diabetic mice and also in advanced-stage
glycosylation end products (AGEs) [151,152]. As the AGEs are reported to quench NO [153],
arginine supplementation may appear to be beneficial to improve endothelium-dependent
vasodilation by inhibiting AGE-mediated mitigation of NO-dependent relaxation [147].

A previous study revealed that H2S donors, such as sodium hydrosulfide (NaHS),
inhibit the renal fibrosis of obstructive nephropathy by attenuating the accumulation of
collagen fibrils in the renal interstitium in rats [154]. Supplementation with H2S has been
shown to mitigate renal damage in hypertensive models by reducing blood pressure,
proteinuria, and oxidative stress and inhibiting excessive collagen type I and collagen type
III deposition [93,155,156]. In a murine model, H2S supplementation has also been reported
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to prevent HHcy-induced glomerulosclerosis by regulating collagen [139]. Recently, H2S
has been demonstrated to ameliorate renal tissue fibrosis and the development of DN by
inhibiting excessive collagen deposition in STZ-induced diabetic rats [157].

3.1.2. Elastin and Gaseous Molecules in DN

Elastin is a 70 kDa glycoprotein, and it constitutes the central core of elastic fibers.
Elastin provides support and elasticity, which are important for many tissues and organs,
such as the blood vessels, heart, skin, lungs, and uterus. The cross-linked and random-
coiled structure of elastin renders the capacity of the elastic network to stretch and recoil. A
unique glycoprotein microfibril, Fibrillin, has been recently identified to be associated with
elastic fibers in compliant tissues [158]. Elastin is not considered to be a primary component
of the capillary BM. Notably, the capillary tuft of the glomerulus is devoid of elastin, and
it is present only in the mesangial stalk as well as in afferent and efferent arterioles [159].
This may be one of the reasons why the capillary BM of the glomerular tuft undergoes
remodeling expansion and causes thickening of its BM when exposed to intra-glomerular
hypertension, which occurs early in the natural history of T2D.

It has been reported that NO donors, such as S-nitrosoglutathione, facilitate a multi-
fold increase in the synthesis and deposition of ECM protein elastin in a dose-dependent
manner [160]. Another study exhibited that NO delivery dose-dependently stimulates
tropoelastin synthesis to increase vascular elasticity [161]. These studies indicate that NO
supplementation may ameliorate the adverse effect of renovascular remodeling
during DN.

A recent study demonstrated that H2S might attenuate vascular calcification by up-
regulating elastin levels through inhibition of the Stat3/CAS signaling cascade during
hyperglycemia [162]. Homocysteine (Hcy), which induces elastinolytic proteinase in
VSMCs [163], has been reported to cause arterial stiffness by modulating the elastin/collagen
ratio, resulting in hypertension [164] and diabetes [165]. Moreover, HHcy has been shown to
decrease H2S [166] and increase MMPs, which induce the degradation of
elastin [167–169]. In the hypertensive and diabetic mouse models, HHcy-induced activation
of MMPs was shown to be normalized by oral or intraperitoneal H2S supplementation,
leading to the prevention of renal damage [137,138,140,170]. Therefore, H2S treatment
could be a promising therapeutic approach to prevent renovascular damage by attenuating
the MMP-mediated degradation of elastin.

3.2. Proteinases and Their Inhibitors’ (MMPs and TIMPs) Regulation by Gaseous Molecules
in DN

Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that
are involved in the breakdown and remodeling of ECM components [171]. The abnormal
activity of these endopeptidases is associated with a variety of vascular diseases, includ-
ing cardio-pulmonary and renovascular [172,173]. Research findings suggest that hyper-
glycemia abnormally affects the expression and activity of MMPs in
diabetic kidneys [174].

Currently, 28 different types of MMPs have been discovered in vertebrates [175]. Of
these, at least 23 mammalian MMPs have been recognized, and these MMPs were further
subdivided into different groups [176,177]. Structural analysis revealed that MMPs are
multi-domain proteins that generally consist of a prodomain, a catalytic domain, a hinge re-
gion, and a hemopexin domain in the case of collagenases, gelatinases, and membrane-type
MMPs (MT-MMPs). MMPs are generally secreted as nonfunctional pro-MMPs, which are
activated either by cleavage of the prodomain by different proteinases, such as plasmin and
MT-MMPs, or by oxidation of reactive cysteine within the prodomain [178,179]. MT-MMPs
are a typical class of MMPs with a broad spectrum of activities and remain anchored to the
cell surface by the transmembrane domains. MT-MMPs are believed to predominantly reg-
ulate proteolytic activities within the pericellular microenvironment due to their presence
on the cell surface [180].
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The expression of several MMPs and tissue inhibitors of metalloproteinases (TIMPs) in
the nephron of various species has already been discussed elsewhere [141,181]. Sub-cellular
localization of protein expression of several MMPs, including MMP-2, -3, -9, -10, -11, -14
(MT1-MMP), -15 (MT2-MMP), TIMP-2, and TIMP-4, have been reported and summarized
in human kidney tissues [182,183]. As the MMPs play a major role in the glomerular ECM
degradation and turnover, the alteration in expression and activity of the MMPs influences
the intra-renal extracellular matrix composition [184,185]. Renal hypertrophy, which is
developed early in T1D, predominantly occurs in individuals who develop DN later and is
implicated in poor renal prognosis [186–188]. As the unusual ECM accumulation is one of
the hallmarks of DN, it is plausible that changes in MMP expression and activation may
contribute to DN, especially to the advent of renal hypertrophy. It is noteworthy that, apart
from the direct role in ECM turnover, MMPs secrete or activate numerous growth factors,
viz., tumor necrosis factor-α, pro-transforming growth factor-β, insulin-like growth factors,
and heparin-binding-epidermal growth factor, which are involved in renal hypertrophy,
tubular cell proliferation, renal scarring, and kidney fibrosis [189–192].

The role of MMPs in DN is critical in the earlier phases of the disease progression
when increased matrix accumulation, the release of pro-fibrotic growth factors, and altered
cell motility disrupt the glomerular and tubular architectures. Therefore, an in-depth
understanding of the role of MMPs in the pathogenesis of DN is essential for the therapeutic
intervention of MMPs in preventing and mitigating diabetic kidney disease. Below, we
discuss the involvement of MMP-2 and -9 and their regulation by CO, NO, and H2S in DN.

3.2.1. Gelatinases (MMP-2 and MMP-9)

In numerous studies, it has been shown that dysregulation in intra-renal gelatinase
plays an important role in kidney diseases. For example, it has been demonstrated that
intra-renal MMP-2 expression is increased in AL-amyloidosis [193] and human renal
carcinoma [194]. It has also been shown that MMP-2 is essential for instigating the transfor-
mation of renal tubular cell epithelium–mesenchymal transformation, which is a critical
step in forwarding the progression of renal interstitial fibrosis in several kidney diseases,
including DN [195,196]. In reality, over-expression of MMP-2 in renal proximal tubular ep-
ithelial cells was demonstrated to develop the characteristic pathologic changes of chronic
kidney disease [197].

A contrasting relationship between MMP-2 dysregulation and DN was revealed.
The decreased expression and/or proteolytic activity of MMP-2 and increased activity
of the MMP-2 inhibitor, TIMP-2, were observed in renal tissues of the rodent diabetic
models [198–200]. On the other hand, both the increase as well as a decrease in MMP-2
production or activity have been observed in rodent mesangial cells cultured under hypo-
glycemic conditions [201]. However, in human studies, an increase in MMP-2 association
and activity was evidenced in DN [202,203]. In addition, the upregulation of MT5-MMP,
which contributes to the activation of MMP-2, was observed in diabetic kidney tissue in
humans [204]. An elevation in urinary MMP-2 concentrations and/or MMP-2 activity
was shown in albuminuric patients having T1D compared to that of controls as well as
non-albuminuric patients [205,206].

In a murine model of T2D, MMP-9 expression in the kidneys of mice that devel-
oped nephropathy was increased compared to controls [207]. In addition, an elevated
level of MMP-9 has been observed in the urine of patients with T2D and DN, and the
level of MMP-9 was found to be increased in congruence with the extent of
albuminuria [208,209]. Injury or apoptosis in the podocyte has been identified as a part
of renal disease processes characterized by the failure of the filtration barrier [210,211].
Cultured podocytes have been shown to produce MMP-2 and MMP-9, which can be influ-
enced by various cytokines, growth factors, and hyperglycemic conditions [212]. Recently,
hyperglycemia-induced apoptosis and depletion of podocytes have been demonstrated in
murine T1D and T2D models [213].
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Interestingly, podocytopenia occurs early in diabetic patients with T1D and
T2D [214–216]. A hypothetical reduction in podocyte density could be achieved by glomeru-
lar basement membrane expansion, secondary to MMP-induced alterations of the ECM
turnover. While coupled with hyperglycemia-induced podocyte injury and increased
apoptosis of the podocytes, a distinct increment in membrane permeability would result,
leading to diabetic albuminuria. The appearance of podocytes in the urinary sediment of
diabetic patients having albuminuria compared to the absence of podocytes in the normoal-
buminuric T1D patients corroborates this hypothesis [217]. These patients’ plasma MMP-9
levels were significantly correlated with the number of urinary podocytes. Therefore, these
findings indicate that diabetes-associated gelatinase dysregulation may perturb podocyte
integrity and permeability of the glomerular basement membrane [217].

It is noteworthy to mention that the CO-releasing molecule CORM-2 was found to
inhibit MMP-2 activities in the alveolar epithelial cells [218]. NO has been shown to modu-
late the cytokine (IL-1β)-induced expression of MMP-9 and also regulate the enzymatic
activity of MMP-9 in a rat mesangial cell culture [219]. It has also been demonstrated that
NO regulates MMP-9 expression in rat mesangial cells through a post-transcriptional mech-
anism [220]. NO-mediated post-transcriptional regulation of MMP-9 was also evidenced in
rat mesangial cells [221]. In addition, an increased NO level has been shown to modulate
MMP-2 and -9 activation in the diabetic feto-placental unit [222].

Our own studies revealed that supplementation of H2S prevents HHcy-associated
renal damage by regulating MMP-2 and MMP-9 in mice [138,139]. An in vitro study
also demonstrated that H2S supplementation marginally attenuated but could not com-
pletely normalize MMP-9 levels in hyperglycemic conditions [86]. Recently, our group
showed that an H2S donor, GYY4137, could ameliorate ECM accumulation and renal fi-
brosis by downregulating MMP-9 expression either via miR-194-mediated inhibition of
ROS production or through modulation of PPARγ and retinoid X receptor signaling in
type 1 DN [99,140].

3.2.2. Tissue Inhibitors of Metalloproteinases (TIMPs)

Decreased serum levels of TIMP-1 and TIMP-2 have been observed in patients with
T2D and DN compared to diabetes alone or non-diabetes chronic renal failure [223].
On the contrary, in the younger T1D patients with normal kidney function, TIMP-1 or
TIMP-2 concentrations remained unchanged compared to that of age-matched non-diabetic
controls [205]. Differences in the disease severity and duration or differences in the patho-
physiology of T1D and T2D may explain these contrasting clinical observations.

Elevated plasma levels of HO-1 and TIMP-4 have been demonstrated as potential
markers of pathogenesis in T2DM with tuberculosis [224]. It has been demonstrated that
NO regulates TIMP-1 in rat mesangial cells [219]. Moreover, H2S supplementation by
GYY4137 has been shown to regulate TIMP-1 expression in mouse kidney mesangial and
glomerular endothelial cells [225]. A recent study showed that H2S intervention alleviates
renal fibrosis and may play a protective role against the development of DN by regulating
TIMP-1 in STZ-induced diabetic rats [157].

3.3. Gap Junction Regulation by Gaseous Molecules in DN

Gap junctions are formed by the members of the connexins (Cxs) protein family [226].
The association between two Cxs in the plasma membrane of adjoining cells gives rise
to a functional gap junction channel facilitating cell-to-cell communication [227]. Among
twenty distinct types of connexins, human and mouse kidneys have been reported to
express eight isoforms of Cxs, viz., Cx26, 30, 32, 37, 40, 43, 45, and 46 [228]. A recent
study revealed that H2S ameliorates the expression of Cx40, Cx43, and Cx45 in diabetic
animal models [86,228]. Differential regulations of connexins, i.e., upregulation of Cx40
and downregulation of Cx37 and Cx43, have been reported to act in conjunction with
eNOS to modulate vascular function in diabetes [229,230]. Le Gal and colleagues showed a
distinct role of the CX40-mediated regulation of NO production in a hypertensive mouse
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model [231]. On the other hand, the role of NO in the regulation of gap-junction-mediated
intercellular communication has also been reported in the mesangium. Yao et al. (2005)
demonstrated that elevated NO augments CX43-mediated gap junctional intracellular
communication in mesangial cells via protein kinase A and that decreased NO may cause
loss of CX43-mediated cell communication in the mesangium in DN [232].

3.4. Other Integral Membrane Proteins’ (Caveolin and eNOS) Regulation by Gaseous Molecules

Caveolin is crucial for the formation of caveolae membranes, which act as scaffolding
domains. The caveolin family consists of three caveolins, i.e., caveolin-1, -2, and -3 [233,234].
Caveolin-1 and -2 co-express as well as form a hetero-oligomeric complex in the many cell
types [235,236], while caveolin-3 is muscle-specific [237]. Generally, caveolin-1 and -3 have
higher regulatory activity than caveolin-2.

Caveolin-1 can induce caveolae formation, while caveolin-2 cannot induce the for-
mation of caveolae. Therefore, generally, caveolin-1 is considered the principal structural
protein of caveolae [238]. In recent years, the presence of caveolae and caveolin-1 and their
roles in the kidney have been demonstrated in several studies [238–243]. Thus, controlling
the proliferation ability of the mesangial cells could be an effective therapy for kidney
diseases [243]. In fact, exogenous CO administration, as well as adenoviral-mediated HO-1
expression, enhanced the association between caveolin-1 and toll-like receptor-4 (TLR4),
leading to the generation of anti-inflammatory response [244]. These findings identify
the HO-1-mediated interaction between caveolin-1 and TLR4 as the potential therapeutic
targets for inflammatory diseases [245].

In a mouse model of DN in T1D, caveolin-1 deficiency has been reported to render
protection against mesangial matrix expansion [246]. Caveolin-1 expression was found to
be upregulated in the glomeruli of patients with glomerular disease, including DN [238].
Elevated caveolin-1 plays a critical role in the suppression of eNOS-mediated renal NO
production, which is presumably responsible for the progression of DN [98]. However,
treatment with a NO donor, such as sodium nitrite, or NO precursor, such as L-arginine,
ameliorated the adverse effects of DN [98].

In endothelial cells, caveolin-1 is the principal structural component of caveolae.
Caveolin-1 acts as a scaffolding protein and is involved in the modulation of receptor
signaling and the function of the caveolar enzymes [247,248]. eNOS is inhibited by its
protein–protein interaction with caveolin-1 in the unstimulated endothelial cells. The course
of eNOS activation by the stimulation of an agonist involves intracellular Ca2+ mobilization
and a subsequent interaction between calmodulin and eNOS. The eNOS/calmodulin inter-
action allows the release of eNOS from the inhibitory complex with caveolin-1 [249,250].
Thus, changes in caveolin-1 abundance and eNOS interactions may influence eNOS activity
and, subsequently, vascular function and modeling. A comprehensive knowledge and
understanding of the role of caveolin-1 in mediating the cellular functions in diabetes are
requisite for the interpretation of NO pathophysiology in the diabetic kidney. In diabetes,
although ROS-mediated inactivation of NO has been suggested as the key mechanism
behind the decreased bioavailability of eNOS-derived NO [251,252], other relevant mecha-
nisms involved in the direct changes in eNOS function and molecular integrity have also
been proposed [253]. Moreover, the expression of renal cortical eNOS regarding some
of its functional determinants, such as cellular localization, phosphorylation status, and
dimer/monomer formation, has been explored in normal and diabetic rats [254]. Further-
more, renal cortical expressions, as well as localization of the endogenous eNOS inhibitor
caveolin-1 and its colocalization with eNOS, have been revealed.

During HHcy-induced renal injury, exogenous supplementation of H2S dehomocys-
teinylated eNOS and reduced caveolin-1 to increase eNOS availability, resulting in the
inhibition of renovascular fibrosis and improved renal function [170]. However, to our
knowledge, the role of H2S in DN has not yet been reported in the literature. Future studies
might shed light on whether H2S regulates caveolin and ameliorates kidney injury and
function in diabetes.
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4. Summary and Future Perspectives

The gasotransmitters CO, NO, and H2S have a complex relationship in the develop-
ment of CKD, including hypertension and diabetes [255]. Decreased H2S has been shown
to be associated with a reduction in NO production but enhanced CO production, while
CO serves as a mediator between NO and H2S [256]. Studies have demonstrated that NO
synthesis inhibition upregulated the urinary concentration and excretion rate of CO and
the HO-dependent generation of CO by renal tissue in the non-diabetic rat [257], whereas
diabetes increases oxidative stress and induces HO-1 protein expression (and probably
by the generation of CO), which contributes to regulating renal hemodynamics in condi-
tions of low NO bioavailability [258]. These findings imply that endogenous NO is an
inhibitory regulator of renal CO generation or vice versa. It has also been demonstrated
that reduced endogenous H2S levels impair PI3K/Akt/eNOS signaling cascades, causing
hyperglycemia-induced vascular injuries [259].

It has now emerged that a detailed mechanistic insight into the biology of the gaso-
transmitters and renal physiology is vital to translate these gaseous molecules to be novel
therapeutic agents in the control and management of DN. In this regard, although some
of the vascular protective effects of acetylsalicylic acid and statins are attributed to the
induction of HO-1, CO administration has not yet been used clinically. The antioxidant
response of resveratrol is also partly attributed to the upregulation of HO-1, as evidenced
by increased HO-1 expression in STZ-induced T1D in Sprague-Dawley rats [260]. Although
the HO-1-inducing effects of resveratrol have not yet been observed in humans, it is readily
available as a dietary supplement.

As discussed earlier, since sulfate-reducing bacteria produce H2S in the gut and signif-
icantly lower levels of H2S were observed in germ-free mice, the dietary supplementation
of sulfate or sulfur-containing amino acids may act as natural H2S donors. Thus, H2S may
be an excellent tool to treat various disease conditions, including DN, depending on the
relative abundance of H2S availability associated with the specific disease states.
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proliferator-activated receptor gamma; ROS, reactive oxygen species; SLR, small leucine-rich; SNP,
sodium nitroprusside; STZ, streptozotocin; T1D/T2D, type 1/type 2 diabetes; TBM, tubular basement
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membrane; TGF-β, transforming growth factor-β; TIMP, tissue inhibitor of matrix metalloproteinase;
TLR-4, toll-like receptor-4; TZDs, thiazolidinediones; VSMC, vascular smooth muscle cell.
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