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Abstract: The maintenance of redox homeostasis is associated with a healthy status while the dis-
ruption of this mechanism leads to the development of various pathological conditions. Bioactive
molecules such as carbohydrates accessible to the microbiota (MACs), polyphenols, and polyunsatu-
rated fatty acids (PUFAs) are food components best characterized for their beneficial effect on human
health. In particular, increasing evidence suggests that their antioxidant ability is involved in the
prevention of several human diseases. Some experimental data indicate that the activation of the
nuclear factor 2-related erythroid 2 (Nrf2) pathway—the key mechanism in the maintenance of redox
homeostasis—is involved in the beneficial effects exerted by the intake of PUFAs and polyphenols.
However, it is known that the latter must be metabolized before becoming active and that the in-
testinal microbiota play a key role in the biotransformation of some ingested food components. In
addition, recent studies, indicating the efficacy of the MACs, polyphenols, and PUFAs in increasing
the microbial population with the ability to yield biologically active metabolites (e.g., polyphenol
metabolites, short-chain fatty acids (SCFAs)), support the hypothesis that these factors are responsible
for the antioxidant action on the physiology of the host. The underlying mechanisms through which
MACs, polyphenols, and PUFAs might influence the redox status have not been fully elucidated, but
based on the efficacy of SCFAs as Nrf2 activators, their contribution to the antioxidant efficacy of
dietary bioactives cannot be excluded. In this review, we aimed to summarize the main mechanisms
through which MACs, polyphenols, and PUFAs can modulate the host’s redox homeostasis through
their ability to directly or indirectly activate the Nrf2 pathway. We discuss their probiotic effects
and the role played by the alteration of the metabolism/composition of the gut microbiota in the
generation of potential Nrf2-ligands (e.g., SCFAs) in the host’s redox homeostasis.

Keywords: MACs; polyphenols; PUFAs; conjugated linoleic acid; gut microbiota; active metabolites

1. Introduction

Oxidative eustress represents the physiological exposure to low doses of endogenous
oxidant species, produced by cells to address specific targets via the redox network to
maintain cell homeostasis [1]. The alteration of the redox status is largely involved in cells
and consequent organ dysfunction, which often leads to a wide variety of chronic and age-
related human diseases. One of the molecular pathways responsible for the preservation of
this equilibrium state is the Nrf2/Keap1 pathway. Among several pathways regulated by
Nrf2, there is the maintenance of proteostasis, whose dysfunction determines cell death by
autophagy or apoptosis caused by events such as protein misfolding and aggregation [2].

The intestine is an essential organ involved in human nutrition, and increasing ev-
idence indicates that the interplay between gut commensal bacteria (microbiota)—the
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complex microbial community that colonizes the human gut—and its composition is in-
fluenced by the host’s genotype, environment, and diet. In particular, food nutrients play
a key role in human metabolism and health via the modulation of multiple mechanisms,
including energy metabolism, intestinal homeostasis, antioxidant homeostasis, and im-
mune responses [3]. In particular, the metabolic activity of gut microbes is essential for
maintaining host health, and alterations in its composition induce metabolic shifts that may
have adverse effects. Under healthy conditions, the preponderance of potentially beneficial
bacterial species such as Firmicutes and Bacteroides over potentially pathogenic ones such as
Proteobacteria is called eubiosis, and it has been associated with a healthy status of the host
organism. On the contrary, the perturbation or disruption of this composition, known as
dysbiosis, has been associated with several metabolic or immune disorders [4].

The consensus on microbiota-mediated healthy effects on the host is based on the
microbe-induced biotransformation of food components into bioactive metabolites. Bioac-
tive molecules exhibit, in combination with food components, the ability to modulate
the metabolic pathways of the host or to modify the composition and metabolism of the
microbiota. Among them, non-digestible fibers, also known as microbiota-accessible carbo-
hydrates (MACs), polyphenols, and PUFAs, are the best-characterized food components
influencing the composition and metabolism of the microbiota [5].

Analogously, the regulation/activation of the Nrf2 pathway can be exerted by endoge-
nous ROS (Reactive Oxygen Species) or exogenous molecules, such as dietary bioactive
molecules that may need to undergo structural transformations by the gut microbiota
before performing their bioactivity. The link between Nrf2 and gut microbiota health may
be hypothesized on the basis of the association of Nrf2 dysfunction with the alteration
of the composition of the microbiota due to ageing or pathological conditions. Unfortu-
nately, there is only one study that supports this connection [6] and, as far as we know, the
molecules responsible for this crosstalk have not yet been indicated.

In this review, we first discuss the role of microbial by-products, such as short-chain
fatty acids (SCFAs), on Nrf2-mediated oxidoreductive homeostasis (redox status). Then, we
provide a comprehensive and updated overview of the interplay of MACs, polyphenols,
and PUFAs on the composition/metabolism of the gut microbiota and their direct action on
specific molecular targets or their indirect action—via the modulation of the composition of
the microbiota—which, downstream, modulates the host’s redox status via the production
of SCFAs (Figure 1).
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Figure 1. Possible role of SCFAs in the modulation of Nrf2-mediated redox homeostasis.

2. Importance of the Nrf2 Pathway and Its Link with Gut Microbiota

Nrf2 is a redox-sensitive transcription factor, and it is the master regulator of ox-
idoreductive and immune homeostasis. In the cell cytoplasm, Nrf2 is associated with
the inhibitory protein Kelch-such as ECH-associated Protein 1(Keap1), which, owing to
the presence of specific cysteine residues, acts as a sensor of endogenous and exogenous
prooxidants [7]. In particular, under a mild increase in oxidative stress, specific cysteine
residues in Keap1 allow newly synthesized Nrf2 to escape Keap1-mediated ubiquitination
and to activate the transcription of Nrf2-target genes (more than 200) involved in funda-
mental biochemical pathways (e.g., mitochondrial functions, oxidoreductive and immune
homeostasis). Due to its pleiotropic activity, Nrf2 has been indicated as a therapeutical
target for a variety of human diseases [8], and the activation of this molecular mechanism
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has been mainly involved in the cytoprotective activity of dietary antioxidants, including
plant polyphenols [9], dietary PUFAs, and some of their metabolites [10].

As for SCFAs, bioactive polyphenol metabolites can affect specific pathways deter-
mining the modulation of specific target genes. In particular, their antioxidant activity is
achieved through the activation of the Nrf2 pathway [11]. However, based on their low
bioavailability and their biotransformation by the intestinal microbiota, it is probable that
their antioxidant ability is mediated by some of their metabolites or by other molecules of
bacterial origin (e.g., SCFAs). These fatty acids may be at the crossroad between the diet
and the organism’s redox status.

This hypothesis is consistent with a recent result showing the positive correlation
between Nrf2 activation in the brain with the levels of SCFA-producing bacteria (e.g.,
Roseburia, Oscillibacter, Faecalibaculum) in mice treated with several Nrf2 activators [6]. In
this framework, an overview of the modulatory effects of MACs, PUFAs, and polyphenols
to increase the level of SCFA-producing bacteria along with data reporting the efficacy of
SCFAs as Nrf2 ligands will be summarized in the following sections.

3. Composition of the Gut Microbiota

The gut microbiota comprise thousands of bacterial species, mainly those of Bac-
teroidetes (9–42%), Firmicutes (30–52%), and Actinobacteria (1–13%) [12,13], whose compo-
sition is influenced by the environment and host genotype, as well as by age and diet.
In adults, bacterial cells can reach gut concentrations of up to 1014 cells, representing the
largest number and highest concentration of microorganisms found in the human body [14].
The great variety of bacterial species characterizing the microbiota results in the expression
of a large number of genes. It has been estimated that the whole genomic content of gut
microbiota exceeds that of humans by one hundred times, suggesting that the genome of
the microbiota displays a metabolic potential capacity to influence the physiology of the
host [15]. Recent advances in high-throughput sequencing technologies have allowed us to
easily identify the genomes of ecosystem samples, contributing to the comprehension of
the role of the gut microbiome in health and disease (Human Microbiome Project) [16].

The homeostatic condition of the intestinal microbiota (eubiosis) mainly depends
on the balanced diversity of these microbial populations and the controlled growth of
potentially pathogenic bacteria. A reduction in the diversity of the intestinal population
(dysbiosis) can directly affect the epithelial and mucosal functions, leading to an inflamma-
tory environment in the gastrointestinal tract [17] as well as other human pathologies such
as non-alcoholic fatty liver disease and neurodegenerative disorders. The activity of the gut
microbiota is essential in the host metabolism, protecting against infections from pathogens
and intervening in energy homeostasis and the immune response by coordinating specific
gene expression in response to different host and environmental signals [18]. In particular,
the Firmicutes to Bacteroidetes ratio (F/B ratio) has been extensively examined in the human
and mouse gut microbiota, and it has been demonstrated that the F/B ratio is associated
with metabolic diseases [19], inflammatory diseases [20], neuropsychiatric disorders, and
cancer [21–23].

4. Effect of SCFAs on the Composition of the Gut Microbiota

The beneficial effects associated with the diversity of the microbial population arise
from the metabolic activities of specific microbial populations. Under eubiotic conditions,
the commensal relationship between the microbiota and the host mainly consists of the
capacity of bacteria to generate bioactive metabolites, starting from the ingested food,
which exhibits the ability to modulate different metabolic pathways of the host [24]. For
example, the production of carboxylic acids with aliphatic tails with fewer than six carbon
atoms such as acetate (C2), propionate (C3), and butyrate (C4), resulting from the anaerobic
fermentation of dietary plant polysaccharides, is the most relevant metabolic activity of
enteric microbiota. These molecules are collectively referred to as Short-chain Fatty Acids
(SCFAs) [25].
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The growth of anaerobic SCFA-producing bacteria is favored by the low oxygen con-
centrations in the intestine where the two most abundant populations, namely, Bacteroidetes
and Firmicutes, mainly produce acetate/propionate and butyrate, respectively [26]. In-
terestingly, due to butyrate generation during acetate metabolism, their coexistence can
be consequential to mutual metabolic gain, thus resulting from the utilization of acetate
produced by Bacteroidetes and Firmicutes to produce butyrate and propionate [27]. This
example strongly supports the concept that the production of SCFAs is finely tuned by the
balance of the bacterial species present in the gut.

The homeostatic condition of the intestinal microbiota can be restored by the level
of SCFAs, and many studies in vivo describe the link between gut dysbiosis and the
production of SCFAs (Table 1).

Table 1. Studies reporting the link between gut dysbiosis/production of SCFAs in several human
diseases. An increase or decrease in the levels considered is indicated by upward (↑) or downward
arrow (↓), respectively.

Disease Model Microbiota Alteration
Production of SCFAs Ref.

D
ia

be
te

s Randomized clinical trial
High-fiber diet

Type 2 diabetes
↓ SCFAs
High fiber intake
↑ SCFAs
↑ SCFA-producing bacteria

[28]

Meta analysis
Dietary fiber

↑ Butyrate, propionate
↑ Bifidobacterium [29]

In
fla

m
m

at
or

y
B

ow
el

D
is

ea
se

(I
B

D
)

313 patients

↓ Acetate-to-butyrate converter
Firmicutes (Roseburia)
↓ Propionate
↑ Pathogens (Enterobacteriaceae, Proteobacteria)

[30]

127 patients
87 healthy controls

↓ Butyrate-producing bacteria
(Firmicutes)
↓ SCFAs (acetate, propionate, butyrate)

[31]

10 inactive Crohn patients
10 healthy controls

↓ SCFA-producing bacteria
↓ Roseburia inulinivorans,
↓ Ruminococcus torques,
↓ Clostridium lavalense,
↓ Bacteroides uniformis
↓ Faecalibacterium prausnitzii

[32]

N
on

al
co

ho
li

c
Fa

tt
y

Li
ve

r
D

is
ea

se

14 nonalcoholic fatty liver,
18 nonalcoholic steatohepatitis

27 healthy controls

↑ SCFA levels
↑ SCFA-producing bacteria
(Fusobacteriaceae, Prevotellaceae)

[33]

25 nonalcoholic fatty liver
25 nonalcoholic steatohepatitis

25 healthy donors

↓ Ruminococcaceae
↓ Clostridiales
↑ Bacteroidetes
↓ Firmicutes

[34]

30 patients F0/1 fibrosis stage
27 patients F ≥ 2 fibrosis

↑ Bacteroidetes (F ≥ 2)
↑ Ruminococcus (F ≥ 2)
↓ Prevotella

[35]
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Table 1. Cont.

Disease Model Microbiota Alteration
Production of SCFAs Ref.

N
eu

ro
de

ge
ne

ra
ti

on

Pa
rk

in
so

n’
s

D
is

ea
se

Nonparametric meta-analysis ↑ Akkermansia
↓ Fecal SCFAs (acetate, propionate, butyrate) [36]

96 patients
85 controls

↓ Fecal SCFAs
↑ Plasma SCFAs
↑ Pro-inflammatory bacteria

[37]

95 patients
33 controls

↓ Fecal SCFAs
(propionic acetic, butyric)
↑ Plasma SCFA
(propionic acetic)

[38]

A
lz

he
im

er
’s

D
is

ea
se 25 patients ↓ Firmicutes, Bifidobacterium

↑ Bacteroidetes [39]

33 dementia
22 mild cognitive impairment

120 subjective cognitive decline

↓ SCFA-producing bacteria (Ruminococcus,
Eubacterium)
↑ AD biomarkers (Amyloid-β1-42 and p-tau
concentrations)

[40]

Mouse model
Sodium butyrate supplementation ↓ Amyloid-β1-42 protein (40%) [41]

It can be assumed that butyrate, being a fundamental nutrient for colonocytes, satisfies
the metabolic demands of the colon epithelium [42], and it also modulates the expression of
tight junction proteins, thus preserving the intestinal barrier whose integrity is a crucial part
of the overall immune response [43]. In addition, local O2 consumption during butyrate
uptake and its metabolism by the intestinal epithelium stabilizes the hypoxia-inducible
factor (HIF)—a transcription factor that coordinates barrier protection—which promotes
the creation of an anaerobic environment. This “physiological hypoxia” stimulates the
growth of SCFA-producers (anaerobic bacteria) [44], indirectly regulating the functionality
of the intestinal barrier [45]. In addition, SCFAs have been shown to display an inhibitory
effect on the growth of potentially pathogenic bacteria such as Salmonella typhimurium [46]
or Clostridium difficile [47].

4.1. Effect of SCFAs on Gut Homeostasis

Acetate, propionate, and butyrate in the colon are present in the molar ratio 60:25:15,
although proportions can vary depending on factors such as diet, microbiota composition,
the site of fermentation, and the genotype of the host [48]. These are the predominant
SCFAs present in the proximal regions of the large intestine in humans and rodents, and
they are present at mM levels [49–51].

Acetate, propionate, and butyrate reach the highest concentrations (70–140 mM) in
the proximal colon [48] where they enhance mucin secretion by increasing the expression
of the MUC2 gene [52], with a concentration gradient decreasing from the lumen to the
periphery [53]. When these SCFAs are absorbed into hepatic portal circulation and the
lacteal lymphatic system, they reach total concentrations ranging from 375 µM to 148 µM
in the portal and hepatic blood respectively, or 79 µM in peripheral blood [48,54]. Butyrate
and propionate, mostly metabolized by hepatocytes, were reported in a range of 1–15 µM
in the systemic circulation, while acetate ranged between 100 and 200 µM [55,56]. However,
the small amounts of SCFAs present in the bloodstream are sufficient to elicit a wide range
of biological functions in different tissues.

A study on a mouse model of induced colitis demonstrated that SCFAs preserve
gut homeostasis by acting on the inflammasome pathway through the upregulation of
interleukin (IL)-18 [57]. Accordingly, low levels of butyrate and propionate-producing
bacteria were found in patients suffering from inflammatory bowel diseases (IBD) such as
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ulcerative colitis or Crohn’s disease [31,32]. Several in vivo analyses have indicated that
SCFAs regulate gut motility by stimulating mucosal receptors [58] or by increasing the
release of the Peptide YY from gut endocrine cells, thus favoring intestine motility [59].
Other studies demonstrated that SCFAs act in preventing colonic diseases, by enhancing the
absorption of minerals and decreasing the cholesterol concentration [60,61]. Experiments
using germ-free animals reported that their reduced gut motility can be restored by the
infusion of SCFAs [62].

Convincing evidence supports the idea that the beneficial effect of SCFAs extends
beyond the colon. In fact, SCFAs participate in different physiological processes in the
human body, being able to improve gut physiology, modulate the host’s glucose and
lipid metabolism, and affect immune function [63,64]. In particular, upon their transport
from the intestinal lumen into the blood compartment of the host, SCFAs are absorbed
by the liver for gluconeogenesis or by muscle to generate energy [65]. Among SCFAs,
acetate is the primary substrate for cholesterol synthesis [66], while propionate inhibits
cholesterol synthesis by reducing serum lipids and has a protective effect against colon
cancer [64,67]. Notably, SCFAs modulate brain functions by acting on the production of
neuroactive metabolites [68]. For example, butyrate and propionate can be transferred from
the gut to the brain where they act as signalling molecules through the monocarboxylate
transporters that are highly expressed in the blood–brain barrier [69]. Finally, butyrate
has been reported to play a protective role against carcinogenesis in colon cancer cells by
enhancing the expression of cell cycle inhibitory genes [70].

4.2. Signaling Mechanisms Induced by SCFAs

The detailed description of the mechanisms involved in the signalling activity of
SCFAs does not fall within the scope of this work and, due to its complexity, only a
synthetic presentation is reported herein. Besides the relevant role in intestinal health,
SCFAs may play their signalling role via the activation of several biochemical pathways:
G-protein-coupled receptors (GPCRs), histone deacetylases (HDACs), and Nrf2 [71–73]
(Figure 2).
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Figure 2. Biological effects of MACs. The intake of MACs can modulate the composition and
metabolism of the microbiota, leading to an increased production of SCFAs. SCFAs exert biological
effects by modulating specific signaling pathways. HDACs: histone deacetylases; GPCRs: G-protein-
coupled receptors; GLP-1: glucagon like peptide 1; Nrf2: Nuclear factor 2-related erythroid 2.
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In humans, there are at least six GPRs that are sensitive to SCFAs, but among them,
only GPR41, GPR43, and GPR109A are involved in SCFA-mediated signaling. GPR41 and
GPR43 are the best-studied SCFA receptors [74] and are activated by acetate, propionate,
and, to a lesser extent, also by butyrate. GPR41 is expressed in colon cells, in the blood
vessels, and in the sympathetic nervous system, while GPR43 is mainly expressed in
enteroendocrine L cells, lymphocytes, neutrophils, and monocytes [75]. GPR109A has a
high affinity for niacin that can be activated by butyrate, and it is expressed only in human
immune cells and colonocytes. In addition, GPR109A is highly expressed in adipocytes.
The activation of this receptor in adipocytes has been linked to lipolysis and a decrease
in plasma free fatty acids [76]. Activated GPCR receptors can regulate different signaling
via the activation of many cellular functions such as the mitogen-activated protein kinase
(MAPK) family of serine-threonine kinases, including extracellular signal-regulated kinase
(ERK), c-jun N-terminal kinase (JNK), p38, and ERK5, through an intricate network of
signaling. The activation of GPR43 also stimulates the phospholipase-C determining
intracellular Ca2+ release and the activation of protein kinase C [77].

HDACs are a group of enzymes that affect gene transcription or alter protein activity
by removing the acetyl group on the lysine ε-amino group of the target protein. The
inhibition of HDACs is relevant for immune and inflammatory regulation by modulating
either innate immunity through regulation of the Toll-Like Receptor (TLR) and Interferon
(IFN) signaling pathways or by regulating antigen presentation and B and T lymphocytes
to achieve adaptive immunity [78,79]. In particular, the inhibitory effect of HDACs on
SCFAs, mainly due to propionate and butyrate, results in an anti-inflammatory effect
through the promotion of regulatory T cell (Treg) development as well as CD4+ T cell IL-10
production [80,81].

Interestingly, the functional link existing between this signaling pathway and gut
microbiota homeostasis has been indicated by (a) the modulatory ability of SCFAs in the
Nrf2 pathway [72], (b) the age-dependent decline in the concentration of SCFAs in the
gut [82], and (c) the positive association between microbiota diversity and Nrf2 efficacy [83].
In addition, the link between the production of SCFAs and the Nrf2 pathway was indicated
in a recent study showing the ability of Clostridium butyricum pretreatment to increase the
SCFA contents in the cecum of Enterotoxigenic Escherichia coli K88 (ETEC K88)-infected
mice. In particular, the data indicated that such improvement was associated with the
amelioration of the oxidative damage induced by ETEC K88 infection through the activation
of the Nrf2 pathway [84]. A summary of the differential ability of microbial SCFAs in
activating different receptors involved in the Nrf2 pathway is shown in Table 2.

Table 2. A brief summary of SCFAs produced by the gut microbial population and of their response
to different receptors; adapted from [26,72]. Low or high affinity is denoted by + or ++, respectively.

Phylum Family Genus FFAR3
(GPR41)

FFAR2
(GPR43) GPR109A

Firmicutes Lachnospiraceae Coprococcus

A
C

ET
A

T
E

+ + + + + +

Barnesiella
Ruminococcaceae

Akkermansia
Prevotella

Bifidobacterium
Bacteroidetes Bacteroidaceae Bacteroides

PR
O

PI
O

N
A

T
E

+ + + +

Prevotellaceae Prevotella
Rikenellaceae Alistipes

Firmicutes Eubacterium
Blautia

Coprococcus
Veillonellaceae Dialister

Acidaminococcaceae Phascolarctobacterium
Verrucomicrobia Verrucomicrobiaceae Akkermansia
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Table 2. Cont.

Phylum Family Genus FFAR3
(GPR41)

FFAR2
(GPR43) GPR109A

Firmicutes Lachnospiraceae Eubacterium

B
U

T
Y

R
A

T
E

+ + + + + +

Roseburia
Clostridium
Eubacterium
Anaerostipes
Coprococcus

Ruminococcaceae Faecalibacterium
Subdoligranulum

Erysipelotrichaceae Holdemanella

Finally, the interplay existing between different SCFAs further strengthens the com-
plexity of their mechanism of action [85,86] (Figure 2).

5. Dietary Bioactive Molecules and the Gut Microbiota Composition

Diet has a fundamental role in determining the composition of the gut microbiota.
MACs, PUFAs, and polyphenols are the most well-characterized food components able to
modulate the composition and metabolism of microbiota. All of these food components
can exert prebiotic effects that result in the modulation of bacterial strains producing
SCFAs. These compounds can affect specific molecular mechanisms that result directly
in beneficial effects on the host’s health or indirectly allow the gut microbiota to produce
active/antioxidant metabolites. A detailed description of the complex network involved in
the SCFA-mediated signaling activity and its therapeutic relevance have been presented
elsewhere by [87] and will not be further examined herein.

5.1. Effect of Microbiota-Accessible Carbohydrates (MACs) on Gut Homeostasis

Non-digestible polysaccharides such as resistant starch, inulin, cellulose, guar gum,
and pectin—collectively known as MACs—are the main energetic source of gut bacteria.
MACs exert a modulatory role in the gut microbial composition, maintaining gut homeosta-
sis. An MAC-rich diet in humans is associated with an increased content of colonic and fecal
SCFAs (Table 3). On the contrary, a high-fat and high-sucrose diet can determine dysbiosis
onset, which represents the first step in the development of an increased susceptibility to
inflammatory diseases such as IBD or non-alcoholic fatty liver disease or colon cancer [88].

After ingestion, intact MACs reach the colon where they are metabolized by microbial
enzymes, i.e., glycoside hydrolases and polysaccharide lyases. These enzymes, degrading
the glycosidic bonds, convert MACs into monosaccharides [89]. The digestion of MACs
by gut bacteria yields SCFAs that can be easily absorbed by gut epithelial cells, exerting
healthy effects on human health [90]. It is important to underline that food intake has a
crucial role in the fine-tuning of SCFA production by gut bacterial species. This implies
that dietary changes affecting the MAC content can exert a prebiotic effect, altering the
composition and metabolism of the gut microbiota. As previously mentioned, the eubiotic
condition is associated with “good health,” while low microbial diversity and dysbiosis
have been correlated with diseases highly prevalent in Western society, such as obesity,
type 2 diabetes, or IBD [91]. Several studies have shown a positive correlation between the
intake of a vegetable diet enriched in fiber and microbiota diversity and the enrichment of
SCFA-producing bacteria in human populations [92,93].
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Table 3. The effect of MACs on the composition of microbiota and the production of SCFAs. An
increase or decrease in the levels considered is indicated by upward (↑) or downward arrow
(↓), respectively.

Treatment Model Microbiota Alteration/SCFA
Production Ref.

Metanalysis
Studies investigating the

effect of dietary fiber on gut
microbiota

↑ Bifidobacterium
↑ SCFAs [29]

Dietary Fiber

European children
(Low-fiber diet)

vs.
Rural African village

(High-fiber diet)

↑ Bacteroidetes
↑ SCFAs [92]

African Americans
vs.

Rural native Africans

↑ Prevotella
↑ SCFAs [94]

Inulin

Mice with hyperuricemia
vs.

wild-type mice

↑microbial diversity
↑ SCFA-producing bacteria

(Akkermansia and
Ruminococcus).

↑ acetate, propionate, and
butyrate

[95]

Nonalcoholic Fatty
Liver Disease

rat model

↑ Bifidobacterium,
Phascolarctobacterium, Blautia

↓ Acetate
↑ Propionate and Butyrate

[96]

5.2. Effect of Polyphenols on Gut Homeostasis

Polyphenols are dietary bioactive compounds derived from plants and present in
fruits and vegetables. These compounds are chemically characterized by the presence of
at least one phenyl ring and one or more hydroxyl substituents. Dietary polyphenols are
characterized by poor absorption and extensive metabolism [97].

Most of the dietary-ingested polyphenols are present as glycosylated ester or poly-
mer forms, and after ingestion, they are recognized as xenobiotics. Their structural com-
plexity determines that they reach the large intestine without modifications. In the gut,
polyphenols—through microbic metabolism—are converted into low-molecular-weight
metabolites and then absorbed from epithelial cells to reach the plasma.

Small polyphenols can be easily absorbed after de-glycosylation by bacterial enzymes.
Then, they are converted into soluble metabolites through Phase I (oxidation, reduction, and
hydrolysis) and Phase II reactions (conjugation) [98]. On the contrary, complex polyphenols
(oligomeric and polymeric) need to be transformed by specific gut enzymes to increase
their bioavailability and plasma levels. As glycosides, polyphenols are first converted
into aglycones through specific enzymatic transformations. Subsequently, they undergo
additional modifications including C-ring cleavage, decarboxylation, dehydroxylation, and
demethylation [99]. The released aglycones, after absorption into the small intestine, can be
further metabolized by enterocytes and hepatocytes. In the liver cells, polyphenols undergo
Phase II biotransformation with the production of glucuronide and sulfation metabolites,
followed by distribution to organs and excretion in urine [100]. As a consequence, the final
metabolites are quite different from the parent molecules present in the ingested food. In
addition, their residence time in the plasma is extended compared to parental compounds,
thus allowing them to exert biological effects [101].
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Polyphenols are present in low concentrations in foods, as compared to macronutrients,
and their low bioavailability results in a lower amount absorbed by the body. The strong
discrepancy between the biological activity of polyphenols and their concentration has led
to the formulation of the low bioavailability/high bioactivity paradox [102,103].

The biotransformation of polyphenols by gut microbiota and the capacity of polyphe-
nols to modulate gut microbiota have been reported [104,105]. Consequently, less than 5%
of the total polyphenolic intake is absorbed and reaches the plasma unchanged while their
microbial metabolites predominate in the plasma [106].

For example, resveratrol, widely distributed in grapes, berries, and peanuts, is trans-
formed by the gut microbiota into different metabolites: dihydroresveratrol (DHR), which
is partly absorbed and further metabolized to two conjugated forms: monosulfate (DHR)
and monoglucuronide (DHR). An analysis of the bioavailability of these microbial metabo-
lites indicates that upon daily intake of 500 mg of pure trans-resveratrol, the metabolite
concentration in plasma increased from 3 to 13 µM [107].

Curcumin, found in turmeric (Curcuma longa (Linn.)), is converted into active metabo-
lites in a two-step reaction: the first produces dihydro curcumin (DHC) from curcumin,
and then DHC is converted into tetrahydro curcumin (THC). It has been reported that
supplementation with 1 g of turmeric acid and curcumin was not detectable in plasma
while the concentration of the active metabolites persisted in blood for at least 8 h, ranging
from 2 to 47 nM [108].

Bioactive polyphenol metabolites can affect specific pathways determining the mod-
ulation of specific target genes. Quercetin, a glycoside present in many fruits and veg-
etables, is transformed into active glucuronated, sulfated, and methylated metabolites
in the enterocytes of the small intestine. Quercetin that is not absorbed is metabolized
by specific bacterial enzymes able to cleave the quercetin C-ring, producing DOPAC (3,4-
Dihydroxyphenylacetic acid) PCA (3,4-dihydroxybenzoic acid), and 3-OPAC (3-hydroxyphenyl
acetic acid). These metabolites may exert their effect by directly modulating different sig-
naling pathways (Figure 3), such as the activation of the Nrf2 pathway that is involved in
their antioxidant activity [11].

As for SCFAs, bioactive polyphenol metabolites can affect specific pathways deter-
mining the modulation of specific target genes. For example, their antioxidant activity is
achieved through the activation of the Nrf2 pathway. Several in vitro and in vivo studies
demonstrated that polyphenols can activate the Nrf2 pathway [11]; however, owing to
their low bioavailability and their bio-transformation by intestinal microbiota, whether
polyphenols exert their modulatory effect directly or indirectly—through their metabolites—
remains to be established.

Different microbial genera including Bacteroides, Enterococcus, and Eubacteria play
a key role in determining the metabolic fate of polyphenols [109]. In addition, some
polyphenol bio-transformations require the presence of specific bacteria. For example,
gut bacteria involved in resveratrol metabolism are Slackia equolifaciens and Adlercreutzia
equolifaciens. Curcumin is converted into active metabolites mainly by Escherichia coli,
but it can also be metabolized by Blautia sp. [110], and quercetin can be converted into
active metabolites by specific bacterial strains such as Eubacterium ramulus, Clostridium
orbiscindens, Eubacterium oxidoreducens, and Butyrovibrio spp. that can cleave the C-ring [111].
The importance of gut bacteria for polyphenol metabolism is further indicated by the fact
that germ-free animals are not able to produce phenolic metabolites [112]. However,
individual differences in gut microbiota composition can account for individual variations
in absorption, metabolism, and polyphenol bioactivity. Thus, the identification of bacterial
species responsible for polyphenol metabolism is crucial to unraveling the health-promoting
effects on the host [113]. Individual differences in microbiota compositions can influence
the metabolic fate of ingested polyphenols [114]. This can explain the reason why a similar
daily intake of polyphenols results in different health effects.
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or directly. Indirect effects act by favoring the growth of a specific microbial population, while direct
effects affect the physiology of the host by modulating the Nrf2 pathway. DHR: Dihydroresver-
atrol DHR-ms: Dihydroresveratrol monosulfate; DHR-mg: Dihydroresveratrol monoglucuronide
forms; DHC: Dihydrocurcumin; THC: tetrahydro curcumin; DOPAC 3,4-Dihydroxyphenylacetic
acid; PCA: 3,4-dihydroxybenzoic acid; 3-OPAC: 3-hydroxyphenylacetic acid; HYA: 10-hydroxy-cis-
12-octadecenoic acid.

In addition, their conversion into bioactive metabolites can have beneficial effects on
the host’s health. In particular, the intestinal microbiota conversion of dietary polyphenols
promotes the proliferation of SCFA-producing bacteria such as Bifidobacteria and decreases
the ratio of Firmicutes to Bacteroidetes. Polyphenols can alter the composition of the mi-
crobiota, thus determining changes in polyphenol metabolism and bioavailability, and
bioactive metabolites can have beneficial effects on the host’s health (Table 4).

Figure 3 shows that the conversion of dietary polyphenols promotes the prolif-
eration of SCFA-producing bacteria such as Bifidobacteria and decreases the ratio of
Firmicutes to Bacteroidetes. This bidirectional interaction also accounts for polyphenol’s
antioxidant effects.
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Table 4. Effects of the dietary supplementation of polyphenols on the composition of microbiota.
An increase or decrease in the levels considered is indicated by upward (↑) or downward arrow
(↓), respectively.

Component Animal Model Effect on Gut Microbes Ref.

Astaxanthin β-carotene oxygenase 2
knockout mice

↑Mucispirillum schaedleri,
Akkermansia, Muciniphila [115]

Fucoxanthin azoxymethane/dextran
sulfate sodium treated mice

↑ Lachnospiraceae,
↓ Bacteroidlales, Rikenellaceae [116]

Tomato powder BCO1/BCO2 double
knockout mice

↑ Lactobacillus, Bifidobacterium,
↓ Bacteroides, Mucispirillum [117]

Apple polyphenol
extract Wild-type mice ↑ Verrucomicrobia,

Akkermansia [118]

Blueberry extract Sprague–Dawley rats ↑ Diversity of gut microbes [119]

Curcumin Wild-type mice ↑ Akkermansia, Roseburia,
Coprococcus [120]

Wild-type mice ↑Muribaculaceae,
↓ Bacteroides, Ruminococcaceae [121]

Epicatechin gallate Obese diabetic mice
↑ Firmicutes: Bacteroidetes
ratio,
↑ Lactobacillius

[122]

Fu brick tea Donor rats ↑ Akkermansia maciniphilla,
Bacteroides, Alloprevotella [123]

Litchi chinensis seed
extract Zebrafish

↑ Trichococcus, Muribaculaceae,
Lactobacillus,
↓Micrococcaceae,
Staphyllococcus

[124]

Peanut skin
procyanidin

DSS-induced ulcerative
colitis in mice

↑ Lachnospiraceae, Roseburia,
↓ Bacteroides, Helicobacter,
Parabacteroides

[125]

Pomegranate fruit
pulp Wild-type mice

↑ Akkermansia maciniphilla,
Parabacteroides distsonis,
Bacteroides acidifaciens

[126]

Purple sweet potato
anthocyanin extract Obese mice ↑ Lactobacillus,

Bifidobacterium, Akkermansia [127]

Tea polyphenols and
polysaccharides

DSS-induced colitis in
mice

↑ Lactobacillus,
↓ Proteobacteria,
Enterobacteriaceae

[128]

Triadica cochinchinensis
honey polyphenol Cefixime-treated mice ↓ Firmicutes/Bacteroidetes [129]

Xanthohumol Male Tac: SW mice

↓ Porphyromonadaceae,
Lachnospiraceae,
Lactobacillaceae,
↑ A. muciniphila, P. goldsteinii,
A. finegoldii

[130]

5.3. Effect of Polyunsaturated Fatty Acids (PUFAs) and Conjugated Linoleic Acid (CLA) on
Gut Homeostasis

n-3 PUFAs are a major component of fish fat and are widely ingested through food or
supplements; they are involved in many biochemical processes in the human body and are
well-known modulators of SCFAs produced by the gut microbiome [107].

Before the incorporation of PUFAs into the membrane of the target tissues from
systemic circulation, dietary fats are emulsified in the stomach before they enter the small
intestine, where they are cleaved off to form free fatty acids and 2-monoacylglyceride. In
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the enterocytes, PUFAs are re-esterified to triacyl glycerides, and, upon incorporation into
chylomicrons, are transferred to the lymph and blood circulation. The concentrations of
CLA and n-3 PUFAs in human blood plasma are markedly different—8 nm and 20 µM,
respectively—but their significant increase can be induced by the dietary supplementation
of CLAmix or fish oil [131,132]. Notably, since the biological activities of these PUFAs
depend on their incorporation and metabolism in the target organ, the marked differences
observed in the blood may not reflect the efficacy of their biological action [133].

Dietary lipids have been recognized to alter the gut microbiota composition by acting
as substrates for bacterial metabolic processes or by modulating the growth of propionate-
and butyrate-producing bacteria (e.g., Bacteroides, Clostridium, and Roseburia) [134]. A recent
review article reported that the concentration of n-3 PUFAs in the blood is positively corre-
lated with the abundance of human gut microbes, thus indicating that n-3 PUFAs could
directly modulate the diversity and the abundance of gut microbiota [135]. In particular,
dietary n-3 PUFAs regulate gut microbiota homeostasis, and their deficiency may induce
dysbiosis [136]. Several clinical data indicate the ability of n-3 PUFAs to restore gut eubiosis
in aged people or in those with several pathological conditions by increasing the abundance
of butyrate-producing bacteria [137,138]. Other in vivo studies have reported that dietary
n-3 PUFAs can increase the growth of lipopolysaccharide (LPS)-suppressing bacteria (Bifi-
dobacteria) and limit that of LPS-producing bacteria (Proteobacteria) [139], whose presence
can determine acute inflammatory responses by triggering the release pro-inflammatory
cytokines. Interestingly, dietary lipids also have a relevant role in neural development, the
differentiation of nerve cells, and the plasticity of the nervous system. Their importance is
supported by in vivo and clinical trial studies that clearly show the crucial role of dietary
n-3 PUFAs in brain development, ageing, and neurodegeneration (Table 5).

Table 5. Effects of PUFA dietary supplementation on microbiota composition and SCFA produc-
tion. An increase or decrease in the levels considered is indicated by upward (↑) or downward
arrow (↓), respectively.

Fatty Acids Effect on Gut Microbes Ref.

C
li

ni
ca

ls
tu

di
es

Omega-3 rich diet
A 45-year-old male consuming

600 mg of omega-3
(daily for 14 days)

↓ Species diversity
↑ Butyrate-producing bacteria
(Eubacterium, Roseburia, Anaerostipes,
Coprococcus, Subdoligranulum,
Pseudobutyrivibrio)

[138]

Enteral
supplementation of a

fish and safflower
blended oil

32 premature infants with
enterostomy
(10 weeks)

↓ pathogenic bacteria (Streptococcus,
Clostridium, Escherichia, Pantoea, Serratia, and
Citrobacter genera)

[140]

Omega-3 rich diet Pregnant women

↑ F. prausnitzii species of the Firmicutes
phylum
↓ Bacteroides genus of the Bacteroidetes
phylum

[141]

DHA/EPA 20 Healthy volunteers (8 wks,
4 g/day)

↑ SCFA-producing bacteria (Bifidobacterium,
Roseburia lactobacillus) [142]

Estimated food
intake of omega-3 fatty

acids
876 female twins

↑ n3-PUFA
↑ SCFA-producing bacteria
(Lachnospiraceae family)

[137]

Omega-3 (sardines)
(~3 g of EPA + DHA)

32 patients with type 2 diabetes
100 g of sardines

(5 days per week for 6 months)

↓ Firmicutes/Bacteroidetes ratio,
↑ Prevotella genus in the omega-3 group [143]
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Table 5. Cont.

Fatty Acids Effect on Gut Microbes Ref.

A
ni

m
al

m
od

el
s

n-3 PUFA

male C57BL/6 mice
n-3 supplemented (n3+)

n-3 deficient (n3−)
vs control (CONT)

(n3−) ↓ SCFAs vs. CONT
(n3+) ↓ Butyrate vs. CONT [136]

EPA-DHA HFD-induced obese mice +
EPA-DHA ↑ Firmicutes [144]

PUFAs
omega-6 (n6)
omega-3 (n3)

Wild-type mice fed +
n3 or n6/(14 wks) ↓ proportion of Bacteroidetes phylum [145]

palm oil (PO),
olive oil (OO)

flaxseed/fish oil (FOO)
compared with mice

fed a low-fat diet (LF)

C57BL/6J mice fed with
High-fat diet (HF+
PO, OO or FOO)

compared with mice fed LF

HF+PO ↓ Bacteroidetes comp. to HF+OO
HF+FFO ↑ Bifidobacterium comp. to LF [146]

High-fat diet (45%)
with fish oil (FO) or

lard (L)
C57Bl/6 Wild-type germ-free mice

FO ↑ Lactobacillus genus and
Akkermansia muciniphila sp.
L ↑ Bilophila genus of the Proteobacteri phylum

[147]

Omega-3 PUFAs male Sprague–Dawley rats ↑ Bifidobacteria [148]

Conjugated Linoleic Acid (C18:2, CLA) is another PUFA that is attracting scientific
interest due to its multiple beneficial effects, which, similarly to n-3 PUFAs, may be inde-
pendent or dependent on the modulation of gut microbiota metabolism. The term CLA
is the collective name generally used to indicate a further subclass of PUFAs without a
methyl group between adjacent double bonds (conjugated diene of Linoleic Acid C18:2,
LA). In particular, this generally refers to geometric and positional isomers of LA mainly
present in dairy products and meat from ruminants (cis9, trans11 and trans10, cis12); the
concentration of the former isomer typically ranges from 3 to 7 mg/g of fat. Commercially
available dietary CLA supplement (CLAmix) is composed of an equimolar mixture of these
two isomers. Dietary supplementation with the trans10, cis12 isomer is associated with
the modulation of lipid metabolism and glucose tolerance, while the cis9, trans11 isomer
has preeminent anti-oxidant and anti-inflammatory effects. The intake of an equimolar
mixture of the two CLA isomers was suggested to effectively activate many biological
pathways owing to the combined action of its isomers [149]. Moreover, dietary trans10,
cis12 CLA exhibits the ability to increase the population of SCFA-producing bacteria and
the cecal concentration of SCFAs (isobutyrate, acetate, and propionate) [150]. Similarly,
trans10, cis12 CLA supplementation in a mouse model of obesity increased the level of
butyrate-producing bacteria (Butyrivibrio, Roseburia, and Lactobacillus), leading to a signif-
icant increase in butyrate in the feces and in acetate in the plasma [151]. In this context,
owing to the activity of the gut–brain axis, dysbiosis has been associated with the onset
and progression of several neurological disorders [152]. In addition, the dysregulation
of SCFA production has been linked to psychiatric illnesses and immune, metabolic, and
neurodegenerative diseases [153].

In other studies, dietary LA may be indeed metabolized by several gut bacteria and
converted into cis9, trans11 or some of its precursors (trans-11-18:1 or 10-hydroxy-18:1;
10-Oxo-trans-11-octadecenoic) [154]. These C18 fatty acids, similarly to SCFAs, exhibit the
ability to activate the Nrf2 pathway [155–158]. Interestingly, some CLA by-products—such
as 10-hydroxy-cis-12-octadecenoic acid (HYA) generated during Linoleic Acid metabolism—
exhibit anti-inflammatory and antioxidant effects likely through GPR120-dependent acti-
vation [159,160] (Figure 3). Based on these data, it can be stated that the involvement of
specific receptors/transporters in the CLA-mediated activation of Nrf2 needs further inves-
tigation. The possibility that CLA metabolites generated by gut microbiota may contribute
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to the biological activity of dietary CLA has been hypothesized [161]. However, different
results have been presented, and the independence between the anti-inflammatory effect of
CLA and the activity of the intestinal microbiota has recently been demonstrated [162].

6. Conclusions

In this review, we summarized the antioxidant mechanisms underlying dietary MACs,
polyphenols, and PUFAs. The literature data reported in the field suggest that these
molecules can exert their modulatory activity on the human redox status by acting in two
main different ways: direct or indirect.

In particular, the antioxidant activity exhibited by PUFAs may be, at least in part, a
consequence of their direct ability to target the Nrf2 pathway. In addition, based on the
role of SCFAs as Nrf2 ligands, dietary MACs, polyphenols, and PUFAs may also have
prebiotic activity, favoring the growth of SCFA-producing microbial populations, which
are characteristic of eubiosis conditions.

Polyphenols and PUFA metabolites also exhibit an indirect effect, in which their
biological activities can contribute to or enhance the effects triggered by the parent in-
gested molecules.

The key modulatory role played by SCFAs and polyphenol metabolites on the physi-
ology of the host is mirrored by the network of molecular mechanisms underlying their
direct activities, involving Nrf2 and HDAC signaling pathways and GPRs for SCFAs. Such
complexity is further accentuated by the reciprocal interactions between these pathways.

SCFA production also represents important crossroads of the biological activities
exerted by polyphenols and PUFAs.

The interplay among n-3 PUFA and CLA and gut microbiota is herein summarized for
the first time, and the evidence of their direct and indirect actions on the physiology of the
host likely contributes to expanding the nutritional and therapeutic importance of these
dietary molecules.

In conclusion, the shared molecular pathways activated by polyphenols, PUFAs, and
SCFAs support the role of Nrf2, HDACs, and GPRs as pharmacological targets. Since the
activation of these pathways triggers a downstream signaling cascade, this can explain why
dietary bioactive molecules can exert antioxidant/beneficial effects even when present in
a low plasma concentration. A better understanding of the mechanisms underlying the
prebiotic effects of polyphenols and PUFAs is an issue to be further explored that will shed
light on the knowledge of their beneficial effects on human health.
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