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Abstract: Sarcopenic obesity, which refers to concurrent sarcopenia and obesity, is characterized by 

decreased muscle mass, strength, and performance along with abnormally excessive fat mass. Sar-

copenic obesity has received considerable attention as a major health threat in older people. How-

ever, it has recently become a health problem in the general population. Sarcopenic obesity is a 

major risk factor for metabolic syndrome and other complications such as osteoarthritis, osteoporo-

sis, liver disease, lung disease, renal disease, mental disease and functional disability. The patho-

genesis of sarcopenic obesity is multifactorial and complicated, and it is caused by insulin resistance, 

inflammation, hormonal changes, decreased physical activity, poor diet and aging. Oxidative stress 

is a core mechanism underlying sarcopenic obesity. Some evidence indicates a protective role of 

antioxidant flavonoids in sarcopenic obesity, although the precise mechanisms remain unclear. This 

review summarizes the general characteristics and pathophysiology of sarcopenic obesity and fo-

cuses on the role of oxidative stress in sarcopenic obesity. The potential benefits of flavonoids in 

sarcopenic obesity have also been discussed. 
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1. Introduction 

Obesity epidemics and aging are two major health concerns in developed countries. 

Over the last decade, obesity has become a worldwide pandemic [1]. Coupled with a rap-

idly aging population, obesity in the elderly is considered a major public health issue [2–

4]. In general, obese elderly people have characteristics indicative of sarcopenia, such as 

loss of muscle mass, strength, and performance [5]. Although not clearly defined, the com-

mon definition of sarcopenic obesity is the coexistence of obesity and sarcopenia. The 

prevalence of sarcopenic obesity varies between 2% and 85% because of ambiguous crite-

ria regarding its definition and diagnostic methods of sarcopenia and obesity [6–9]. Its 

prevalence is high among elderly people with comorbidities, such as type 2 diabetes, non-

alcoholic fatty liver disease (NAFLD), dyslipidemia, and cardiovascular disease. Alt-

hough the prevalence of sarcopenic obesity increases with age, younger generations are 

also at risk, especially when they have comorbidities [10,11].  

Sarcopenic obesity can lead to various health problems such as metabolic syndrome, 

functional disability, osteoarthritis, osteoporosis, lung disease, renal disease, and depres-

sion [12–15]. Several mechanisms, including insulin resistance, inflammation, hormonal 

changes, behavioral problems, and oxidative stress, have been implicated in the patho-

physiology of sarcopenic obesity [16–19]. To effectively prevent and treat sarcopenic obe-

sity-related health problems, it is crucial to better understand sarcopenic obesity.  

Recently, there has been increasing interest in the therapeutic use of flavonoids for 

sarcopenic obesity. Flavonoids are bioactive molecules present in many plants including 

fruits, vegetables, grains, and spices. They provide a diverse range of health benefits in-

cluding antioxidant, anti-inflammatory, anti-viral, anti-diabetic, anti-cancer, cardiopro-

tective, and neuroprotective properties [20]. There is evidence showing that some 
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flavonoids have the potential to prevent and treat sarcopenia and obesity via multiple 

mechanisms [21,22]. This article provides an overview of sarcopenic obesity, its underly-

ing pathophysiological mechanisms, and the potential benefits of flavonoids for the pre-

vention and treatment of sarcopenic obesity.  

2. General Characteristics 

A rational consideration of sarcopenia and obesity is required to diagnose and treat 

sarcopenic obesity.  

2.1. Sarcopenia 

Sarcopenia is characterized by the loss of skeletal muscle mass, strength, and physical 

function, which can lead to physical disability, lower quality of life, and a higher mortality 

rate [23–25]. Although age-related changes in skeletal muscle are the primary causes of 

sarcopenia, they can also occur due to various factors, such as limited mobility, malnutri-

tion, and obesity [26,27]. According to the definition provided by the European Working 

Group on Sarcopenia in Older People (EWGSOP), the diagnostic criteria for sarcopenia 

include low muscle strength (an early indicator of sarcopenia), low muscle mass, and low 

physical performance [26]. Specifically, subjects with low muscle strength may have sar-

copenia, and low muscle quantity or quality should be confirmed before diagnosis. Sub-

jects who fulfil all three criteria are considered to have a severe sarcopenia. Various tests 

and tools are used to diagnose sarcopenia in clinical practice and research. Grip strength 

and chair stand tests are two commonly used tests of skeletal muscle strength. Muscle 

quantity can be determined using various tools, including magnetic resonance imaging, 

computed tomography, dual-energy X-ray absorptiometry, and bioelectrical impedance 

analysis. Gait speed is commonly used for the assessment of physical performance, and a 

short physical performance battery and the timed up-and-go test are alternatives to the 

gait speed test. Recently, the importance of muscle strength (assessed by grip strength) 

and physical performance (assessed by gait speed) over muscle mass in the definition of 

sarcopenia is being emphasized [28]. 

Sarcopenia is a known risk factor for various health issues, including chronic disease 

progression, physical disability, falls, osteoporosis, and postoperative complications (both 

infections and noninfectious complications) [29–34]. Therefore, it is associated with in-

creased hospital costs, length of hospital stay, and recurrence [35]. Although early diag-

nosis is key to preventing and treating sarcopenia-related health problems, there is no 

global consensus on the definition and diagnostic criteria for sarcopenia.  

2.2. Obesity 

Obesity is defined as abnormal or excessive fat accumulation that may be a health 

hazard [36]. According to the World Health Organization, a body mass index (BMI) ≥30 

kg/m2 in adults indicates obesity. However, it is recommended to use a lower BMI cut-off 

point for defining obesity (≥25 kg/m2) in the Asian population, due to a higher risk of obe-

sity-related diseases such as diabetes [37]. Waist circumference, another index of obesity, 

is the most frequently used to measure abdominal adiposity. Abdominal obesity is de-

fined as a waist circumference ≥88 cm and ≥102 cm for women and men, respectively [38]. 

Waist circumference criteria for diagnosis of abdominal obesity also differ depending on 

ethnicity. It occurs when energy intake exceeds energy expenditure, which is influenced 

by genetic and environmental factors (e.g., nutrition, exercise, viruses, microbiome, and 

circadian rhythms). Obesity is an important risk factor for metabolic abnormalities, in-

cluding insulin resistance, type 2 diabetes, dyslipidemia, NAFLD, and cardiovascular dis-

eases. It is also associated with cancer, osteoarthritis, pulmonary dysfunction (e.g., ob-

structive sleep apnea), and cognitive impairment [39–41]. Recently, obesity has been re-

ported to be a risk factor for severe coronavirus disease 2019 (COVID-19) [42].  
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2.3. Sarcopenic Obesity 

The obesity epidemic is increasing worldwide [43]. The obesity epidemic is prevalent 

not only in industrialized but also in developing countries [43]. In addition to the preva-

lence of obesity in the general population, the incidence of obesity in the elderly has been 

increasing and poses a serious threat to the health of elderly individuals in both developed 

and developing countries [44]. It is particularly noteworthy that the prevalence of sarcope-

nic obesity is increasing with the rising population of senior citizens and has become an 

important health issue. Recently, sarcopenic obesity has been considered a health risk in 

younger and older populations [10,11]. 

Sarcopenia commonly occurs with aging and is often accompanied a relative or ab-

solute increase in adiposity. However, it can strike anyone with obesity, regardless of age. 

Obesity can independently cause sarcopenia, because underlying factors contributing to 

obesity such as inflammation, insulin resistance, and oxidative stress can adversely affect 

sarcopenia [45]. Meanwhile, sarcopenia can promote fat accumulation due to decreased 

physical activity and energy expenditure. Thus, obesity and sarcopenia may affect each 

other. Although the definition of sarcopenic obesity remains under discussion, most stud-

ies have defined it based on the concomitant presence of sarcopenia and obesity. For ex-

ample, based on a recent consensus statement by the European Society for Clinical Nutri-

tion and Metabolism (ESPEN) and the European Association for the Study of Obesity 

(EASO), sarcopenic obesity is defined as abnormal and excessive adiposity and low skel-

etal muscle mass and function [46]. The ESPEN and EASO recommended following diag-

nostic criteria. Screening for sarcopenic obesity is performed to verify the presence of both 

high BMI or waist circumference (based on ethnic cut-off points) and surrogate indicators 

of sarcopenia (clinical symptoms, clinical suspicion, or questionnaires). After positive 

screening results, both altered skeletal muscle functional parameters (e.g., hand grip 

strength) and altered body composition (increase in % fat mass and decrease in muscle 

mass) are required to make a firm diagnosis of sarcopenic obesity. Once a diagnosis of 

sarcopenic obesity is confirmed, it can be classified into two stages depending on the pres-

ence or absence of complications (e.g., metabolic diseases, functional disabilities, and car-

diovascular and respiratory diseases). Since an internationally agreed definition and di-

agnostic criteria for sarcopenic obesity have not been established, further efforts are 

needed to reach a consensus on an appropriate definition and diagnostic criteria.  

3. Pathophysiological Mechanisms: Involvement of Oxidative Stress  

Obesity and sarcopenia have common pathophysiological characteristics, including 

insulin resistance, inflammation (increased secretion of pro-inflammatory markers and 

decreased anti-inflammatory markers), hormonal changes (a decline in growth hormone, 

testosterone, and estrogen), lack of physical activity, and oxidative stress [16–19]. As a 

result of their synergistic interactions, sarcopenic obesity may have deleterious effects on 

health compared with those of either condition alone [47–57]. Several studies have sug-

gested that sarcopenic obesity is linked to an increased risk of functional disability, cardi-

ometabolic diseases (cardiovascular disease, type 2 diabetes, and hypertension, among 

others), and other comorbidities, such as liver disease, osteoarthritis, osteoporosis, pul-

monary disease, renal disease, mental health problems (cognitive impairment and depres-

sion, among others), postoperative complications, and severe COVID-19 [47–57] (Figure 

1).  
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Figure 1. Pathophysiologic characteristics and consequence of sarcopenic obesity. 

Oxidative stress is a critical factor that links sarcopenic obesity with related comor-

bidities [17]. It is also associated with other factors contributing to sarcopenic obesity, such 

as insulin resistance, inflammation, hormonal changes, and behavioral problems [17]. Ox-

idative stress is caused by an imbalance between the formation of free radicals (highly 

reactive molecules containing one or more unpaired electrons) and antioxidant defenses, 

which can damage many tissues and lead to various diseases, including sarcopenic obe-

sity [58]. Free radicals, such as reactive oxygen species (ROS) and reactive nitrogen species 

(RNS), are derived from endogenous and exogenous sources. Endogenous antioxidants 

(e.g., superoxide dismutase, catalase, glutathione peroxidase, and bilirubin) and exoge-

nous antioxidants (e.g., ascorbic acid, β-carotene, α-tocopherol, and phenolic compounds) 

can defend against free radical-induced damage [58]. However, insufficient antioxidant 

capacity and increased ROS and RNS generation can cause oxidative damage to orga-

nelles, carbohydrates, proteins, nucleic acids, and lipids, leading to dysfunction and dis-

ease development [59]. In elderly individuals, oxidative stress elicits sarcopenia and obe-

sity through mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and imbal-

ances in muscle mass control [17]. In this section, we focused on the effects of oxidative 

stress on the development of sarcopenic obesity. 

3.1. Mitochondrial Dysfunction 

Mitochondrial dysfunction can increase ROS production [60] because mitochondria 

are important sites for ROS formation [61]. The release of ROS from mitochondria in-

creases with aging, resulting in increased oxidative damage to mitochondrial and cellular 

proteins, lipids, and DNA, which consequently causes a decline in mitochondrial func-

tion, including mitochondrial protein synthesis, respiration, and maximal ATP production 

rate [62–65].  

The removal of dysfunctional mitochondria via mitophagy (a selective form of au-

tophagy) is critical for maintaining the redox balance and muscle health. A lack of capacity 

of muscles to effectively remove dysfunctional mitochondria can contribute to excessive 

ROS formation and a consequent decrease in mitochondrial quantity and quality, which 

can lead to the development of muscle fiber atrophy in sarcopenia [66]. Muscle atrophy 

resulting from aging can occur due to a decrease in the total number of muscle fibers and 

a simultaneous decrease in the size of individual fibers [67,68]. Aging-related muscle loss 

was mainly attributed to a decrease in type II muscle fibers, probably because type II fibers 

embedded with less mitochondria are more vulnerable to aging-induced processes 

[69,70]. 
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Oxidative stress associated with obesity can also trigger disturbances in mitochon-

drial function, resulting in increased ROS production. Although white adipose tissue 

(WAT) is not a mitochondria-rich tissue, mitochondria in WAT have a critical role in main-

taining metabolic homeostasis, including adipogenesis, lipogenesis, lipolysis, and adi-

pokine production [71,72]. Obesity caused by excess energy intake, such as HFD, could 

lead to mitochondrial dysfunction in adipocyte partly due to ROS-induced oxidative dam-

age to the adipocyte. Consequently, mitochondrial dysfunction caused by oxidative stress 

in obesity can induce insulin resistance, inflammation, dyslipidemia, and other adverse 

effects [71,72]. Although the mechanism underlying adipocyte mitochondrial dysfunction 

in obesity is unclear, hypertrophic adipocytes (enlargement of adipocyte size) in obesity 

is associated with mitochondrial dysfunction [73]. Another possibility is that a rise in mi-

tochondrial substrate overload in conditions of overnutrition increases electron transport 

chain activity in the mitochondria and subsequently ROS generation, leading to oxidative 

stress [74]. Nutrient overload in obesity can also lead to ER stress, which promotes oxida-

tive stress and contributes to mitochondrial dysfunction in adipocyte [75].  

The protein kinase A (PKA)/liver kinase B1 (LKB1)/AMP-activated protein kinase 

(AMPK) signaling pathway plays essential roles in improving mitochondrial dysfunction 

and inhibiting oxidative stress [76,77]. PKA activates AMPK, a crucial cellular energy sen-

sor, via LKB1, which promotes mitochondrial biogenesis and antioxidant capacity in the 

skeletal muscles [76,77]. 

3.2. ER Stress 

The ER performs many functions, particularly in protein synthesis and folding. The 

excessive formation of unfolded or misfolded proteins in the ER can lead to ER stress [78]. 

As redox homeostasis is crucial for protein folding in the ER, oxidative stress can generate 

misfolded proteins by disrupting protein folding and thus elicits ER stress. ER stress is a 

major source of ROS, which accelerates oxidative stress. ER stress affects cellular homeo-

stasis and morphology, leading to various diseases, including obesity and sarcopenia.  

ER stress is commonly observed in obese subjects and in genetically modified or 

high-energy diet-induced obese animals [79–81]. Chronic ER stress in the liver, skeletal 

muscle, and adipose tissue impairs insulin sensitivity and contributes to inflammation, 

leptin resistance, and steatosis [79–83]. By contrast, weight loss in obese individuals de-

creases ER stress and increases insulin sensitivity [84]. Moreover, a reduction in ER stress 

in the adipose tissue and liver using chemical or molecular chaperones was found to im-

prove inflammation, hepatic steatosis, and glucose homeostasis in obese mice [85,86], sug-

gesting that prolonged ER stress may be involved in obesity-associated tissue dysfunction 

and metabolic disturbances.  

ER stress is also an important contributor to sarcopenia development. Skeletal muscle 

contains the ER, which plays a critical role in the regulation of calcium storage and protein 

homeostasis. ER stress is increased in the skeletal muscles of both aged people and rodents 

[87–90], and oxidative stress is involved in the induction of ER stress in obese subjects 

with and without comorbidities [91]. Increased ER stress was found to cause diaphragm 

contractile dysfunction in a muscle atrophy mouse model due to sepsis [92]. In contrast, 

the inhibition of ER stress protected against muscle atrophy in a hind-limb-unloaded 

mouse model, which showed skeletal muscle atrophy and weakness [93].  

3.3. Imbalance in Muscle Mass Control 

The balance between the anabolic and catabolic pathways is important for maintain-

ing muscle mass. Oxidative stress causes muscle wasting by activating the catabolic path-

ways and inhibiting the anabolic pathway [59].  
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3.3.1. Anabolic Pathway 

In skeletal muscle, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mam-

malian target of rapamycin (mTOR) pathway is one of the major anabolic pathways con-

trolling protein synthesis [94,95]. The activation of PI3K phosphorylates and activates 

AKT, which regulates several downstream molecules, including mTOR [96]. mTOR is a 

key regulator of protein synthesis in addition to having a role in other biological functions, 

such as the regulation of cell growth and survival. It regulates the anabolic and catabolic 

signaling pathways in skeletal muscles and thus modulates muscle hypertrophy and mus-

cle wasting [97]. According to the free radical theory of aging [98], ROS damage mitochon-

drial proteins and reduce ATP generation, resulting in the inhibition of the mTOR path-

way and subsequent down-regulation of protein synthesis. Furthermore, the impairment 

of the mTOR pathway has been observed in patients with sarcopenia [99]. Other studies 

also support the deleterious effect of mTOR inhibitors on muscle mass and growth 

[100,101].  

The PI3K/Akt/mTOR pathway is activated by several upstream triggers, such as in-

sulin-like growth factor 1 (IGF-1), insulin, and physical activity, all of which are associated 

with obesity or aging [95,102]. Circulating IGF-1 levels are lower in sarcopenic subjects 

than in non-sarcopenic subjects, and its levels are associated with sarcopenia in the elderly 

as well as fat mass and the prevalence of comorbidities in obese subjects [103–105]. More-

over, insulin and IGF-1 stimulate protein synthesis in the skeletal muscles of mice [106], 

and impaired insulin activity in skeletal muscles is linked to obesity and sarcopenia [107]. 

Type 2 diabetic db/db mice show an impaired PI3K/Akt pathway along with increased 

protein degradation, resulting in muscle atrophy, whereas an improvement in insulin-

sensitivity using rosiglitazone protects against muscle loss [108,109]. Physical activity is 

most effective in preventing sarcopenia in elderly individuals [109]. Exercise can mitigate 

a decline in autophagy in skeletal muscles of aged rats by regulating the mTOR pathway, 

resulting in improved aging-induced skeletal muscle atrophy [110]. However, the role of 

the mTOR pathway in sarcopenia remains controversial [111]. Aging is influenced by 

mTOR hyperactivation [112]. 

3.3.2. Catabolic Pathway 

The loss of skeletal muscle occurs in a state of protein degradation that exceeds its 

synthesis. In skeletal muscle, protein degradation is mainly mediated by two catabolic 

pathways: the ubiquitin–proteasome pathway and the autophagic/lysosomal pathway. 

The ubiquitin–proteasome pathway is crucial for protein degradation in striped muscles 

[113]. FoxO activates the expression of the genes involved in the ubiquitin-proteasome 

pathway, including atrogin-1, muscle atrophy F-box (MAFbx), and muscle RING-finger 

protein-1 (MuRF1), which are up-regulated in muscle atrophy [114,115]. FoxO also regu-

lates the activation of autophagic/lysosomal pathway-related genes (LC3, Bnip3, and 

Bnip3l) during muscle atrophy in vivo [116]. The activation of Akt not only induces mTOR 

signaling but also inhibits FoxO through phosphorylation, thereby inhibiting the catabolic 

process of skeletal muscle [117]. Autophagy is a catabolic pathway that removes dysfunc-

tional organelles and denatured proteins in a lysosome-dependent process [118]. With ag-

ing, abnormal autophagy causes the accumulation of damaged cellular constituents, such 

as damaged mitochondria, which increases ROS generation and further damage [119]. 

Dysregulated autophagy in muscles also causes ER stress, impaired sarcomeric protein 

turnover, and cell death, resulting in the loss of muscle mass [120]. Both a lack of and 

excessive autophagy are associated with muscle atrophy [119,120].  

Multiple triggers including oxidative stress and inflammatory cytokines affect pro-

tein degradation. Oxidative stress-induced atrophy is associated with the up-regulation 

of FoxO1 and MuRF1 expression in muscle cells, whereas treatment with ascorbic acid, an 

antioxidant, counteracts oxidative stress-induced atrophy by down-regulating FoxO1, 

MuRF1, and atrogin-1 expression [121]. ROS also activates autophagy through multiple 
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mechanisms, leading to protein breakdown [122]. Another important factor controlling 

protein degradation and skeletal muscle loss is nuclear factor-kappa B (NF-κB). The acti-

vation of NF-κB results in skeletal muscle atrophy by increasing the expression of ubiqui-

tin–proteasome pathway protein (e.g., MuRF1), pro-inflammatory cytokines (e.g., TNF-α 

and IL-1), and chemokines contributing to muscle loss [123]. Increased levels of NF-κB 

and pro-inflammatory cytokines are observed in elderly people with sarcopenia, as well 

as in obese individuals [124–127].  

3.3.3. Satellite Cells 

Satellite cells, also known as muscle stem cells, are the primary source for muscle re-

generation. It is critical for muscle fiber maintenance, repair, and remodeling [128]. Age-

related reductions in the number and function of satellite cells occur, especially in type II 

fibers, although conflicting results have been reported [129–132]. In addition, patients 

with sarcopenia frequently exhibit aberrant satellite cell homeostasis [133]. Although its 

role in the development of sarcopenia and sarcopenic obesity is not completely clear, ex-

ercise-induced satellite cell activation, along with the provision of sufficient nourishment, 

appears to offer effective protection against sarcopenia and sarcopenic obesity [134].  

Considerable evidence suggests that excess ROS and diminished antioxidant capac-

ity can impair muscle regeneration, primarily by affecting satellite cell homeostasis 

[135,136]. An increase in ROS occurs in the satellite cells of aged muscles, and antioxidant 

capacity is decreased in aged satellite cells [136,137]. Oxidative stress not only leads to 

impaired removal of misfolded proteins but also dysregulates basal autophagy, which is 

vital for the maintenance of the stem cell quiescent state, contributing to stem cell resili-

ence [138], thereby affecting muscle regeneration [135,136,139,140]. In addition, redox-

sensitive signaling pathways, such as Notch, Wnt, p38/MAPK, and JAK/STAT3, are aber-

rantly expressed in satellite cells during aging, causing abnormal satellite cell functions, 

including proliferation, fibrosis, and differentiation [141–144].  

Myogenic regulatory factors (e.g., Myf5, MyoD, Myogenin, and MRF4) play a critical 

role in controlling the myogenesis via satellite cells. The expression of myogenic regula-

tory factors is up-regulated during myogenesis and influences the activation and differ-

entiation of stem cells [145]. By contrast, myostatin, a myokine secreted by myocytes, func-

tions as a negative regulator of muscle growth and regeneration by reducing satellite cell 

number and regeneration, inhibiting the Akt/mTOR pathway, and activating FoxO [146]. 

Although the role of myostatin in aging and other muscle-wasting conditions is unclear, 

skeletal muscle myostatin mRNA expression is higher in overweight and obese middle-

aged and older adults with sarcopenia than in those without sarcopenia, and myostatin 

mRNA expression is positively correlated with BMI, fat mass, and mid-thigh intra-mus-

cular fat area [147]. Genetic and pharmacological inhibition of myostatin ameliorates sar-

copenic obesity by increasing muscle mass and improving glucose homeostasis [147–152].  

4. Effects of Antioxidant Flavonoids on Sarcopenic Obesity 

Flavonoids are among the most abundant phenolic compounds in edible plants [153]. 

More than 5000 flavonoids have been reported to date [154]. They have a C6-C3-C6 back-

bone and are generally subdivided into different subgroups based on their chemical struc-

tures: flavones, flavonols, flavan-3-ols, chalcones, flavanones, and isoflavonoids (Figure 

2). Flavonoids possess many bioactivities, such as antioxidant, anti-inflammatory, and 

anti-viral effects, and protect against various diseases, including cardiovascular diseases, 

diabetes, neurodegenerative diseases, osteoporosis, and cancer [20]. In addition, in vitro 

and in vivo studies have reported their anti-obesity potential via stimulation of energy 

expenditure, appetite suppression, inhibition of adipocyte differentiation and digestive 

enzymes, promotion of adipocyte apoptosis and lipolysis, and regulation of lipid metab-

olism and gut microbiota [21]. Recently, flavonoids have received renewed attention as 

candidates for improving muscle atrophy and muscle health [22]. Some flavonoids have 
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been reported to provide effective protection against sarcopenic obesity; therefore, their 

anti-sarcopenic effects and mechanisms are summarized. 

 

Figure 2. Subgroups of flavonoids and their chemical structures. 

4.1. Apigenin 

Apigenin (4′,5,7-trihydroxyflavone) is a flavone that is plentiful in edible plants such 

as parsley, celery, celeriac, oranges, and chamomile [155]. There is evidence that it has 

positive health effects, owing to its anti-inflammatory, antioxidant, anti-steatotic, anti-di-

abetic, anti-cancer, and neuroprotective properties [156–161]. Apigenin also possesses 

anti-obesity properties associated with decreased food intake, increased energy expendi-

ture, activated lipolysis, fatty acid oxidation, and control of gut microbiome composition 

[162–164].  

In addition, apigenin exerts a protective effect against sarcopenia. In lipopolysaccha-

ride (LPS)-treated mouse skeletal muscle cells, it decreases the expression of the atrophic 

genes atrogin-1 and MAFbx [165]. This anti-atrophic effect was supported by the findings 

of an in vivo study in which apigenin increased muscle mass and enhanced muscle func-

tion in mice by enhancing skeletal muscle hypertrophy and myoblast differentiation [166]. 

Apigenin also alleviates sciatic nerve denervation-induced muscle atrophy by inhibiting 

muscle inflammation [167]. Moreover, apigenin not only decreases fat mass but also pre-

vents muscle loss and increases exercise capacity by down-regulating atrogin-1 and 

MuRF1 in the skeletal muscle of high-fat diet (HFD)-induced obese mice [168], which sug-

gests that it can ameliorate HFD-induced sarcopenic obesity. Interestingly, a recent study 

reported that apigenin improves muscle atrophy by decreasing oxidative stress and acti-

vating mitophagy and apoptosis in aged mice [169].  

4.2. Luteolin  

Another flavone luteolin (3′,4′,5′,7′-tetrahydroxyflavone), commonly occurring in ed-

ible plants such as celery, parsley, and broccoli [170], has a protective effect on sarcopenic 

obesity [171]. Long-term supplementation with luteolin not only decreases body weight 

and fat mass but also increases muscle mass, muscle fiber size and number, and muscle 

function in HFD-induced obese mice. The beneficial effects of luteolin on sarcopenic obe-

sity are associated with suppressed protein degradation, decreased muscular lipid accu-

mulation, and attenuated inflammation. The anti-atrophic properties of luteolin are sup-

ported by other in vitro and in vivo studies using LPS- and cachexia-induced muscle at-

rophy models [165,172].  
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4.3. Quercetin 

Quercetin (3,3′,4′,5,7-pentahydroxyflavone) is a flavonol abundantly present in vari-

ous vegetables and fruits [173]. It can protect against multiple diseases, such as osteopo-

rosis, cancer, memory impairment, and cardiovascular diseases, and these promising ef-

fects are achieved partly through its antioxidant and anti-inflammatory actions [174–177]. 

Quercetin also has a positive influence on decreasing body weight and adiposity in diet-

induced obese animals, and multiple mechanisms, such as the activation of lipolysis, in-

hibition of lipogenesis and adipogenesis, and browning effects, have been implicated in 

its anti-obesity effects in vivo and in vitro [178–184]. In particular, quercetin inhibits oxi-

dative stress and NF-κB and thus limits immune activation and inflammation, which re-

sults in an improvement in mitochondrial functions in the adipose tissue of HFD-induced 

obese mice [185]. Clinical trials have supported the anti-obesity effects of quercetin. Quer-

cetin administration reduces BMI and fat mass in overweight or obese individuals [186]. 

In another study conducted on overweight/obese subjects with various apolipoprotein E 

genotypes, reductions in waist circumference and triglyceride levels were observed after 

quercetin administration [187]. However, quercetin slightly increases pro-inflammatory 

TNF-α levels [187], and high doses of quercetin do not affect oxidative stress in obese peo-

ple [188]. Further clinical studies are required to investigate its anti-obesity effects. 

The protective effects of quercetin on obesity-induced skeletal muscle atrophy have 

also been demonstrated in vivo [189,190]. In the skeletal muscle of HFD-fed mice, querce-

tin was found to reverse the increase in levels of mRNA and protein of atrophic markers 

(atrogin-1, MuRF1) and pro-inflammatory markers (TNF-α, MCP-1) induced by HFD 

[189]. The anti-atrophic effect of quercetin is reported in another study showing that it 

suppresses muscle atrophy in HFD-induced obese mice via up-regulation of Nrf2-medi-

ated heme oxygenase-1 and antioxidant capacity and down-regulation of pro-inflamma-

tory NF-κB [190]. Therefore, quercetin may protect against obesity-induced sarcopenia 

and metabolic dysregulation. 

Its anti-atrophic effects have been observed in other animal models [181–184]. Quer-

cetin increases muscle mass and suppresses unloading-induced disused muscle atrophy 

and lipid oxidation in mice [191]. Mukai et al. [192] have also found that quercetin inhibits 

denervation-induced muscle loss by increasing p-Akt, IGF-1, and PGC-1α in mice, despite 

having no effect on MuRF1. A recent study demonstrated the protective role of quercetin 

in cancer- and chemotherapy-induced muscle loss by maintaining mitochondrial homeo-

stasis [193]. It is particularly noteworthy that quercetin promotes behavioral functional 

recovery by hastening the recovery of weight in damaged muscles and increasing neu-

ronal intrinsic growth capacity following sciatic nerve crush injury in mice [194]. In addi-

tion, in middle-aged and older adults, the administration of quercetin glycoside together 

with low-intensity resistance exercise improves muscle quality (an increase in muscle stiff-

ness) and independent muscle quantity [195]. 

4.4. Dihydromyricetin 

Dihydromyricetin, also known as ampelopsin, is a flavonol present in medicinal 

herbs, vegetables, and fruits, including grapes and berries [196]. It has multiple biological 

and pharmacological properties, including antioxidant, anti-inflammatory, anti-cancer, 

neuroprotective, and hepatoprotective actions [197–201]. Some studies have also demon-

strated that dihydromyricetin prevents obesity in HFD-fed and ob/ob mice and that its 

role in adipogenesis inhibition, adipocyte browning activation, and gut microbiota regu-

lation is related to its anti-obesity effect [202–205].  

In addition, Zhou et al. [206] reported that dihydromyricetin improved skeletal mus-

cle insulin resistance and reduced the proportion of type I fibers in HFD-induced obese 

and ob/ob mice. Type I fibers have more mitochondria and mostly involve fatty acid oxi-

dative phosphorylation for energy generation compared to type II fibers [207]. Zou et al. 

[208] demonstrated that dihydromyricetin improved hypobaric hypoxia-induced 
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mitochondrial dysfunction in rats, resulting in improved physical performance. The pro-

tective effects of dihydromyricetin on mitochondrial function and muscle atrophy are sup-

ported by another study, which showed that it ameliorates dexamethasone-induced mus-

cle atrophy by improving mitochondrial dysfunction [209]. Accordingly, it down-regu-

lated FoxO3a-mediated protein degradation and up-regulated Akt/mTOR pathway-de-

pendent protein synthesis. Huang et al. [209] also observed that dihydromyricetin sup-

pressed dexamethasone-induced oxidative stress in skeletal muscles, which might con-

tribute to protection against muscle atrophy because oxidative stress causes muscle wast-

ing by activating the catabolic pathway and inhibiting the anabolic pathway [59]. Benefi-

cial effects of dihydromyricetin on muscle atrophy induced by inflammation or D-galac-

tose (a useful agent for accelerating aging) have also been reported in vitro and in vivo 

[210,211].  

4.5. Epigallocatechin Gallate and Epicatechin 

Epigallocatechin gallate (EGCG) is a flavanol abundantly present in tea, especially 

green tea, and is also present in small amounts in other plant foods, such as apples, carobs, 

berries, and avocados [212,213]. It possesses diverse bioactivities and pharmacological ef-

fects, including antioxidant, anti-inflammatory, cardioprotective, anti-diabetic, and anti-

cancer effects [214–218]. EGCG also has positive effects on weight loss and fat reduction 

in HFD-induced obese animals [219–223]. The anti-obesity effect is linked to inhibited ad-

ipogenesis and lipogenesis, increased lipolysis, brown fat thermogenesis, mitochondria 

biogenesis, white fat autophagy, and improved gut microbiota homeostasis [219–225]. 

However, its potential benefits in obese individuals remain obscure [226–229]. 

The existing evidence indicates the beneficial effect of EGCG in alleviating sarcope-

nia. In aged rats, EGCG increases the recovery of muscle mass and function after disuse 

by de-creasing apoptotic signaling and increasing satellite proliferation [230]. Takahashi 

et al. [231] reported that EGCG up-regulates autophagy signaling to improve the clearance 

of damaged organelles in resting and unloaded conditions but selectively inhibits autoph-

agy-related proteins (Beclin1 and LC3) in reloaded muscles of aged rats, perhaps leading 

to the recovery of muscle mass and function. In another study using aged animals, EGCG 

prevented muscle loss by inhibiting protein degradation via the ubiquitin–proteasome 

pathway (atrogin-1, MuRF1, myostatin), along with the up-regulation of the anabolic fac-

tor IGF-1 [232,233]. In line with these findings, EGCG prevents cachexia-induced muscle 

loss via down-regulation of NF-κB, atrogin-1, and MuRF1 in mice [234], and it recovers 

muscle function impairment and damaged muscle fibers following nerve injury in rats by 

activating the anti-apoptotic signaling pathway [235]. Moreover, EGCG enhances endur-

ance capacity in mice [236], decreases oxidative stress, and alleviates mitochondrial dys-

function by decreasing excessive autophagy in the skeletal muscles of rats with type 2 

diabetes [237]. The anti-sarcopenic effect of EGCG is associated with not only decreased 

protein degradation but also increased protein synthesis in skeletal muscle [238].  

Epicatechin, another flavanol found in green tea, also hinders aging-associated skel-

etal muscle degeneration and enhances physical activity in mice [239]. Similarly, supple-

mentation of epicatechin in obese middle-aged mice (16 months of age) not only decreases 

fat mass but also enhances physical performance by increasing muscle growth and differ-

entiation and by decreasing the ubiquitin–proteasome degradation pathway [240]. Inter-

estingly, epicatechin reversed aging-induced oxidative stress and mitochondrial biogene-

sis in vivo [241]. In vitro studies also support its anti-atrophic effects via inhibition of pro-

tein degradation and improvements in mitochondrial biogenesis and muscle growth in 

skeletal muscle cells [242,243]. In addition, the administration of epicatechin together with 

resistance training increases skeletal muscle strength and growth factors in elderly indi-

viduals with sarcopenia [244]. The combination of tea catechins and exercise has a positive 

effect on maintaining muscle mass and physical function in the elderly compared to those 

without catechins [245]. However, there was no association between green tea 
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consumption and sarcopenia in menopausal women [246]. Moreover, few studies have 

assessed the effects of EGCG on sarcopenic obesity in humans. 

4.6. Others 

5,7-dimethoxyflavone, a flavone found in Kaempferia parviflora, also exerts protec-

tive effects on sarcopenia and obesity [247,248]. Supplementation of 5,7-dimethoxyflavone 

to aged mice improves skeletal muscle function and increases muscle mass by increasing 

mitochondrial biogenesis, activating protein synthesis via the mTOR pathway, and sup-

pressing protein degradation via the FoxO pathway [247]. 5,7-dimethoxyflavone prevents 

obesity by suppressing adipogenesis in HFD-fed obese mice [248]. 

Glabridin, an isoflavan found in licorice, prevents glucocorticoid-induced muscle at-

rophy in vivo and in vitro [249]. Furthermore, it was found to ameliorate HFD-induced 

obesity by inhibiting lipid synthesis in the WAT and increasing muscular fatty acid oxida-

tion via regulation of mitochondrial function as AMPK activator [250].  

Hesperetin, a major flavanone abundant in citrus fruits, such as lemons and oranges, 

decreases body weight and fat mass in HFD-induced obese mice [251]. It also increases 

muscle fiber size and enhances running performance in aged mice [252]. These beneficial 

effects are associated with activation of PGC-1α and Nrf2 along with increased antioxi-

dant capacity. Recently, Yeh et al. [253] reported that long-term oral administration of hes-

peretin improves age-associated energy expenditure decline, fat accumulation, and mus-

cle loss in aged mice.  

Another citrus flavanone, naringenin, reportedly protects against HFD-induced adi-

posity and inflammation in ovariectomized mice [254]. Moreover, it increases muscle mass 

and locomotor activity and decreases muscle lipid accumulation. Similarly, in ovariecto-

mized mice fed a normal diet, naringenin improved estrogen deficiency-induced fat accu-

mulation and muscle loss [255]. Previous studies suggest that naringenin increases energy 

expenditure, improves insulin resistance, and regulates skeletal muscle differentiation by 

controlling estrogen receptor α and β signal pathway [256,257].  

Other flavonoids, such as daidzein (isoflavone), genistein (isoflavone), baicalin (fla-

vone), sinensetin (flavone), icaritin (flavonol), isobavachalcone (chalcone), and panduratin 

A (chalcone), have the potential to attenuate obesity and sarcopenia [258–272].  

5. Conclusions 

Sarcopenic obesity has become a global epidemic affecting all generations, including 

the elderly. In addition to age-related diseases, multiorgan dysfunction and multiple 

mechanisms are implicated in the development of sarcopenic obesity. The development 

and progression of sarcopenic obesity are related to oxidative stress, inflammation, insulin 

resistance, hormonal changes, and behavioral problems. Accumulating evidence suggests 

that flavonoids may be effective in preventing and treating sarcopenic obesity, owing to 

their ability to control oxidative stress, inflammation, insulin resistance, mitochondrial 

dysfunction, anabolic and catabolic pathways, and satellite cells (Figure 3). Flavonoids 

having potential for improving sarcopenic obesity are summarized in Table 1. 



Antioxidants 2023, 12, 1063 12 of 26 
 

 

Figure 3. Summary of the influences of oxidative stress in the development of sarcopenic obesity 

and proposed mechanism by which flavonoids can protect against sarcopenic obesity. 

However, the underlying mechanisms of action remain obscure, and limited human 

clinical trials have investigated the effectiveness of flavonoids in sarcopenic obesity. 

Therefore, further studies are required to assess the potential impact and mechanism of 

flavonoid-mediated prevention of sarcopenic obesity. In addition, advancing the under-

standing of sarcopenic obesity may contribute to the emergence of novel therapies to pre-

vent associated comorbidities, such as cardiometabolic diseases. 

Table 1. Summary of flavonoids having potential for improving sarcopenic obesity. 

Subclass Flavonoid Name Experimental Model Effects and Potential Mechanisms References 

Flavone Apigenin 

HFD-fed C57BL/6J mice Body weight gain ↓, Food intake ↓ [162] 

HFD-fed C57BL/6J mice 
Body weight gain ↓, Energy expenditure ↑, lipolysis ↑, fatty acid oxida-

tion ↑ 
[163] 

HFD-fed C57BL/6J mice Body weight ↓, gut microbiota regulation [164] 

LPS-treated C2C12 myo-

tubes 
Protein degradation (atrogin-1, MAFbx) ↓ [165] 

C57BL/6J mice Muscle mass ↑, muscle function ↑  [166] 

C2C12 myotubes Stimulation of myogenic differentiation [166] 

Denervated mice Muscle mass ↑, protein degradation (MuRF1) ↓, Muscle inflammation ↓ [167] 

HFD-fed C57BL/6J mice 
Fat mass ↓, muscle mass ↑, protein degradation (atrogin-1, MuRF1) ↓, 

mitochondrial dysfunction ↓, mitochondrial biogenesis ↑, AMPK ↑ 
[168] 

PA-treated C2C12 myotubes Muscle atrophy ↓, mitochondrial dysfunction ↓, AMPK ↑ [168] 

Aged mice 

Muscle mass ↑, muscle function ↑, mitochondrial function ↑, mitochon-

drial biogenesis ↑, oxidative stress ↓, hyperactive mitophagy and apop-

tosis ↓ 

[169] 

Flavone Luteolin 

LPS-treated C2C12 myo-

tubes 
Protein degradation (atrogin-1, MAFbx) ↓ [165] 

HFD-fed C57BL/6J mice 

Body weight ↓, fat mass ↓, muscle mass ↑, muscle fiber size and number 

↑, muscle function ↑, protein degradation (atrogin, FoxO, MuRF) ↓, 

muscular lipid accumulation ↓, Muscle inflammation ↓ 

[171] 

Cachectic mice. Muscle mass ↑, protein degradation (atrogin-1, MuRF1) ↓ [172] 

Flavonol Quercetin 

HFD-fed ICR mice 
Lipogenesis ↓, lipolysis ↑, WAT browning and thermogenesis ↑, AMPK 

↑, 
[180] 

HFD-fed aged mice Body Weight ↓  [181] 

3T3-L1 cells Adipogenesis ↓, AMPK ↑, apoptosis ↑ [182] 

HFD-fed C57BL/6J mice Body Weight ↓, fat mass ↓, lipogenesis ↓ [183] 

Rat adipocytes Lipolysis ↑ [184] 
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Subjects with APOE geno-

type 
Waist circumference ↓ [187] 

HFD-fed C57BL/6J mice 
Fat mass ↓, Muscle mass ↑, muscle fiber size ↑, protein degradation 

(atrogin-1, MuRF1) ↓, Muscle inflammation ↓ 
[189] 

PA-treated cocultured 

C2C12 myotubes and 

Raw264.7 cells 

Protein degradation (atrogin-1, MuRF1) ↓, inflammation ↓ [189] 

TNFα-treated myotubes 
Protein degradation (atrogin-1, MAFbx, MuRF1) ↓, oxidative stress ↓, 

inflammation ↓  
[190] 

HFD-fed C57BL/6J mice Improvement in muscle atrophy, oxidative stress ↓, inflammation ↓ [190] 

Tail-suspension mice 
Muscle mass ↑, protein degradation (atrogin-1, MuRF1) ↓, oxidative 

stress ↓ 
[191] 

Denervated mice Muscle mass ↑, muscle fiber size ↑, protein synthesis (IGF-1, AKT) ↑ [192] 

Cachectic mice. Muscle mass ↑, improvement in mitochondrial homeostatic balance [193] 

Denervated mice Improvement in muscle atrophy [194] 

flavonol Dihydromyricetin 

3T3-L1 cells lipid droplet formation ↓, Adipogenesis ↓ [202] 

HFD-fed C57BL/6J mice Body weight ↓, Fat mass ↓, WAT browning ↑ [203] 

ob/ob mice Body weight gain ↓, gut microbiota regulation [205] 

HFD-fed C57BL/6J mice, 

ob/ob mice 
Muscle insulin resistance ↓, proportion of type I fibers ↓ [206] 

SD rats under simulated 

high-altitude conditions 

Muscle function ↑, hypobaric hypoxia-induced mitochondrial dysfunc-

tion ↓, mitochondrial biogenesis ↑ 
[208] 

SD rats 
Muscle mass ↑, muscle fiber size ↑, mitochondrial biogenesis ↑, im-

provement in mitochondrial dysfunction, oxidative stress ↓  
[209] 

D-gal-induced aging rats 
Muscle mass ↑, muscle fiber size ↑, protein degradation (atrogin-1, 

MAFbx) ↓, AMPK ↑ 
[210] 

HFD-fed C57BL/6J mice 
Fat mass ↓, muscle mass ↑, inflammation ↓, muscle function ↑, protein 

degradation (atrogin-1) ↓, protein synthesis (mTOR) ↑, AMPK ↑ 
[211] 

TNF-α-treated C2C12 myo-

tubes 

Inflammation ↓, protein degradation (atrogin-1, MuRF1) ↓, protein syn-

thesis (mTOR) ↑, AMPK ↑ 
[211] 

flavanol EGCG 

HFD-fed C57BL/6J mice 
Body weight gain ↓, fat mass ↓, BAT thermogenesis and mitochondrial 

biogenesis ↑, AMPK ↑ 
[219] 

HFD-fed C57BL/6J mice Body weight ↓, fat mass ↓, BAT thermogenesis ↑ [220] 

HFD-fed aged mice 
Body weight ↓, fat mass ↓, food intake ↑, lipogenesis ↓, fatty acid oxida-

tion ↑, gut microbiota regulation 
[221] 

HFD-fed C57BL/6J mice Fat mass ↓, lipogenesis ↓, lipolysis ↑, AMPK ↑ [222] 

HFD-fed C57BL/6J mice 
Body weight ↓, fat mass ↓, lipogenesis ↓, lipolysis ↑, autophagy ↑, 

AMPK ↑ 
[223] 

3T3-L1 cells Adipogenesis ↓ [224,225] 

Overweight men Fatty acid oxidation ↑ [226] 

Aged rats (muscle disuse as 

hindlimb unloading) 

Muscle mass ↑, muscle fiber size ↑, muscle function ↑, apoptosis ↓, satel-

lite proliferation ↑  
[230]. 

Aged rats (muscle recovery 

after forced disuse) 
Recovery from disuse, autophagy ↓, apoptosis ↓  [231] 

Aged rats 
Muscle mass ↑, muscle fiber size ↑, protein degradation (MuRF1, 

MAFbx) ↓, myostatin ↓, protein synthesis (IGF-1) ↑,  
[232] 

Aged mice 
Muscle mass ↑, protein synthesis (IGF-1, AKT) ↑, protein degradation 

(atrogin-1, FoxO, MuRF) ↓  
[233] 

Cachectic mice Muscle mass ↑, protein degradation (MuRF, MAFbx) ↓, inflammation ↓  [234] 

Denervated rats Muscle function ↑, apoptosis ↓ [235] 

Mice Endurance capacity ↑, fatty acid oxidation ↑ [236] 

GK rats Oxidative stress ↓, mitochondrial dysfunction ↓, autophagy ↓ [237] 

C2C12 myotubes Protein degradation (MuRF1, MAFbx) ↓, protein synthesis (AKT) ↑ [238] 

flavanol Epicatechin 

Aged mice Muscle fiber size ↑, muscle function ↑  [239] 

Obese middle-aged mice 
Body weight ↓, fat mass ↓, muscle function ↑, protein degradation 

(MuRF) ↓, muscle growth and differentiation ↑, oxidative stress ↓ 
[240] 

Aged mice Oxidative stress ↓, mitochondrial biogenesis ↑ [241] 

C2C12 myotubes Protein degradation (atrogin-1, MuRF1) ↓ [242] 

C2C12 myotubes Mitochondrial biogenesis ↑ [243] 

Sarcopenic older adults (re-

sistance training and epicate-

chin supplementation) 

Muscle mass ↑, Skeletal muscle strength ↑, myostatin ↓, muscle growth 

factors ↑  
[244] 
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flavone 5,7-dimethoxyflavon  

Aged mice 

Muscle mass ↑, muscle fiber size ↑, muscle function ↑, protein synthesis 

(AKT, mTOR) ↑, protein degradation (atrogin-1, MuRF) ↓, mitochon-

drial biogenesis ↑, inflammation ↓  

[247] 

3T3-L1 cell  Adipogenesis ↓ [248] 

HFD-fed C57BL/6J mice Body weight gain ↓, fat mass ↓, adipogenesis ↓ [248] 

isoflavan Glabridin  

Dexamethasone-treated 

C2C12 myotube 
Protein degradation (MuRF1, FoxO) ↓,  [249] 

Dexamethasone-treated mice Muscle mass ↑, protein degradation (MuRF1, FoxO) ↓, [249] 

HFD-fed C57BL/6J mice 
Body weight ↓, fat mass ↓, food intake ↓, energy expenditure ↑, inflam-

mation ↓, lipogenesis ↓, fatty acid oxidation ↑, AMPK ↑  
[250] 

C2C12 myotubes Fatty acid oxidation ↑, AMPK ↑ [250] 

flavanone Hesperetin  

HFD-fed C57BL/6J mice Body weight gain ↓, fat mass ↓ [251] 

Aged mice Muscle fiber size ↑, muscle function ↑, oxidative stress ↓  [252] 

Aged mice Fat mass ↓, muscle mass ↑, muscle fiber size ↑, energy expenditure ↑ [253] 

flavanone naringenin 

HFD-fed ovariectomized 

mice 
Fat mass ↓, inflammation ↓  [254] 

Ovariectomized mice Fat mass ↓, muscle mass ↑, muscle lipid accumulation ↓  [255] 

L6 myoblast, C2C12 my-

oblasts, satellite cells 
Regulation of skeletal muscle differentiation [256] 

HFHC diet-fed Ldlr−/− mice Fat mass ↓, energy expenditure ↑, insulin resistance ↓ [257] 

APOE, apolipoprotein E; D-gal, D-galactose; HFD, high-fat diet; HFHC, high fat and high choles-

terol; LPS, lipopolysaccharide; PA, palmitic acid. 
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