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Abstract: Thioredoxin-1 (Trx-1) is a multifunctional protein ubiquitously found in the human body.
Trx-1 plays an important role in various cellular functions such as maintenance of redox homeostasis,
proliferation, and DNA synthesis, but also modulation of transcription factors and control of cell
death. Thus, Trx-1 is one of the most important proteins for proper cell and organ function. Therefore,
modulation of Trx gene expression or modulation of Trx activity by various mechanisms, including
post-translational modifications or protein–protein interactions, could cause a transition from the
physiological state of cells and organs to various pathologies such as cancer, and neurodegenerative
and cardiovascular diseases. In this review, we not only discuss the current knowledge of Trx in
health and disease, but also highlight its potential function as a biomarker.
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1. Introduction

Thioredoxin-1 (Trx-1) is a 12 kDa multifunctional protein localized mainly in the cy-
tosol and in some cases in the nucleus [1]. It was first mentioned in the 1960s as a hydrogen
donor for enzymes in yeast that reduce methionine sulfoxide [2] and sulfate [3] through
nicotinamide adenine dinucleotide phosphate (NADPH). In 1964, Trx-1 was isolated from
E. coli as an electron donor for ribonucleotide reductase [4]. Human Trx was independently
cloned as adult T-cell leukemia derived factor (ADF) from the supernatant of a T-cell line
infected with HTLV-I and initially designated as ADF [5].

Trx-1 is a protein that contains two redox-active cysteine residues (Cys32 and Cys35)
in its active site (Cys-Gyl-Pro-Cys). These cysteines are responsible for its reducing ac-
tivity, ensuring that the thiols of the substrates are maintained in a reduced state while
being oxidized themselves [6]. In general, Trx-1 plays a critical role in a variety of cellu-
lar functions, such as proliferation, maintenance of redox homeostasis, DNA synthesis,
regulation of gene expression, and control of cell death by apoptosis [6–9]. In addition,
Trx-1 dysfunction has been shown to be associated with a variety of diseases including
cancer, as well as neurodegenerative and cardiovascular diseases [10–12]. Moreover, Trxs
are essential for mammalian development, as a deficiency of Trx-1 or Trx-2 is embryonically
lethal in mice [13,14].

1.1. The Thioredoxin Family Proteins

The thioredoxin superfamily is an ancient protein family [15]. All members of this
superfamily share an active site with -Cys-X-X-Cys- (X can be another amino acid) and four-
stranded β-folds and flanking α-helices in the secondary structure (Figure 1) [16,17]. This
structural motif has been identified in Trxs, glutaredoxins (Grxs), glutathione S-transferase,
disulfide bond formation protein A (DsbA), glutathionine peroxidases [17], peroxiredoxin
(Prx), arsenate reductase (ArsC), quiescin sulfhydryl oxidases (QSOX), and vitamin K
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epoxide reductase (VKOR) [18]. Although Trx family members exhibit a diversity of
functions and structures, most members are involved in redox regulation.
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Figure 1. Schematic structure of the thioredoxin fold and E. coli thioredoxin. (A) The structural
elements of the thioredoxin fold are shown in blue. (B) The structure of E. coli thioredoxin is shown
with the typical thioredoxin fold in blue and additional features in white. The location of the
CysXXCys motif and N-and C-termini are indicated. Arrows represent ß-strands, and α-helices are
shown as cylinders (adapted from Martin, 1995 [17]).

1.2. The Thioredoxin System

The Trx system and the glutathione system are among the most important thiol re-
duction systems [19]. In general, the thioredoxin system is a family of cysteine-dependent
antioxidant proteins that includes NADPH, thioredoxin reductase (TrxR), and Trx-1 it-
self [19,20]. These three components form a large disulfide reductase system that provides
electrons to various proteins.

The interaction of these components contributes to the maintenance of the cellular
redox balance [21] and regulates a variety of cellular functions, including transcription,
DNA synthesis, and stimulation of cell growth [7].

In their active site, thioredoxins possess the so-called CGPC motif, which is responsible
for catalyzing the protein disulfide/dithiol exchange. The CGPC motif is also used by many
other enzymes involved in thiol-dependent anti-oxidative defense, such as glutaredoxin,
peroxiredoxin, and glutathione peroxidase [22–24].

In mammals, there are at least three types of Trx: cytosolic thioredoxin (Trx-1), mito-
chondrial thioredoxin (Trx-2), and sperm Trx (Sp-trx or p32TrxL). An extracellular truncated
form of thioredoxin containing the 80 N-terminal residues (Trx80) is known to be secreted
from monocytes and CD4+ T cells [25].

2. Functions of Trx-1

Generally, Trx-1 plays an important role in various cellular functions, including main-
tenance of redox homeostasis, proliferation, and DNA synthesis, but also modulation of
transcription factors and control of cell death (Figure 2) [6–9]. Moreover, Trx-1 plays a key
role in several diseases, and high Trx-1 levels are associated with poor prognosis in certain
diseases. Therefore, targeting Trx-1 also has clinical implications for disease treatment
and prevention.
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2.1. Antioxidant Defense

An excess of reactive oxygen species (ROS) causes severe damage to lipids, proteins,
and DNA [26]. To limit the effects of ROS, cells have evolved complex processes [27]. For
example, so-called antioxidants play a central role in the cellular defense against ROS and
can act either directly or indirectly.

In addition to glutathione, Trx is an endogenous direct-acting antioxidant [20]. The
Trx system (see Section 1.2) can directly scavenge ROS and reduce disulfide bridges in
oxidized proteins using its two redox cysteine residues (Cys32 and Cys35). In principle, Trx
binds to oxidized proteins by reducing one of its thiol groups. In parallel, an intermolecular
disulfide bridge is formed. Subsequently, this mixed disulfide bridge is cleaved and the
second thiol group in the protein is also attacked. The second thiol group is reduced and
both thiols within Trx are separated from a disulfide bridge, rendering Trx inactive. Trx is
recycled in an NADPH-dependent manner by TrxR (Figure 3) [28].
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Figure 3. Mode of action of the thioredoxin system. Trx binds to oxidized proteins by reducing
one thiol group through the formation of an intermolecular disulfide bridge. Subsequently, this
mixed disulfide bridge is cleaved, also attacking the second thiol group in the protein. The second
thiol group is reduced and both thiols within Trx are released from a disulfide bridge, rendering
Trx inactive. TrxR recycles Trx in an NADPH-dependent manner (adapted from Karlenius and
Tonissen, 2010 [29]).
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In addition, cells can also utilize Prx family members as cellular antioxidants capable of
scavenging hydrogen peroxide by using their peroxidic cysteine residues as electron donors
and forming a disulfide bridge with their other reactive cysteine [30]. The intermolecular
disulfide thus formed is then reduced by Trx-1, which in turn is reduced by TrxR.

2.1.1. Regulation of Trx Activity

Trx activity can be modulated at various levels, including gene expression, post-
translational modifications, or protein–protein interactions [31]. Through these mecha-
nisms, the Trx system can respond to changes in the cellular environment.

Gene Expression Level

The transcription factors (TF) nuclear factor erythroid 2-related factor 2 (Nrf2), TATA-
binding protein (TBP), and cAMP response element-binding protein (CREB) can regulate
the Trx system at the level of gene expression [32,33].

In general, various stressors, such as oxidative stress (OS) or inflammation, activate
these transcription factors. After activation, the TFs bind to the so-called antioxidant
response element (ARE) in the promotor region of Trx [34]. Interestingly, Trx in its reduced
form promotes Nrf2 binding to ARE by reducing cysteine residues in the DNA-binding
loop of small Maf proteins (sMaf), which in turn leads to activated Nrf2 transcription [34].

Protein–Protein Interaction

The biological activity of the thioredoxin system depends on endogenous blocking
inhibitors binding at least one of the components of the system. The thioredoxin-interacting
protein (Txnip) is an example of such a binding partner. Txnip belongs to the α-arrestin fam-
ily and was initially called Vitamin-D3-Upregulated-Protein 1 [35] because it is upregulated
in human leukemia cells (HL60) treated with 1,25-(OH)2D3 [36].

Studies using the yeast two-hybrid system showed that Txnip binds to the catalytic
center of Trx, thereby inhibiting its activity and expression [35,37]. Thus, Txnip, and Trx
play an important role in maintaining redox homeostasis [37–40].

Substitution of cysteine by serine at the Cys247 position of Txnip failed to bind to Trx,
indicating that this residue is necessary and sufficient for a mixed disulfide bridge with
Trx, leading to the abolition of its inhibitory effect on Trx [39,41,42]. Therefore, the cysteine
Cys247 of Txnip may be a potential therapeutic target in the future [43,44].

Post-Translational Modifications

In addition to its redox-active cysteine residues (Cys32 and Cys35), Trx has three
non-active cysteine residues (Cys62, Cys69, and Cys73) that can be post-translationally
modified, thereby altering its activity. Typical post-translational modifications of Trx
include phosphorylation, S-nitrosylation, and glutathionylation [31].

Phosphorylation of Trx at threonine 100 (T100) affects its anti-apoptotic activity, as
shown in HepG2 cells by lower stress-induced survival and a higher apoptosis rate induced
by cis-platinum [45]. Therefore, abrogating the phosphorylation of Trx at T100 may be of
interest for cancer therapy [45]. Another way to modify Trx activity is to glutathionylate
Trx at Cyst73, preventing its dimer formation and abolishing its enzymatic activity [46].

Several reports have demonstrated that S-nitrosylation of Trx occurs at Cys62, Cys69,
or Cys73 [47,48]. Haendeler and colleagues showed that S-nitrosylation of Trx at Cys69 is
essential for its anti-apoptotic function, as it is the prerequisite for trans-S-nitrosylation of
target proteins such as caspase-3 [48]. Moreover, nitrosylation at Cys73 can only occur after
the formation of a disulfide bound between Cys32 and Cys35 [49].

2.2. Regulation of Gene Expression

In addition to its antioxidant function, Trx-1 can also activate oxidatively inactive
transcription factors involved in redox regulation [50].
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2.2.1. Activator Protein 1 (AP-1)

Normally, Trx-1 is located in the cytosol [51], but in response to oxidative stress, Trx-1
is translocated to the nucleus. Trx-1 does not interact directly with AP-1 (a complex of
jun and fos genes). However, Trx-1 activates AP-1 transcription by reducing the interme-
diate protein redox activating factor-1 (Ref-1), which then reduces a conserved cysteine
residue in the DNA binding domain of Jun and Fos [52,53], thereby enhancing its DNA
binding activity [54].

2.2.2. Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B-Cells (NF-κB)

The translocation of Trx-1 into the nucleus serves to enhance DNA binding of NF-
κB [52,55]. NF-κB is critical for cytokine production and resides in the cytosol in an
inactive protein complex bound to its inhibitor IκB. Various stimuli, such as excessive ROS
production, activate the IKK pathway, leading to dissociation of NF-κB from its inhibitor
IκB and translocation of NF-κB to the nucleus.

The c-Jun N-terminal kinase (JNK) may play a role in IkB degradation and Trx-1
mediated activation of NF-kB [56]. Redox-active thioredoxin triggers the JNK signaling
pathway, which is initiated at the MEKK1 level and leads to the activation of NF-κB through
the degradation of IkB [56].

High levels of oxidative stress in the nucleus lead to oxidation of cysteine 62 (Cys62)
in the p50 subunit of NF-κB, which impairs DNA binding. This oxidized cysteine in the
p50 subunit can be reduced by Trx-1 by the formation of a multimolecular complex with
NF-κB. The reduction of Cys62 allows NF-κB to bind to DNA, thereby, increasing gene
expression of target genes [57–59].

2.3. Regulation of Cell Death

Apoptosis is an essential process during development, homeostasis, and the pathogen-
esis of various diseases. Under pathological conditions, apoptosis is inhibited by binding of
apoptosis signal-regulating kinase 1 (ASK1) to reduced Trx-1 [60]. However, various stimuli
such as tumor necrosis factor-α (TNF-α), endoplasmic reticulum stress, chemotherapeutic
agents, and ROS can activate ASK1. Under pathological conditions, apoptosis is inhibited
by binding of ASK1 to reduced Trx-1 by oxidizing Trx-1, leading to the release of ASK1,
which is a prerequisite for the induction of apoptotic signals. Moreover, ubiquitination and
degradation of ASK1 are induced by Trx-1 in a redox-dependent manner, which may lead
to the inhibition of apoptosis [61]. In addition, apoptosis can be inhibited by Trx-1, which
catalyzes the S-nitrosylation of procaspase-3 and caspase-3 [47,62,63].

2.4. Inflammation

Moreover, Trx plays an essential role in the activation, proliferation, and response
of T cells, B cells, and macrophages [64], as immune cells can switch their redox system
upon activation and activate the Trx signaling pathway. In addition, Trx-1 can exert anti-
inflammatory effects due to inhibition of complement activation and macrophage migration
inhibitory factors [65].

2.5. Trx-1 in Disease

It is known that Trx-1 is one of the most important proteins for proper cell and organ
function. Therefore, it is not surprising that dysfunctional Trx-1 or altered expression of
thioredoxin are involved in the development of a variety of diseases, including neurode-
generative diseases [10,66–72], lung diseases, autoimmune diseases, cancer, cardiovascular
or cerebrovascular diseases, psychiatric disorders, and aging (see Figure 4). Notably, cancer
analyses have shown that Trx-1 expression is increased in tumors [11,73], but Trx levels
decrease when the tumors are surgically removed [74].
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3. Trx as a Predictive Biological and Prognostic Marker in Cancer

Trx-1 is also essential for proper function of organs and tumors. Therefore, it is not
surprising that more and more therapeutic approaches targeting Trx-1 are being developed.
Since Trx is associated with many different diseases, especially cancer, it would be ex-
tremely interesting to know whether Trx can be used as a clinical and prognostic biomarker.
Numerous studies have already been conducted on this topic, with promising results.

3.1. Lung

Kakolyris et al. studied Trx-1 expression in normal lungs and primary non-small cell
lung carcinoma (NSCLC). They found that Trx-1 expression in lung carcinomas was pre-
dominantly cytoplasmic, whereas expression was cytoplasmic in the respiratory bronchial
epithelium, alveolar epithelium, and alveolar macrophages of normal lungs. Moreover,
high Trx-1 expression was found to be associated with a high proliferation index [75].
Furthermore, immunohistochemical analysis of lung carcinomas revealed that proliferation
measured by Ki67 staining was associated with high Trx expression. In addition, a signifi-
cant association was found between low Trx expression and high cytoplasmic p53 reactivity,
with higher Trx expression levels associated with a more aggressive tumor phenotype and
potentially a worse outcome for the patients [75].

3.2. Gut

Trx-1 is known to be overexpressed in patients with liver metastases from colorectal
cancer. Trx-1 expression is an independent prognostic factor, with high expression asso-
ciated with poor prognosis, as shown by multivariate analysis [76]. Serum levels of the
redox-related genes Trx and manganese superoxide dismutase (MnSOD) are potential clini-
cal biomarkers for predicting patient prognosis in hepatitis C virus-related hepatocellular
carcinoma (HCC), as overall survival rate was lower in patients with high MnSOD levels
and lower Trx levels [74,77]. In gallbladder carcinoma (GBC), nuclear expression of Trx-1
at the invasion front is associated with poor patient outcome [78]. In addition, one study
investigated the potential of Trx-1 as a biomarker for predicting gastric cancer recurrence.
It was demonstrated that patients with low Trx-1 expression had a better prognosis than
patients with high Trx-1 levels [79]. Cholangiocarcinoma (CCA) is a major health problem
in north-eastern Thailand. Therefore, studies have been conducted to identify protein
biomarkers for early detection of CCA. The levels of Trx and cadherin-related family mem-
ber 2 (CDHR2) were significantly different in the serum from CCA patients compared with
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the control group [80]. Since diffuse malignant peritoneal mesothelioma (DMPM) is an
aggressive malignant tumor with limited response to cytoreductive surgery combined with
intraperitoneal chemotherapy, early diagnosis is very important. In general, serum levels of
Trx were higher in DMPM patients compared with the control population, recommending
serum Trx concentration as a useful diagnostic marker for DMPM [81]. Further promising
results have been provided by studies analyzing the clinical and prognostic significance of
Trx-1 in patients with gastric cancer (GC), associating poor prognosis with elevated Trx-1
expression levels [82].

3.3. Urogenital

Ribback and colleagues investigated the prognostic role of Trx-1 in clear cell renal
cell carcinoma (ccRCC) and showed that cytoplasmic expression of Trx-1 was associated
with poor prognosis. Otherwise, high Trx-1 levels were associated with less advanced
clinicopathological features [83].

Studies in prostate cancer have shown that Trx dysfunction leading to redox changes
also plays an important role in disease progression and response to therapy [84].

3.4. Hemato-Oncology

Trx-1 levels are elevated not only in solid tumors but also in hematologic malignancies
(for overview see [85]).

Using immunohistochemical staining, Li and colleagues found that diffuse large B-
cell lymphomas (DLBCL) have higher Trx-1 expression than normal B-cells [86], and that
increased Trx expression is associated with poor progression-free survival [86,87]. Interest-
ingly, Kari and colleagues observed that strong Trx-1 expression sensitized cells to etoposide,
suggesting that Trx-1 could be used as a predictive biological marker for selecting patients
who might benefit from the addition of etoposide to R-CHOP immunochemotherapy [88].
Shao et al. demonstrated that Trx-1 levels were variable in children with acute T-cell lym-
phoblastic leukemia and that these cells had higher Trx-1 levels associated with higher
white blood cell counts [89].

4. Trx as a Predictive Biological and Prognostic Marker in Non-Cancer Diseases
4.1. Autoimmune and Inflammatory Diseases

Patients with rheumatoid arthritis (RA) had higher Trx plasma samples compared
to healthy control patients, and disease activity correlated with Trx expression. In ad-
dition, plasma Trx levels correlated significantly with urinary excretion of 8-hydroxy-2′-
deoxyguanosine (8-OHdG) [90]. Trx in the serum is also a prognostic value in patients with
sepsis. It has been demonstrated that an early increase in serum levels of Trx-1 can predict
28-day mortality in sepsis patients in the intensive care unit (ICU) [91].

4.2. Lung

Bronchial asthma is a chronic inflammation of the airways. To clarify the clinical
significance of Trx in the pathogenesis of asthma, blood samples were collected from
patients with bronchial asthma with or without attack. Elevated Trx levels were found
in the sera of patients with asthma attacks compared with those in the asymptomatic
phase. Trx concentrations are related to the state of asthma exacerbation and allergic
inflammation [92]. Trx concentrations in the bronchoalveolar lavage (BAL) fluid from
patients who rejected a lung graft were significantly higher compared with those who did
not, suggesting that Trx concentrations in BAL after lung transplantation may serve as a
biomarker to assess the severity of graft rejection [93].

4.3. Abdominal Disease

Serum Trx-1 levels have been reported to correlate significantly with the severity of
acute pancreatitis (AP). Trx-1 levels were significantly elevated in patients with severe AP
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compared with patients with mild AP. Therefore, Trx-1 could be used as a biomarker for
assessing the severity of AP associated with oxidative stress [94].

In addition, Trx is a promising biomarker for the progression of hydronephrosis in
children. One study reported that Trx is elevated in the serum and urine from children
with hydronephrosis in comparison with healthy controls, and that the concentrations are
related to the severity of the disease [95].

4.4. Cardiovascular

In addition, plasma Trx levels can be used to further explore and understand post-
cardiac arrest syndrome. Trx levels increase early after cardiac arrest, and the most severe
patients have the highest Trx levels [96].

Patients with cardiac events had significantly higher plasma Trx-1 concentrations than
patients without cardiac events. A multivariate Cox proportional hazard analysis showed
that elevated Trx-1 levels were independently associated with poor patient outcome [97].

Because some patients with coronary artery diseases (CAD) had elevated homocys-
teine and Trx levels, it was hypothesized that homocysteine, Trx levels, and CAD were
associated. Analysis showed that the CAD groups had significantly elevated increased
homocysteine levels but no Trx activity compared with the non-CAD group. Trx activity
correlates closely with the extent and severity of CAD [98].

4.5. Cerebrovascular

To evaluate the potential diagnostic and prognostic role of Trx in acute ischemic stroke
(AIS), patients’ serum Trx levels were measured. Several studies have shown that a high
serum Trx level is associated with a better outcome in AIS patients [99], suggesting that Trx
level may serve as a prognostic marker in patients with AIS [100,101].

In addition, serum Trx concentrations were elevated in patients with intracerebral
hemorrhage (ICH) or subarachnoid hemorrhage (aSAH) compared with healthy controls.
Trx concentrations were closely related to hemorrhagic severity and long-term mortality,
suggesting that Trx could be used as a potential prognostic biomarker [102,103].

4.6. Trauma

A Swedish observational study of plasma samples from trauma patients showed
an increase in Trx compared to healthy volunteers. In addition, Trx concentrations were
associated with trauma severity and poor outcome in patients with severe traumatic brain
injury (STBI). Already on the first day, plasma Trx concentrations were elevated in patients
who later developed post-injury sepsis, suggesting that Trx may act as a biomarker in
trauma patients [104,105].

4.7. Aging

Trx appears to be a putative biomarker in age-related immune decline, as shown by
the MARK-AGE study. The study confirmed that there is an inverse correlation between
surface Trx-1 expression and age. However, analysis in a larger patient cohort of patients is
needed to confirm this finding [71].

Chronic mountain sickness (CMS) is a progressive incapacitating syndrome induced
by lifelong exposure to hypoxia. To identify potential biomarkers in the plasma between the
CMS and non-CMS groups, a search was conducted for differentially expressed genes, and
Trx-1 was discovered, among others. This study provides insights into the pathogenesis of
CMS to develop new treatments [106].

5. Trx-1 in Health and Disease—Potential Therapeutic Approaches

Trx-1 is essential for proper organ function, but alterations in Trx-1 expression or activ-
ity, as well as protein–protein interactions, can cause a switch from a physiologic state of
cells and organs to various pathologies. Therefore, therapeutic approaches are increasingly
being developed to find new selective inhibitors targeting this protein (Figure 5). In general,
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the majority of available inhibitors of the Trx system target TrxR. However, specific Trx
inhibitors have been tested in humans.
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5.1. PX-12 (1-Methylpropyl 2-Imidazolyl Disulfide)

PX-12 was the first Trx-1 inhibitor to enter clinical trials as an anticancer agent [82,107–116].
PX-12 is tolerated up to a dose of 226 mg/m2 by a 3 h infusion in patients with

solid tumors [112], while patients with advanced refractory cancers tolerated higher
infusion [112,117]. In general, Trx-1 inhibition seems to have a promising therapeutic
potential. Using a tumor xenograft model and the Trx-1 inhibitor PX-12, the relationship
to Trx-1 and vascular endothelial growth factor (VEGF) levels should be addressed. The
data demonstrated a rapid decrease in the average tumor blood vessel permeability, as
well as a decrease in tumor and tumor-derived VEGF in plasma after treatment with PX-12.
However, Trx-1 showed a rapid decline within 2 h following PX-12 administration, which
was maintained for 24 h. The decrease in tumor vascular permeability caused by PX-12
administration coincided with a decrease in Trx-1 and VEGF [118].

A decrease in vascular permeability in tumor xenografts [118] gives rise to the question
of whether PX-12 could be also effective in the early stage of focal cerebral ischemia by
decreasing blood–brain barrier (BBB) disruption. Beyond this, the question arises whether
PX-12 inhibition could be affected by vascular endothelial growth factor (VEGF), which
itself interacts with the Trx-1 system. The data showed that PX-12 is effective in decreasing
BBB disruption in the early stage of focal cerebral ischemia, but VEGF does not influence
the action of PX-12 on BBB permeability [119].

Colorectal cancer (CRC) is mostly challenged by treatment failure and recurrence due
to resistance to radiotherapy. In general, CRC tissues showed increased ALDH1L2 expres-
sion. Moreover, patients with high ALDH1L2 expression displayed poorer recurrence-free
survival and overall survival compared to patients showing low ALDH1L2 expression [120].
It has also been demonstrated that ALDH1L2 interacts with Trx and, thereby, regulates
the downstream NF-κB signaling pathway. Beyond this, application of PX-12 overcame
radioresistance due to decreased ALDH1L2 expression. Finally, the data suggested that
simultaneous application of Trx-1 inhibitors and radiotherapy might ameliorate clinical
outcomes of patients with CRC with low ALDH1L2 levels [121].

5.2. Quinols

In general, heteroaromatic quinols show potent antitumor activity against various
cancer cell lines, as well as inhibited tumor growth in different xenograft models. Mass
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spectrometry analysis confirmed the binding between reduced Trx-1 and quinol analogues
resulting in reduced enzyme activity [122], thereby leading to speculation that quinol
analogues react with Trx in a double Michael addition.

5.3. PMX464 (4-(Benzothiazol-2-yl)- 4-Hydroxycyclohexa-2,5-dienone—Previously AW464; [123])

In addition to PX-12, another known Trx inhibitor is PMX464 [124]. Studies on col-
orectal and breast cancer cell lines have demonstrated that PMX464 enhanced hypoxic
anti-proliferative effects in the cell lines and endothelial cells, as well suggesting that
PMX464 may be a promising chemotherapeutic drug with anti-angiogenic activity [125].
Further analysis demonstrated that PMX464 inhibits Trx-1 function without affecting its
expression. Its inhibition correlated with decreased proliferation and survival. Therefore,
the Trx-1 system is an important target in tumor cells and can be inhibited by PMX464 [126].

Additionally, oxidation of thiols in cell surface proteins, including the collagen receptor
GPVI and the von Willebrand factor receptor, is affected by PX464. These results revealed
a novel role for Trx in regulating platelet function and thrombus formation, suggesting a
potential opportunity for repurposing this Trx inhibitor as an antiplatelet agent [127].

5.4. Secondary Metabolites

It is commonly known that secondary metabolites from plants and fungal affect the
Trx system [128–130].

5.4.1. Puerarin

Gegen, the root of Pueraria lobata (Willd.) Ohwi, is used as a traditional Chinese
medicine with various medicinal purposes. The major bioactive ingredient isolated from
Gegen is called puerarin [131], and it is widely used for treatment of cardiovascular and
cerebrovascular diseases, neurodegenerative diseases, and cancer [132].

Administration of puerarin within 4 h of spinal ischemia-reperfusion rescued ischemic
reperfusion damage injury by induction of Trx transcription and reduction in apoptosis [133].

Furthermore, Dil-oxLDL uptake is inhibited by puerarin in RAW264.7 cells and in
primary macrophages. Moreover, in apoE-/- mice, combination treatment with PX-12 or
Trx-1 siRNA demonstrated that reduced lipid uptake by puerarin requires Trx-1 inhibi-
tion in vivo. This finding suggests that puerarin might be an effective therapeutic in the
prevention of atherosclerosis by affecting Trx-1 [134].

5.4.2. Pleurotin

Pleurotin is a promising basidiomycete metabolite that was first isolated from Pleurotus
griseus Peck [135]. Meanwhile, pleurotin is classified as Hohenbuehelia grisea (Peck) Singer.
The metabolite showed various functions, including anti-cancer effects [136], which can
be attributed to its inhibition of the Trx-system [137]. In vitro studies on human breast or
colon cancer cell lines revealed that treatment of cells with pleurotin inhibited hypoxia-
induced upregulation of HIF-1α. Furthermore, treatment with pleurotin under hypoxic
conditions decreased HIF-1-trans-activating activity, VEGF formation, and inducible nitric
oxide synthase. It is suggested that Trx-1 inhibitors contribute to the growth-inhibitory and
antitumor effects of these agents by inhibiting HIF-1α [138].

Furthermore, the question arises whether thioredoxin inhibitors can act as antifungals.
To test this hypothesis, the activity of pleurotin against the dermatophyte T. mentagrophytes
and Candida albicans was tested. In vitro and ex vivo analyses showed that pleurotin inhibits
the growth of the dermatophyte but has no effect on Candida. Therefore, Trx inhibitors
should be further developed and optimized for their use as antifungals [139].

5.4.3. Adenanthin

It is known that adenanthin can inhibit the enzymatic activities of peroxiredoxins
(Prdx), which have a thioredoxin fold. Therefore, it stands to reason that adenanthin also
inhibits the Trx- system. Indeed, in vitro analyses have shown that adenanthin decreases
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Trx activity by binding to Trx-1. Thus, adenanthin may be a new potential therapeu-
tic agent for diseases in which aberrant activity of Prdx or the Trx-system is involved
in pathogenesis [140].

5.4.4. Diallyl Trisulfide (DAST)

Diallyl trisulfide (DATS) is one of the major sulfur-containing compounds in garlic oil.
Through Michael addition, DAST conjugated directly to the Cys32 and Cys35 residues of
Trx-1, resulting in inhibition of Trx-1 activity.

In patients with triple negative breast cancer (TNBC), metastasis is the main cause
of high mortality. It has been suggested that Trx-1 plays an essential role in breast cancer
metastasis. It was found that the production of the reduced form of Trx-1 was dramatically
reduced by DAST in vitro. In vivo analysis showed that DAST administration suppressed
spontaneous and experimental metastasis in nude mice. Reduced Trx expression was also
observed in primary tumors after DAST administration. In conclusion, targeting the Trx
system with DATS is a promising strategy for the treatment of TNBC metastasis [141].

Glioblastoma (GBM) patients usually receive radiotherapy as the standard treatment.
However, resistance to radiotherapy remains a major challenge. Previously, it was shown
that DATS could directly conjugate to the redox-active cysteine residues in Trx-1, thereby
inhibiting its activity. Consequently, ROS production is induced. Furthermore, DAST has
been shown to enhance irradiation (IR)-induced ROS accumulation, apoptosis, and DNA
damage, and inhibit tumor growth of GBM cells as well. These observations suggest the
utility of DATS in sensitizing radiotherapy to GBM patients [142].

5.4.5. Quinones (P-Benzoquinone, BQ)

Quinones are ubiquitous biological pigments found in various biological organisms.
In most cases, they occur in nature in forms such as benzoquinones, naphthoquinones,
anthraquinones, and polycyclic quinones. In general, quinones can alter molecules through
redox reactions that produce radicals and through covalent adduction. Mass spectrometric
analysis showed that BQ forms adducts with all Cys residues of Trx-1, resulting in a loss of
enzyme activity. It was also shown that the reaction of BQ with Trx leads to activation of
the ASK1/p38 MAPK pathway and induction of apoptosis [143].

5.5. Administration of Trx-1

A number of preclinical studies have demonstrated that extracellular Trx has a cytopro-
tective function under oxidative and inflammatory conditions, with no evidence of adverse
effects or adverse symptoms. In general, health benefits of plant food-based diet could
be associated with integrated antioxidant and anti-inflammatory mechanisms [144,145].
For example, fermented foods and beverages have shown a strong impact on human gut
microbiota. For example, papaya, the fruit of the Carica papaya plant, is commonly used as
a medicinal fruit [145]. However, there is also evidence for the use of the fermented form of
this fruit.

For example, in a clinical study of cirrhotic patients given fermented papaya, lower Trx lev-
els, improved redox balance, and reduced TNF-α production by monocytes were observed [146].

Interestingly, rats orally administered Trx from Saccharomyces showed beneficial ef-
fects on gastric mucosa by upregulating genes related to tissue repair, suggesting that
administered yeast Trx may protect the gastric mucosa [147].

In addition, sodium butyrate (NaB), a short-chain fatty acid produced by bacterial
fermentation of indigestible dietary fiber, has been shown to have an anti-tumor effect in
CRC. Treatment with NaB inhibited cell growth and decreased Trx-1 protein expression in
CRC cells and also induced apoptosis in CRC cells as well [148].

5.6. Recombinant Trx-1

Excessive neutrophil elastase activity in the airways of cystic fibrosis patients (CF)
leads to progressive lung damage. It has been speculated that altering the enzymatic
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activity of elastase may have potential therapeutic properties. In a comparative study, E.
coli Trx and human recombinant Trx (rhTrx) were tested for their effects on elastase activity.
Reduced rhTrx inhibited purified elastase and soluble CF sputum elastase. These findings
make these compounds potential therapies for CF [149]. Furthermore, in a lung injury rat
model, continuous infusion of rhTrx was shown to significantly reduce neutrophil infil-
tration in the airways [150]. In addition, continuous administration of rhTrx significantly
suppressed the percentage of neutrophils in bronchoalveolar lavage fluid. Histological ex-
amination also showed that rhTrx decreased neutrophil infiltration in the lung tissue [151].
In addition, studies in mice investigating the effect of Trx on ultraviolet (UV)-B-mediated
inflammatory and apoptotic responses showed that administration of rhTrx attenuated
acute skin inflammatory conditions such as skin erythema and swelling [152].

In addition, studies in mice showed that recombinant Trx may also be effective in
preventing N-acetyl-p-aminophenol (APAP) induced liver injury. It was observed that
injection of rhTrx significantly reduced liver injury and mortality. Moreover, pretreatment
of mice with rhTrx-1 also showed such beneficial effects. Recombinant human Trx decreased
the expression of RIP-3, resulting in less necroptosis [153].

The antioxidant Trx-1 has been shown to protect cells from OS-induced cell death.
In one study, the effect of Trx on oxidized low-density lipoprotein (ox-LDL-)-induced
macrophage foam cell formation and apoptosis was investigated by using human recombi-
nant Trx-1 on stimulated macrophages. The data showed that human recombinant Trx-1
significantly inhibited ox-LDL-induced ROS production and apoptosis, suggesting that
human recombinant Trx-1 may function as a novel therapeutic target in the prevention or
treatment of atherosclerosis [154].

5.7. Human Serum Albumin-Trx Fusion Protein (HSA-Trx)

In general, Trx may offer great potential as a therapeutic agent. However, due to its
small molecular weight, Trx is largely excreted via glomerular filtration. The half-life of Trx
is extremely short (about 1 h). Therefore, the poor blood retention property of Trx should
be improved. Albumin fusion of Trx has been reported to have great clinical applications.

Ikuta and colleagues generated a fusion protein between HSA and Trx and demon-
strated similar plasma concentrations and organ distribution of the fusion protein as
human albumin. Surprisingly, the fusion protein showed better results than Trx in some
assays [155]. Moreover, in a mouse model, HSA-Trx was shown to suppress ROS produc-
tion and neutrophilic inflammation, thereby preventing acute lung injury caused by urban
aerosols. Thus, HSA-Trx could be a potential drug candidate for the prevention of lung
injury [156]. Subsequently, it was observed that HSA-Trx could inhibit ROS production
and generation of 8-OHdG in a lung model [157].

Furthermore, HSA-Trx showed positive effects in inhibiting oxidative stress in the
kidney, thereby preventing kidney damage in a rat model of ioversol-induced contrast-
induced nephropathy (CIN). Thus, long-acting HSA-Trx is a new potential therapeutic
agent for the effective prevention of CIN [158]. Furthermore, studies on the effect of the
fusion protein on Cu2+/Zn2+-induced neurotoxicity showed that metal iron-induced ROS
production and the expression of oxidative stress-related genes were suppressed by HSA-
Trx. These results suggest that HSA-Trx may be a promising therapeutic agent for the
treatment of refractory neurological diseases [159].

Preventing the transition from acute kidney injury (AKI) to chronic kidney disease
(CKD) remains highly desirable. Analysis of mice with AKI and CKD produced by renal
ischaemia–reperfusion (IR) showed that HSA-Trx ameliorated tubular injury and fibrosis by
suppressing renal oxidative stress, pro-inflammatory cytokine production and macrophage
infiltration. In addition, HSA-Trx also inhibited apoptosis in renal tubular cells. Thus,
HSA-Trx modulated oxidative stress and inflammation and should be considered for the
treatment of the transition from AKI to CKD [160].
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5.8. In Vitro or In Vivo Manipulation of Trx in Disease

Since the cellular redox state is known to regulate the physiological state of cells and
organs, several in vitro and animal studies have been conducted to investigate the effects
of overexpressing Trx-1 or reducing Trx-1 gene expression.

5.8.1. In Vitro or In Vivo Deficiency of Trx

Since Trx-1 or Trx-2 deficiency is embryonically lethal in mice [13,14], few studies have
been performed in mice with an organ specific knock-out of Trx-1 (KO-Trx-1) or dominant
negative Trx-1 transgenic mice were carried out. Das and colleagues conducted one of the
first studies using Trx-1-deficient mice. They generated mice lacking Trx-1 in the lungs
using a dominant–negative construct. At normal oxygen levels, these mice showed a
decrease in mitochondrial energy metabolism and an increase in proinflammatory cytokine
production. However, Trx-1-deficient mice showed significant mortality under hyperoxia
conditions for several days. These results suggest that Trx plays an important role in
maintaining redox homeostasis in the lung, as well as protecting against pneumonia [161].
Oka and colleagues investigated the pathophysiological role of endogenous Trx-1 using
heart-specific Trx-1 knockout mice. Surprisingly, the transgenic mice were viable but
developed various disease symptoms including heart failure, hypertrophy, and increased
fibrosis. Using RNA sequencing, they found that these mice had down-regulation of genes
involved in energy production. In addition, these mice exhibited abnormal mitochondrial
morphology caused by mTOR regulation [162].

Further promising results were obtained by Jabber and colleagues, who analyzed the
effects of Trx-1 deficiency on the regulation of hematopoietic stem/progenitor cells (HSPCs)
under stress, such as radiation injury. They found that Trx-1 deficiency makes HSPCs more
sensitive to radiation and impairs the reconstitution and differentiation of HSPCs. Using
CRISPR/Cas9 knock-out, they generated an EML mouse hematopoietic stem/progenitor
cell line lacking Trx-1. These cells were used to analyze the effect of Trx-1 on apoptosis. The
enhanced apoptosis pathway and the resulting impaired reconstitution of HSPCs lead to
the conclusion that Trx-1 is necessary for protection against radiation-induced injury and
hematopoietic recovery, which is of great interest for clinical applications [68].

5.8.2. In Vitro or In Vivo Overexpression of Trx-1

Furthermore, pancreatic beta cells overexpressing Trx-1 showed positive effects on the
progression of type 2 diabetes mellitus, and Trx-1 expression had a positive effect on body
weight gain and insulin levels. These results demonstrate that thioredoxin-1 can improve
beta cell survival and function [163]. Furthermore, overexpression of Trx-1 significantly
improved the development of diabetic nephropathy in streptozotocin-induced diabetic mice.
Diabetic mice overexpressing Trx-1 showed lower urinary albumin excretion and fewer
pathological changes, including less tubular damage, compared to diabetic control animals.
In summary, these results suggest that OS plays an important role in the development
of diabetic nephropathy and that progression may be enhanced by modulation of Trx-1
expression [164].In studies using the same mice to investigate the effects of diabetes mellitus
on the development of osteopenia and bone fractures, diabetic mice overexpressing Trx-1
were found to have similar body weight and kidney function to wild-type diabetic control
mice. However, oxidative DNA damage, as measured by urinary 8-OHdG excretion and
8-OHdG staining in bone tissue, is decreased in Trx-1-overexpressing animals, suggesting
that increasing Trx expression may be a potential therapeutic approach for diabetes-induced
osteopenia [165]. In addition, studies analyzing neuronal degeneration or photoreceptor
degeneration have shown better results. After ischaemia–reperfusion, mice overexpressing
Trx-1 had a lower number of fluorojade B-positive neurons and a lower number of caspase-
3- and TUNEL-positive cells compared to control mice [166]. Similar results were obtained
in tubby mice overexpressing human Trx-1. Normally, tubby mice are characterized by
sensorineural deafness and retinal dystrophy. However, overexpression of human Trx-1
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reduced photoreceptor loss by enhancing neurotrophic factors such as BDNF and GDNF
and activating Akt signaling, while inhibiting apoptosis signaling pathways [167].

Trx-1 is thought to play an important role in the pathogenesis of cardiovascular disease.
To clarify whether Trx-1 is also involved in sepsis-induced myocardial dysfunction, heart-
specific Trx-1 overexpressing transgenic mice were generated and subjected to surgical
procedures. In addition to prolonging the average lifespan of the mice, Trx-1 overexpres-
sion also showed preserved contractile reserve and enhanced induction of mitochondrial
biogenesis as well as increased antioxidant capacity [168].

5.9. Therapeutic Agents

The rheumatic drug KE-298 (2-acetylthiomethyl-4-(4-methylphenyl)-4-oxobutanoic
acid) influenced the secretion of Trx and increased the level of intracellular glutathione in
human monocytes and T cells, thereby acting efficiently in the treatment of RA [169].

In various cancers such as T-cell lymphomas and leukemia, constitutively active NFκB
promotes survival. Dimethyl-fumerate (DMF) counteracts NFκB by suppressing Trx-1,
leading to increased ripoptosome-induced cell death. These findings offer a new approach
for the treatment of NFκB-dependent tumors [170]. Studies using a pheochromacytoma
cell line (PC12 cells) showed that 1-metyhl-4-phenylpyrimidinum ion (MPP(+)) induced
cell death by suppressing of Trx expression. Moreover, overexpression of Trx attenuated
MPP(+)-induced neurotoxicity in these cells. These observations provide new insights for
potential new therapeutic agents in Parkinson’s disease [171].

Studies in liver cells have shown that sorafenib has scavenging properties and down-
regulates Trx-1 expression. Experimental models of HCC showed that the antitumor
properties of sorafenib are related to a decrease in Trx-1 expression, S-nitrosation (SNO)-
CD95 and caspase-8 activity. Furthermore, it is speculated that a combination of sorafenib
with Trx-1 inhibitors should be considered for therapies against advanced HCC [172,173].

6. Conclusions

Trx-1 is one of the most essential proteins for proper organ function. However, there
are several mechanisms inducing a switch from the physiologic state of cells and organs
to diverse pathologies. For example, Trx gene expression is modulated by TFs such as
Nrf2 that bind at specific binding sites in the promotor region [31]. In addition, Trx activity
can be modulated by post-translational modifications such as phosphorylation of Trx at
T100, which promotes apoptosis in cancer cells [45]. In addition, S-nitroylation of Trx at
Cys62, Cys69, or Cys73 is known to be required for full redox activity. Additionally, glu-
tathionylation of Trx at Cys73 prevents dimer formation, resulting in abolition of enzymatic
activity [46]. Another possibility for modulating Trx activity are inhibitors such as Txnip,
PX-12, or even secondary metabolites. Modulation of Trx-1 expression or Trx activity can
therefore make the difference between health and disease.

In summary, a deeper understanding of Trx-1 has the potential to open up new
therapeutic applications. By exploring the importance and potential of this protein in
this review, researchers may be able to develop new diagnostic applications or treatments
for a variety of diseases. Therefore, further research into Trx-1 is crucial to improve our
understanding of its role in human health and disease.
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