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Abstract: In the current review, we focused on identifying aliment compounds and micronutrients,
as well as addressed promising bioactive nutrients that may interfere with NAFLD advance and
ultimately affect this disease progress. In this regard, we targeted: 1. Potential bioactive nutrients that
may interfere with NAFLD, specifically dark chocolate, cocoa butter, and peanut butter which may
be involved in decreasing cholesterol concentrations. 2. The role of sweeteners used in coffee and
other frequent beverages; in this sense, stevia has proven to be adequate for improving carbohydrate
metabolism, liver steatosis, and liver fibrosis. 3. Additional compounds were shown to exert a
beneficial action on NAFLD, namely glutathione, soy lecithin, silymarin, Aquamin, and cannabinoids
which were shown to lower the serum concentration of triglycerides. 4. The effects of micronutrients,
especially vitamins, on NAFLD. Even if most studies demonstrate the beneficial role of vitamins in
this pathology, there are exceptions. 5. We provide information regarding the modulation of the
activity of some enzymes related to NAFLD and their effect on this disease. We conclude that NAFLD
can be prevented or improved by different factors through their involvement in the signaling, genetic,
and biochemical pathways that underlie NAFLD. Therefore, exposing this vast knowledge to the
public is particularly important.

Keywords: liver; NAFLD; antioxidants; bile acids; AMPK

1. Non-Alcoholic Fatty Liver Disease

The liver is a central organ that makes life possible for humans and which is at the
center of vital metabolic functions. The health of the liver often reflects a person’s overall
health. The liver tissue can be the target of different diseases, and all of them are able to
change the functions of the liver. Nowadays, one of the most common causes of primary
and chronic liver disorders is non-alcoholic fatty liver disease (NAFLD) [1], which is an
important public health problem in different age groups [2]. NAFLD is defined as an
excessive accumulation of fat, mainly in the form of triglycerides in the liver epithelial
cells or hepatocytes [3]. The disease encompasses a wide range of liver disorders, from
simple steatosis to non-alcoholic steatohepatitis (NASH), terminal liver failure, which can
eventually lead to liver carcinoma [4], which can cause death [5]. If simple hepatic steatosis
is not effectively treated, it may progress to cirrhosis, which may lead to liver failure and
the development of liver carcinoma.

NAFLD is formed from fat deposits in the liver cells and is associated with metabolic
syndrome, obesity, and oxidative stress. NAFLD constitutes a spectrum of liver diseases
associated with collateral metabolic and cardiovascular disorders [6]. NAFLD is also
characterized by atherogenic dyslipidemia, postprandial lipemia, and HDL lipoprotein
dysfunction [7].

In the last decade, NAFLD has emerged as the most common cause of chronic liver
disease in developed countries. NAFLD is a global epidemic that threatens human health.
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Its incidence rate reaches around thirty percent. Its prevalence increases significantly
between 70 and 90% among people with obesity or type 2 diabetes [T2D] [7]. NAFLD
is directly related to the metabolic syndrome: central obesity, hyperglycemia, type 2
diabetes, arterial hypertension, and hypertriglyceridemia, which are usual components of
the metabolic syndrome and are also known risk factors for NAFLD [8].

The occurrence of NAFLD directly increases with the rising prevalence of obesity,
metabolic syndrome (MetS), and type 2 diabetes (T2D). In recent times, the number of
people with obesity has increased globally. The worldwide prevalence of obesity registered
for NAFLD and NASH patients was 51 and 81%, respectively [9]. NAFLD prevalence
fluctuates from 60 to 95% in obese people [10].

Diabetes is one of the fastest growing global health emergencies of the 21st century [11].
Around 463 million people worldwide have been diagnosed with diabetes in 2019, and a
51% increase is expected by 2045, raising the prevalence of diabetes to 700 million.

The association between T2D and NAFLD is well established and T2D is highly
prevalent in NAFLD patients [12]. Dai et al. [13] analyzed the data of 24 studies which
included 35,599 T2D patients and found a prevalence of 59.67% of NAFLD, which rose
to 77.87% in those with T2D and obesity. The majority of the NAFLD patients with T2D
fulfilled criteria for MetS, highlighting the relationship between these conditions in the
metabolic risk continuum.

NAFLD is characterized by a wide variety of liver changes, ranging from simple
steatosis to non-alcoholic steatohepatitis (NASH), cirrhosis, and liver carcinoma. NASH is
described as steatosis combined with inflammation and thus has become the second leading
liver disease that leads to liver transplantation in the US [14]. Approximately one-third
of US adults who have NAFLD also have NASH, and 30% of these individuals have the
potential to progress to advanced cirrhosis, hepatocellular carcinoma, and liver-related
mortality [15]. The pathogenesis of NAFLD/NASH is complicated and involves lipid
accumulation, insulin resistance, inflammation, and fibrogenesis. During the progression
of NAFLD, oxygen-containing free radicals (ROS) are activated and cause oxidative stress.

The biological mechanism of the onset of basic steatosis and progression to liver
disease is not fully understood, which is likely due to a number of factors that manifest
in addition to genetic predisposition. The central concept of NAFLD is the “parallel hits”
hypothesis [16], which was developed from the two-hit theory proposed by Day et al. in
1998 [17]. The two-hit theory asserts that a high-fat diet or diabetes-induced steatosis (the
first hit) will make the liver more susceptible to other risk factors associated with oxidative
stress and cause severe lipid oxidation (the second hit) (Figure 1).

In addition, insulin resistance has been shown to facilitate the progression of NAFLD
to NASH [18]. Hepatic lipid overload and/or hyperinsulinemia-driven de novo lipogenesis
increases lipid peroxidation, which results in the production of reactive oxygen species
(ROS).

From this, the “two hits” hypothesis can be put forward [17]: the first hit is determined
by an abnormal accumulation of triglycerides (TGs) and causes fat accumulation in the
liver (steatosis), and the second hit is mainly caused by oxidative stress and triggers the
progression of steatosis to NASH (Figure 1). As mentioned, it includes oxidative stress,
insulin resistance, the secretion of pro-inflammatory cytokines, increased intestinal perme-
ability, and obesity, which are identified as the main factors involved in the pathogenesis
of NAFLD [16]. These factors, accompanied by oxidative stress, can promote intrahepatic
fat accumulation and lipotoxicity, and develop inflammation, liver cell apoptosis, and
fibrogenesis responsible for disease progression (Figure 1) [19].

A current view has recently been developed and is based on a more complex “multiple
parallel hits hypothesis”, which includes a wide spectrum of parallel hits, including insulin
resistance, oxidative stress, genetic and epigenetic mechanisms, environmental elements,
cytokines, and changes in the microbiota. The theory of multiple parallel hits states that
the effect in the development of NAFLD is more comprehensive and includes more diverse
factors than a simple effect of one or two factors [20].
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Figure 1. Liver damage in NAFLD.

With regard to treatment, lifestyle intervention is the only approach to NAFLD. Thus,
there is still no accepted effective drug treatment. The basis for the effective treatment of
NAFLD is the identification of various components that intervene in each of the processes
to prevent the progression of the disease.

Human survival is associated with the consumption of various nutrients required for
life, which consist of macronutrients such as carbohydrates, lipids, amino acids, dietary
fiber, and micronutrients such as minerals and vitamins. In addition to these common
nutrients, there are additional components in the diet such as coffee (rich in caffeine) and
tea (comprising tea polyphenols), forming an important part of our daily diet.

Dietary components reach the digestive system for the sake of digestion and absorption
and then they are transformed into small molecule metabolites. Intestinal microorganisms
further decompose nutrients into smaller units, such as bile acids (BAs) [21], short-chain
fatty acids (SCFAs) [22], free fatty acids (FFAs) [21], and generate a wide variety of biological
responses. All these processes may affect the intestinal microbiota and therefore may
impinge on intestinal absorption, dietary energy, BAs metabolism, and finally may affect
the intestinal permeability. Gut microbiota strains widely fluctuate from one individual
to the other. The identity of the microbiome population and their quantity are highly
dependent on the host genotype, on the host nutritional practices, and others [23].

Immune cells such as Th1/Th2 lymphocytes and T regulatory cells (T regs), macrophages,
and natural killer cells play key roles in the pathogenesis of NAFLD. Specifically, hepatic
macrophages, which consist of resident Kupffer cells and recruited bone marrow-derived
macrophages, are the major cells that produce inflammatory mediators, such as tumor
necrosis factor (TNF)-α and interleukin (IL)-1β, causing systemic insulin resistance fol-
lowed by NAFLD and, ultimately, NASH [24]. In tissues, macrophages undergo maturation
via specific pathways following their stimulation by different triggers, leading them to
obtain specialized functional phenotypes. Toll-like receptors (TLRs), such as lipopolysac-
charide (LPS) and interferon gamma (IFN-γ), are ligands that stimulate the conventional
activation of M1, while IL-4/IL-13 stimulate the activation of M2 [25]. The dysregulation
and polarization of M1/M2 macrophages can lead to chronic inflammation, infection, can-
cer, obesity, and their associated disorders such as NAFLD [26]. A novel mechanism that
may regulate the M1/M2 balance relies on apoptotic effects of M2 Kupffer cells toward their
M1 counterparts was previously published [27]. Wan et al. suggested that, by promoting
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M2-induced apoptosis of M1 Kupffer cells, one may prove a relevant strategy to limit high
fat-induced inflammation and hepatocyte injury in NAFLD (Figure 1). Many food-derived
molecules are associated with M1 and/or M2 activation. Depending on the progressive
stages of NAFLD, NK cells that belong to innate immunity are distinct in phenotypes
and frequency. They are also involved in inflammatory processes, hepatic steatosis, and
fibrosis [28]. In the current review, we will focus on identifying aliment compounds, mi-
cronutrients, or promising bioactive nutrients that may interfere with NAFLD advance and
will finally affect the disease progress. We used relevant information from many research
articles and reviews by accessing some international databases over a fairly long period
of time, namely 1963–2022. However, most studies focused on the next coverage period
of 2005–2022. In this way, we will reach our final goal. In this search, we used specific
phrases in order to obtain information that was as objective as possible. Additionally, some
words such as liver, NAFLD, antioxidants, bile acids, AMPK, sweeteners, cannabinoids,
and finally caffeine helped us significantly in gathering information and stabilizing the
final organization of the review. This review was divided into the general presentation
of NAFLD pathology; clinical information regarding nutrients with bioactive potential;
and the presentation of different enzymes, which have influenced the progression and
development of this pathology. All these correspond to 20 issues.

The liver has its own immunity. The components that belong to innate immunity and
influence the pathology of NAFLD are represented by Kupffer cells, hepatic stellate cells,
and natural killers. Additionally, besides these, there are macrophages which, depending on
the situation, can change their M1/M2 phenotype. According to the “two hits” hypothesis
that sustains the NAFLD, the abnormal accumulation of triglycerides (TGs) causes fat
storage in the liver (steatosis), and oxidative stress can trigger the progression of steatosis
into NASH. In order to argue in favor of this hypothesis, there is a variety of cellular,
molecular, and signaling changes. They include oxidative stress, insulin resistance, the
secretion of pro-inflammatory cytokines, and increased intestinal permeability.

2. Potential Bioactive Nutrients That May Interfere with NAFLD
2.1. Dark Chocolate

One of the richest foods in bioflavonoids (flavonols, polyphenols, and theobromine)
is dark chocolate (DC) [29]. DC has the highest level of antioxidants compared to other
food sources [30]. Besides nutrients such as saturated fat (60%), monounsaturated fat
(35%), and linoleic acid (3%), chocolate contains important minerals such as potassium
and magnesium [31] as well as cocoa, which is the main ingredient in chocolate [32].
Cocoa and some of its derivatives are a very complex food [33] and a rich source of
antioxidants flavonoids, catechin, and epicatechin [34]. The potential health benefits of
chocolate consumption have mainly been discovered recently [35]. Several recent studies
have suggested that DC may have positive and changing effects on the lipid profile,
reducing total and LDL cholesterol levels and increasing HDL levels [36].

Several studies have indicated that cocoa from chocolate may contribute to protective
effects through the effect of the many beneficial components they contain such as minerals,
antioxidants [37], and especially polyphenolic compounds (antioxidant flavonoids), which
exhibit anti-inflammatory and antithrombotic activities. The beneficial metabolites may all
contribute to their protective effect [38]. Furthermore, these can improve insulin resistance
through reducing oxidative stress, improving endothelial function, and/or altering glucose
metabolism [39]. A previous study on a rat model induced with alcoholic steatohepatitis
showed that cocoa supplementation had a beneficial effect on the disease by reducing the
accumulation of fat in the liver, reducing inflammation, and reducing cell necrosis [40].
Recent studies have mainly argued the protective context of cocoa or chocolate consumption
and different health indicators [41]. The results of these studies affirmed that cocoa and
DC intake can reduce oxidative stress, stimulate brain function, fight cancer cells, improve
blood circulation, improve the mood, memory, immune system, and even protect the
heart [42] and the liver tissue [43].
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Therefore, our assumption to administrate dark chocolate may also have an adequate
potential in the prevention and control of NAFLD. Support for this assumption is provided
in a recent study among NAFLD patients in which they wanted to evaluate the effect
of constant consumption of 30 g per day of dark chocolate (DC) containing 83% cocoa
for 12 weeks on blood lipid profile, on fasting blood sugar levels, on enzyme levels in
the liver, as well as the inflammatory status and antioxidants among patients suffering
from NAFLD [44]. The findings of the above study demonstrate that the consumption
of DC in the amounts indicated above causes a decrease in weight, BMI, and aspartate
aminotransferase (AST) levels in the serum of NAFLD patients. The therapeutic effects
of DC as a protective substance for the liver are still not well understood. According to
the results obtained in the study, a daily dose of 30 DC (83%) for 12 weeks in patients
with NAFLD resulted in an important reduction in BMI and body weight. The mechanism
of NAFLD development is related to the existence of overweight and obesity, as well as
the place of fat storage in the body (abdominal). Many studies that have investigated
the effect of DC on body weight revealed conflicting results. Similar to the results of the
aforementioned study [44], Massolt and his coworkers [45] found that the effects of DC
consumption (85% cocoa) comprised appetite suppression and possibly lost-weight gain
after eating 30 g of chocolate for the 12 subjects. It appears that DC can suppress lipid
synthesis and grow lipolysis in adipose tissue, likely by enhancing the bioavailability of
nitric oxide (NO) and increasing glucose uptake, intensification of fatty acid catabolism,
and glucose oxidation. Moreover, in another study [46], it was found that cocoa is effective
in reducing abdominal fat tissue in rats, possibly by changing genes for enzyme expression
and transport molecules involved in fatty acid synthesis and thermogenesis in the liver and
white adipose tissue (Table 1).

The results of the study of Alavinejad et al. [44] confirmed that the administration
of DC for 12 weeks at a dose of 30 g per day can increase the levels of high-density
lipoprotein cholesterol (HDL-C) in the serum of NAFLD patients. However, the serum
levels of cholesterol such as toral cholesterol (TC), low-density lipoprotein (LDL), and very
low-density lipoprotein (VLDL) were not affected after DC supplementation (Table 1). It is
clear that postprandial hepatic lipid metabolism may be altered in patients with NAFLD.
Furthermore, the suppression of LDL oxidation may be key to its anti-atherogenic attribute.
The findings of Alavinejad et al. [44] are consistent with those reported by Hamed et al. [47],
who showed that seven days of DC consumption increased serum HDL levels by 9% in
28 healthy volunteers. Another study [48] observed that the daily consumption of 45 g of
chocolate rich in flavonoids for 4 months registered a notable rise in serum HDL levels in
type 2 diabetes (T2DM) pathology. Additionally, in another study [49], they observed the
effects of cocoa supplementation (36.9 g dark chocolate bar and 30.95 g cocoa powder drink)
on the lipid profile in healthy subjects for 6 weeks. It can be noted that cocoa components,
such as flavonols, include epicatechin, catechin, and procyanidins. These flavonols exhibit
anti-inflammatory properties, which can regulate TNF-κB gene expression and reduce
inflammatory biomarkers [50] and ROS production.

Elevated levels of liver enzymes (trans-aminases) such as AST and ALT in serum are
known markers of NAFLD and liver diseases [51]. In the study by Alavinejad et al. [44],
DC consumption for 12 weeks significantly reduced serum AST levels in NAFLD patients.
Support for the above study was published by the group of McKim et al. [52], who found
that the administration of cocoa extract (400 mg/kg per day) continuously for one month
stimulates liver functions together with a notable decrease in fat accumulation, inflamma-
tion, and necrosis in early liver injuries caused by administering alcohol in a laboratory
model in mice [52].

2.2. Cocoa Butter

Chocolates and cocoa-based products are praised for their “health benefits”, due to
their polyphenol content. However, the fat content in chocolate has a supposed connection
to the health benefits of chocolate [53]. Palmitic, stearic, lauric, and myristic acids are
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considered saturated fatty acids, oleic acid is a monounsaturated fatty acid, while linoleic
acid is a polyunsaturated fatty acid. In cocoa butter (CB), there are fats that are naturally
found in the cocoa beans. CB, also called theobroma oil, is a light-yellow vegetable fat
that comes from the cocoa bean and is responsible for the melting properties of chocolate.
As mentioned, cocoa butter (CB) consists mainly of palmitic fatty acids (C16:0), stearic
acid (C18:0), oleic acid (C18:1), and linoleic acid (C18:2), with low levels of lauric acid
(C12: 0) and myristic acid (C14:0) for cocoa butter and a fatty acid profile of approximately
60% saturated fat, 35% monounsaturated fat, and 1% polyunsaturated fat [54]. Although
saturated fat is generally thought to adversely raise total cholesterol and LDL cholesterol
levels, early studies also suggested that stearic acid may be hypo-cholesterolemic [55]. CB
stearic acid can turn in the liver into oleic acid, a monounsaturated fatty acid, wherein oleic
acid lowers cholesterol levels (LDL) and increases cholesterol levels (HDL) (Table 1). In
addition, CB is a suitable source of Vitamin E [56].

A recent study [57] on rats fed an ethanol-enriched diet that causes alcoholic liver dam-
age in rats evaluated the role of saturated fats from cocoa butter (plant source) compared to
lard (animal source). After 8 weeks of feeding, plasma aspartate aminotransferase (AST)
and alanine aminotransferase (ALT) activity, liver triglyceride (TG) levels, intercellular
adhesion molecule (ICAM)-1 levels, liver cytochrome P450 2E1 (CYP2E1), and liver protein
expression were recorded. Interleukin (IL)-1β was significantly increased in ethanol-fed
rats. In addition, liver histopathological scores of fatty changes, inflammatory cell infiltra-
tion, and atrophy and necrosis were significantly altered. However, fatty changes were
significantly inhibited only in rats fed ethanol and cocoa butter as along with inflammatory
cell infiltration, degeneration, and necrosis in the liver. In addition, plasma ICAM-1 and
hepatic tumor necrosis factor (TNF)-α, IL-1β, IL-6, and IL-10 levels were significantly lower
in rats fed ethanol and cocoa butter. Moreover, correlation analysis showed that liver
histopathological scores of atrophy and necrosis were significantly positively correlated
with erythrocytic oleic acid (C18:1) and negatively correlated with linoleic acid (C18:2). In
conclusion, cocoa butter protected the liver from lipid accumulation and inflammation in
rats fed chronic ethanol (Table 1).

In summary, the daily recommendation of cocoa butter consumption is one tablespoon
of cocoa butter. This tablespoon contains 8 g of saturated fatty acids, including 4 g of stearic
acid, 4 g of monounsaturated fatty acids, and 0.5 g of polyunsaturated fatty acids (mostly
omega-6) [58].

2.3. Peanut Butter

Peanuts originated in Central America and were afterward spread out to other regions
of the world [59]. Today, peanuts are among the most significant legume crops in the world
and they are also considered as oilseeds due to their high lipids matter. In addition to oil, a
great variety of peanut products such as flour, peanut butter, milk, and more have been
developed [60].

Peanuts contain about 50% monounsaturated fatty acids (MUFAs), 33% polyunsat-
urated fatty acids (PUFAs), and 14% saturated fatty acids. The greatest quantity of fatty
acids found in peanuts is represented bytriglycerides, which are from 93.3% to 95.5% of the
total fatty acid weight [60]. The standard peanut varieties have an oil profile containing
about 52% oleic acid and about 27% linoleic acid. Roasted peanuts contain about 21.5%
carbohydrates with starch being the main carbohydrate [61]. Peanuts are considered to
have a low glycemic index [62], and the consumption of peanuts or peanut oil is linked
with a low risk of cardiovascular disease and may ameliorate the lipid profile [63]. A high
intake of peanuts or peanut butter has been linked with protection against the development
of diabetes [64]. Peanut butter and even peanut oil, in combination with a slimming diet,
allow for maintaining a stable body weight in the long term [65]. Despite these adequate
effects of peanut consumption, their effect on fatty liver disease has hardly been studied.

It is clear that some of the health properties of peanuts are related to their nutritional
composition, particularly their fat profile. The fat content in conventional varieties is about
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50% MUFAs and about 25% PUFAs. Dietary recommendations place great importance on
consuming up to 20% of the total daily caloric intake from MUFA oils such as those found
in olive oil. One of the main fats in peanut butter is oleic acid. Oleic acid contributes to
balancing cholesterol levels, blood sugar, and blood pressure. Managing these levels in the
body can lower the risk of heart disease [66].

Oleic acid has also been shown to reduce the body’s resistance to insulin, a condition
that raises blood sugar and leads to diabetes. Research shows that the omega-6 content
of peanut butter may have the same effect as well. Peanut butter also contains omega-6.
This fatty acid decreases low cholesterol (LDL) and increases protective cholesterol (HDL)
(Table 1). Additionally, peanuts are a natural source of arginine, an amino acid that may
prevent cardiovascular disease by promoting adequate blood vessel function [67].

Peanuts are an excellent source of antioxidants such as manganese, Vitamin E, and
B vitamins. These compounds work to prevent and repair cell damage, and this effect
can reduce the risk of chronic diseases such as NAFLD [59,61]. Due to the high content
of antioxidants and vitamins, peanut butter can improve antioxidant activity in the liver
and promote its health. Along with peanuts, peanut butter is also a balanced source of
protein that is especially useful for NAFLD patients, as they have many dietary restrictions.
One of the most powerful antioxidants in peanut butter is coumaric acid [68]—and a study
found that its activity is increased by 22% if the peanuts are roasted before turning them
into butter. Peanuts also contain resveratrol, an antioxidant that has been shown to have
anti-cancer effects and may lower the risk of obesity, heart disease and cognitive decline.
In addition, foods rich in healthy fats, proteins, and fiber—such as peanut butter—take
longer to digest, which can contribute to a longer feeling of satiety and reduce the risk of
overeating [59].

The recommended daily dose of peanut butter is 2 tablespoons of natural peanut
butter (about 28 g). This dose is equivalent to 160–200 calories, it is therefore true that
this is a spread high in fat and calories, but at the same time, eating peanut butter will
provide a long-lasting feeling of satiety, thus preventing the phenomenon of excessive
snacking [69]. When you add snacks, blood sugar levels rise and remain high for a long
time, which is not a desirable situation in the prevention of diabetes and NAFLD. In
addition, peanut butter has the amino acid tryptophan, which helps improve the quality
of sleep, prevents depression or anxiety, helps lose weight, and even improves exercise
performance; therefore, peanut butter has become especially common among exercisers
and health seekers.

Moreover, peanut butter contains reasonable amounts of available calcium that con-
tributes to strengthening bones, hair, and nails and prevents osteoporosis, it has folic
acid and is recommended for pregnant and lactating women, and it has magnesium and
potassium that help muscles recover from training [61].

2.4. Caffeine

As we have previously shown, nutritional therapy is important for maintaining the
state of satiety [70]. It is carried out in order to degrade glucose, fatty acids, and cholesterol,
which influence the metabolism of toxic amyloid beta oligomers [71] with great importance
in chronic diseases. Caffeine is used as an appetite suppressant [72], but with age, its
delayed metabolism can be involved in triggering NAFLD and type 3 diabetes [73]. Daily
drinking of at least one cup of coffee is a common habit for more and more people, which
is why consumption has increased exponentially in the recent times [74]. In contrast to
previous studies, Hayat et al., 2021, showed that regular and moderate coffee consumption
in the healthy population is associated with a low risk of NAFLD. In addition, in patients
with NAFLD, it reduces the risk of developing fibrosis [75]. This was evident by stimulating
the apoptosis of hepatic stellate cells and the expression of cAMP, the suppression of actin
synthesis, along with the inhibition of alpha-smooth muscle actin. Moreover, the expression
of procollagen was also suppressed [76]. However, it was difficult to identify the source
of caffeine responsible for these effects. Interestingly, of all the caffeinated beverages on



Antioxidants 2023, 12, 903 8 of 52

the market such as energy drinks, expresso, tea, and soda, only moderate and frequent
consumption of normal coffee has been shown to be associated with a significant decrease
in fibrosis. In addition, it caused an improvement in liver function by decreasing the activity
of marker enzymes such as ALT and GGT [77].

NAFLD in patients with type 2 diabetes is more frequent and severe, and the risk of
cirrhosis and liver cancer is much higher. Coffee is a drink composed of several compounds,
the main ones being caffeine and chlorogenic acid. Mansour et al. attempted to demon-
strate the effects of chronic administration (6 months) of chlorogenic acid and/or caffeine in
patients with type 2 diabetes who also presented NAFLD. After 6 months, no improvement
in the activity of the liver markers ALT and GGT was observed [78]. Additionally, the sup-
plementation of the two compounds in the modulation of insulin resistance—homeostasis
model assessment–estimated insulin resistance (HOMA–IR)—had no effects. The exception
was the decrease in cholesterol after caffeine administration and the increase in insulin in
the group that received chlorogenic acid plus caffeine.

In the end, they concluded that the administration of 200 mg/day of chlorogenic
acid and caffeine in patients with NAFLD did not significantly change the inflammatory,
biochemical, and metabolic parameters [78].

MacKenzie et al. reported that caffeine in young adults can decrease insulin sensi-
tivity (400 mg) [79]. Several mechanisms underlying this metabolic change have been
suggested, not all of which are fully understood. On the one hand, caffeine inhibits the
sensitivity of skeletal muscle for glucose uptake by competitively blocking adenosine re-
ceptors. Moreover, glycogen synthase activity is also inhibited [80]. On the other hand,
these effects are attributed to the increased concentration of epinephrine and fatty acids
that can increase insulin resistance after coffee consumption [80]. However, it remains to be
understood whether the positive effects of coffee are the result of other ingredients that
annihilate the effects of caffeine on insulin resistance [81]. In rats, it has been observed
that the chlorogenic acid from coffee is responsible for lowering glucose concentration. In
addition, insulin sensitivity is increased by quinides, which are metabolites of chlorogenic
acid [82]. It competitively inhibits glucose absorption in enterocytes. At the same time,
by suppressing glucose-6-phosphatase activity, it reduces the synthesis of glucose in the
liver [82]. In summary, caffeine from regular coffee may be useful in fibrosis.

3. Sweeteners
3.1. Stevia

Stevia is a natural sweetener extracted from the Stevia rebaudiana plant [83]. This
plant has been grown for its sweetness and medicinal purposes for centuries in South
America. The plant compounds that provide sweetness are known as steviol glycosides.
Rebaudioside A is a glycoside 200 times sweeter than sugar [84]. Of all the steviol glycosides
in the plant, Rebaudioside A has the least bitterness.

The consumption of sugar-sweetened beverages is a greater risk factor for the evolu-
tion of non-alcoholic steatohepatitis (NASH). Natural sweeteners such as stevia are food
additives that provide sweetness without calories and are considered safe and/or not
metabolized by the liver [85]. The potential role of sweeteners such as sugar-sweetened
beverages are now known to have serious implications for human health. As a result,
non-caloric sweeteners such as aspartame, sucralose, saccharin, and Rebaudioside A have
gained in popularity and use [86]. Rebaudioside A is an extract of the stevia leaf and
provides sweetness without calories. It is worth noting that the literature has shown that
Rebaudioside A may in fact play an important role in glucose metabolism and has even
been described to improve the postprandial glucose-insulin index [87], and its consumption
may result in weight loss (Table 1).

The effect of stevia consumption in the development of NASH began to be clarified
recently in a groundbreaking study [88]. The study aims to determine the effect of sweet-
eners such as Rebaudioside A from stevia and sucralose on NASH using a murine model
of NASH and obesity by a high-fat diet and by replacing fructose and sucrose with the
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aforementioned sweeteners in the drinking water [88]. The authors found that sweeten-
ers had no effect on weight increase and energy balance in high-fat diet-induced obesity.
However, compared to fructose and sucrose, Rebaudioside A significantly improved liver
enzymes, liver steatosis, and liver fibrosis. In addition, Rebaudioside A induced enhanced
gene expressions related to oxidative stress, improved fasting glucose levels, improved
insulin sensitivity and caused an increased pancreatic beta cell mass, as well as caused
changes in the composition of the microbiome. The findings allowed for the researchers to
conclude that Rebaudioside A significantly improved the pathological expression of NASH
in mice.

The known relationship between nutrition, human health, and gut microbiota is re-
lated to the fact that the microbiome is in tight connection with metabolism and immunity.
Additionally, it participates in the development of NASH pathology [89]. The composition
and function of the microbiome is rapidly modulated by nutrition, such as the fermentation
of undigested carbohydrates [90]. It was recently published that Akkermansia muciniphila
bacteria partially counteract obesity and related metabolic diseases [91]. The transplanta-
tion of fecal contents from saccharin-fed mice into germ-free mice has been reported to
transfer the glucose tolerance phenotype to the recipient mice. In this way, the potential
role of microbiome metabolic changes secondary to dietary sweetener consumption was
shown [92]. Since Rebaudioside A is not absorbed in the gut [93], the role of the micro-
biome may be more significant to define the enhanced metabolic outcomes observed in the
previous study [88].

The reported data [88] denote that substituting fructose and sucrose with Rebaudioside
A as a sweetener may ensure liver protection. They report that the utilization of Rebau-
dioside A is related to improved glucose tolerance, lower liver fibrosis, and inflammation
mediation through lowered oxidative stress (Table 1). For example, Rebaudioside A may
have the potential to inhibit hepatic oxidative stress and NFκβ-mediated inflammatory re-
sponse by upregulating the nuclear factor Nrf2. It was also reported [94] that Rebaudioside
A protected human hepatocytes in HepG2 cell culture against carbon tetrachloride-induced
oxidative stress and inhibited the development of fibrosis. Specifically, Bacteroides have
been reported to efficiently hydrolyze Rebaudioside A to steviol [95]. An inverse relation-
ship with Akkermansia abundance and body weight of mice and humans has also been
reported [96]. The study by Xi et al. [88] initially found that the ratio between Akkermansia
and Bacteroides was improved by Rebaudioside A compared to sucralose administration.

It can be concluded that stevia has many beneficial effects on the non-alcoholic fatty
liver disease (NAFLD) of diabetic rats. Its effectiveness is mainly due to a decrease in
oxidative stress and a hypoglycemic effect on the microbiome.

3.2. Sucralose and Saccharin

Compared to the above publications, there are several studies that report that the
consumption of several sweeteners may disrupt the diversity of the microbiome in both rats
and humans [97,98]. The aforementioned studies suggest that this may lead to glucose intol-
erance. At the same time, additional studies reported that the consumption of sweeteners
has no effect on the abundance of the microbiome and gene function, but the consumption
of several sweeteners changes the diversity of the microbiome [99]. Additional studies also
showed that a change in microbial diversity may lead to metabolic changes [100]. These
artificial sweeteners, as mentioned, have been reported to be associated with dysbiosis
(Table 1). Dysbiosis, by definition, is “an imbalance in the bacterial community in the
intestines associated with diseases” [101]. According to this definition, it can be safely said
that, despite previous misconceptions, some sweeteners “unequivocally and irrefutably”
disrupt the gut microbiota [95]. Nevertheless, different sweetener formulations may have
different effects. Moreover, there are several questions about the extent and nature of what
happens after consuming certain sweeteners.

Sucralose is one of the most widely consumed sweeteners worldwide. It is 600 times
sweeter than sucrose. Studies indicate that sucralose may cause dysbiosis by reducing the
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total number of aerobic and anaerobic species, Bifidobacteria, Lactobacilli, Bacteriodes,
and Clostridiales [102]. Another study showed that it can increase Clostridium XIVa
strains in mice [103]. Saccharin, also one of the most common sweeteners in the world,
has been studied for its possible role in dysbiosis. Recent data indicate that saccharin may
inhibit the growth of six bacterial strains: three species of lactobacilli and three strains of
E. coli [95] (Table 1). Another study found that saccharin increases the genus Bacteriodes
and, similar to the previous study, decreases the number of lactobacilli [98]. An important
issue that can be emphasized is that most of the available information is based on animals.
There is a significant need to examine this possible relationship in human subjects with
different dietary approaches due to the fact that, in humans, there are many factors that
affect the gut microbiota, and the most important is the diet pattern. In a recent study, it was
suggested that, by following a large group of human subjects, the researchers were able to
find associations between the consumption of sweeteners and a disturbed microbiota [98].
In summary, the use of sucralose and saccharin sweeteners is not recommended.

3.3. Maltitol

Maltitol is a polyol produced by the hydrogenation of maltose [104]. It has a low
caloric value and a low glycemic index [104]. Moreover, maltitol has sweetening and satiety
effects equivalent to sugar and is currently used as a sugar substitute by diabetic patients.

The cholesterol levels may be suppressed by many indigestible components such as
dietary fiber and beta-glucan, through the absorption in the intestine of bile acids [105].
Propionic acid produced by the intestinal bacterial flora, in addition to indigestion, may
inhibit cholesterol synthesis in the liver, determining a decrease in blood cholesterol concen-
tration [106,107] (Table 1). Additional studies demonstrate that indigestible fibers as well
as soluble fibers, such as maltitol, absorb bile acids in the intestine and reduce circulating
bile acid levels, which leads to the activation of bile receptors in the liver and an increase in
circulating bile acid levels [108] (Table 1).

A study by Urushima et al. [109] demonstrated that supplementation with maltitol
suppressed obesity, hyperglycemia, hypercholesterolemia, and fatty liver degeneration in
mice fed a high-fat diet. Therefore, maltitol may be useful for treating patients in the initial
stages of fatty liver disease to improve steatohepatitis. They demonstrated that maltitol
ameliorates non-alcoholic fatty liver disease by activating the Nrf2 antioxidant capacity.

3.4. Erythritol

Erythritol (Ery) is a natural polyol sweetener derived from corn, wheat, and other
starches. It has an extremely low energy value and a variety of biological functions. Ery-
thritol contains 0.2 calories per gram and is about 60–80% sweeter compared to sugar.
Studies have found that the long-term administration of Ery has no effect on the body
weight and glucose tolerance of young/adolescent mice [110]. Another study found that
Ery can alleviate metabolic disorders in mice induced by a high-fat diet (HFD), including
dyslipidemia, impaired glucose tolerance, and obesity [111]. Ery also has an effect of reduc-
ing oxidative stress in diabetic rats [112]. It has been shown that erythritol can effectively
inhibit hepatic lipid accumulation and alleviate hepatic oxidative damage in HepG2 cells
induced by fatty acid treatment and in high-fat diet-induced NAFLD models [113] (Table 1).
The potential mechanism of its protective effect is that erythritol exerts an antioxidant
function by activating the Nrf2 signaling pathway, thus inhibiting endoplasmic reticulum
stress and lipid accumulation and then playing a role in alleviating NAFLD (Table 1).

Erythritol is absorbed relatively rapidly in the small intestine. Due to the fact that it
does not stay in the intestines for long, it cannot attract water—the main cause of watery
diarrhea from sweeteners such as maltitol. This is why erythritol causes diarrhea less
frequently than other sweeteners such as xylitol [114].

In 64 healthy young adults, erythritol caused fewer digestive problems (bloating, gas)
even at a high dose (50 g), compared to xylitol [115]. Therefore, the maximum intake of
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erythritol is 0.7 to 1 g per kilogram of body weight. In summary, some sweeteners can be
used as an adequate alternative replacement for sugar.

4. Glutathione and NAFLD

Glutathione, γ-L-glutamyl-L-cysteinyl-glycine, is a tripeptide present in every cell in
the human body [116]. Although its roles are complex and remain the subject of ongoing
research, glutathione is thought to play crucial roles in cellular detoxification and antioxi-
dant systems, due to the fact that a reduction in glutathione levels in cells has been found
to increase the risks of disease and poisoning. Accordingly, direct intravenous injection of
glutathione has been used to treat patients with chronic liver diseases and poisonings [117].

Glutathione is formed in cells from glutamic acid, cysteine, and glycine. Cysteine
and glycine are formed from methionine and serine, respectively, and glutamic acid is
synthesized from α-ketoglutarate, a metabolite of glucose. These amino acids are usually
supplied from food. It was reported that oral administration of glutathione did not change
blood glutathione and glutathione disulfide levels [118]. It has been suggested that, when
glutathione is administered orally, it breaks down into amino acid components and does
not exert specific activity beyond the amino acid source. However, it has been reported
that glutathione can pass through the Caco-2 cell layer (in vitro system) without degrada-
tion [119]. In addition, Park et al. demonstrated an increase in the protein-attached form
of glutathione in human blood after oral consumption [120]. These studies indicate that
glutathione administered orally is absorbed into the blood and can influence the redox
state in the human body.

Glutathione has a long history of treating chronic liver disease by injecting it into a
vein. A recent study [121] demonstrated the therapeutic effect of oral glutathione in patients
with NAFLD. The main result of this study was a change in ALT levels. The patients with
oral treatment of glutathione (300 mg per day) for 16 weeks exhibited a drop in ALT levels
as well as low in triglycerides, NEFA, and ferritin levels (Table 2).

The findings of this study reveal the beneficial effects of glutathione administered
through the mouth for NAFLD patients. As we mentioned before, the explanation for
this is that glutathione is broken down into amino acids during digestion and absorption
processes. The claim today is that, by intaking glutathione orally, it can be used as a
source of amino acids in the synthesis of endogenous glutathione. The addition of large
doses of glycine and serine (components of glutathione), can also attenuate the severity
of NAFLD in humans [121]. In the above study, since the glutathione dose was 300 mg
per day, the amount of cysteine potentially released from 300 mg glutathione is less than
120 mg, an amount which can be obtained from between 10 and 20 g of meat or 100 mL of
milk. Therefore, it is highly unlikely that the above dose of oral glutathione attenuates the
pathogenesis of NAFLD through an amino acid source for glutathione synthesis.

It has been indicated that the level of glutathione in its protein-bound form increases
1–2 h after glutathione ingestion, demonstrating that orally administered glutathione is
absorbed into the blood [120]. This protein-bound glutathione may be transported to the
liver, thus weakening the hepatitis.

Protein-bound glutathione levels have been reported to return to baseline levels after
an overnight fast [122]. In a study by Park et al. [122], they found that the baseline level of
the protein-bound form of glutathione decreased significantly after an overnight fast after
16 weeks of glutathione administration. Protein-bound glutathione levels in patients were
significantly higher than those of healthy volunteers in previous studies [122] assessed
using the same method. Glutathione treatment also lowered protein-bound glutathione
to normal basal levels. These findings indicate that oral administration of glutathione
may increase the incorporation of protein-bound glutathione in the liver or reduce the
pathological secretion of glutathione from the liver.

NAFLD is a complex disease. Its pathogenesis involves various factors, including lipo-
toxicity, insulin resistance, gut/nutrient-derived signals, oxidative stress, adipocytokines,
and genetic factors. In NAFLD, about 20–80% of patients reported dyslipidemia [123].
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A previous study indicated that the administration of glutathione accelerates fatty acid
utilization by increasing levels of the γ-activated receptor PPR-1α and mitochondrial DNA
with reduced levels of nonesterified fatty acids in plasma [124].

An increase in body ferritin and iron stores has been frequently found in NAFLD
patients [125]. Ferritin and iron can promote the development of NAFLD through oxidative
stress [126]. Results from an experiment conducted on various populations showed that
oral administration of the antioxidant Vitamin E improved liver dysfunction and the
pathological conditions of NASH [127]. However, long-term treatment with Vitamin E has
been associated with increased all-cause mortality and prostate cancer risk [128], suggesting
the need to evaluate the efficacy and safety of this agent. In the aforementioned study [127],
treatment with glutathione significantly decreased ferritin levels, but the mechanism behind
the decrease remains unclear. Glutathione suppresses hyperferritinemia and oxidative
stress and has therapeutic effects in patients with NAFLD. Liver fat assessed noninvasively
showed that it tended to decrease in all patients and decreased significantly in responders
in the decrease of the ALT enzyme after 4 months of glutathione treatment. However, the
relationship between histological improvement of liver steatosis and reduction in liver fat
values has not yet been determined, including whether glutathione administration may
reduce liver steatosis.

Additionally, in the aforementioned work [127], they investigated other factors that
could be related to the adequate effects of glutathione. They found that HDL cholesterol
and LDL cholesterol levels were higher and that HbA1c levels were lower in patients who
responded with a decrease in the ALT enzyme than in those who did not react (Table 2). In
summary: glutathione has a therapeutic effect of oral glutathione in NAFLD patients.

5. Whole Milk or Low-Fat Milk for Fatty Liver

Milk is an important part of the diet of most people. According to the recommen-
dations, there is no difference in choosing whole milk or low-fat milk if you drink up to
one glass of milk per day; it should not pose a significant problem. The benefit of milk
in fatty liver is reflected in the consumption of the protein found in milk. Milk protein
consumption has been shown to be inversely related to the development of NAFLD [129].

Several possible mechanisms may explain the association of increased protein intake
from milk with reduced risk of incident NAFLD. First, mitochondria are considered essen-
tial for the development of NAFLD [130]. Reduced β-oxidation, together with increased
lipogenesis, production of reactive oxygen free radicals, and damage to hepatocytes lead
to lipid accumulation as well as inflammation and fibrosis in hepatocytes [130]. Increased
production of oxidative radicals and depletion of antioxidants such as glutathione, Vitamin
E, β-carotene, or Vitamin C in the liver may occur in NASH [131]. In a study conducted on
rats [132], a significant increase in glutathione was observed only when rats were fed whey
protein hydrolysates and β-lactoglobulin. A higher intake of milk protein may (1) help
suppress NAFLD synergistically with exercise, and (2) prevent sarcopenia, a known risk
factor for NAFLD [133]. Insulin resistance is a key factor in the development of NAFLD. A
prospective study in a population of young adults found an inverse relationship between
the frequency of consumption of dairy products and the development of insulin resistance
syndrome [134].

6. Soluble Dietary Fiber (FDS)

Many recently published studies have revealed that bacterial flora and dietary mi-
crobial metabolites, such as short-chain fatty acids (SCFAs), contribute to homeostasis
as well as to the prevention of the development and progression of various diseases in
humans including NAFLD and NASH [135]. Recently, an imbalance in the microbiota, in
the bacterial flora of the digestive system, known as dysbiosis, has been indicated, and is
involved in a variety of metabolic diseases, including fatty liver [136].

In NASH, dysbiosis can result from an unbalanced diet or obesity, and a reduction in
SCFA production can lead to a dysfunctional intestinal mucosal barrier and immunological
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disturbances [137]. Studies have shown that a large number of pathogen-related molecules
can reach the liver through the disrupted intestinal mucosal epithelial barrier, causing the
hypersensitivity of Kupffer cells and potentially leading to NAFLD and NASH [138].

A recently published study attempted to explain the mechanism underlying the
possible amelioration caused by the administration of fructo-oligosaccharide (FOS) in
improving NASH disease in mice. They reported that increased SCFA production by the
bacteria provided nutrients to intestinal epithelial cells, thus improving intestinal barrier
function. The effect was also to increase immunoglobulin A production and suppress
Kupffer cell activation in NASH-induced mice [139].

There are three other potential explanations for the observed beneficial effects of SCFA
in the study in NASH. First, SCFAs stimulate the secretion of peptide-1 (GLP-1) from the
L cells in the gastrointestinal tract [140], given that several recent clinical studies have
demonstrated that treatment with GLP-1 can regulate the accumulation of lipids in the
liver [141]. Additional studies have shown the effectiveness of GLP-1 in the treatment of
NAFLD [142]. Second, adipocytes express G-type receptor (GPR43) SCFAs [143]. It was
recently reported that GPR43 can act to suppress insulin signaling in adipocytes and inhibit
fat accumulation in adipose tissue as well as promote lipid and glucose metabolism in
the liver [144]. Third, SCFAs can act as potential ligands for the peroxisome proliferator-
activated receptor γ- (PPARγ), and as a result can result in improved insulin sensitivity
(Table 1). It was also reported that a significant reduction in the improvement of steatosis
was caused by the administration of SCFAs in the liver in mice lacking PPARγ in the
liver [145]. It was also reported that the addition of butyrate to the diet caused a decrease
in pro-inflammatory markers such as interleukin-6 and nuclear factor-kappa-beta (NF-κB),
thereby raising the threshold for inflammatory reactions in the liver of rats fed a high-fat
diet [146] (Table 1).

Table 1. The influence of bioactive aliment compounds on NAFLD.

Nutrients/Category Effects on Liver Effects on Intestinal Microbiota References

Dark chocolate

1. Positive effects on the lipid profile,
reducing total and LDL cholesterol levels

and increasing HDL levels
[36]

2. Improve insulin resistance through
reducing oxidative stress, improving
endothelial function, and/or altering

glucose metabolism

[39]

3. Decrease aspartate aminotransferase
(AST) levels in the serum of

NAFLD patients
[44]

4. Increase glucose uptake, increase fatty
acid and glucose oxidation, inhibit

lipid synthesis
[45]

5. Anti-inflammatory properties, which can
regulate the TNF-κB gene expression and

reduce inflammatory biomarkers and
ROS production

[50]

Cocoa butter 1. Lowers cholesterol LDL levels and
increases cholesterol HDL levels [56]

Peanut butter

1. Lowers cholesterol LDL levels and
increases protective cholesterol HDL levels. [67]

2. Prevents cell damage and induces cell
repair, effects associated with reduced risk

of chronic diseases such as NAFLD
[59,61]
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Table 1. Cont.

Nutrients/Category Effects on Liver Effects on Intestinal Microbiota References

Caffeine

1. Lowers the risk of NAFLD in
healthy people [75,77]

2. Reduces the risk of developing fibrosis

Sweeteners

Stevia

1. Plays a role in glucose metabolism and
has even been reported to improve the

postprandial glucose–insulin index
[87]

2. Significant improvement of liver
enzymes blood levels, improvement of

liver steatosis and liver fibrosis

1. Causes changes in the
composition of the microbiome. [88]

3. Decreased inflammation associated with
oxidative stress

2. An inverse relationship with
Akkermansia abundance associated

with body weight of mice and
humans

[96]

4. Lower gene expression related to
oxidative stress. Improve fasting glucose

levels and improve insulin sensitivity

Sucralose and
saccharin

1. Sucralose may cause dysbiosis by
reducing the total number of
aerobic and anaerobic species,

bifidobacteria, lactobacilli,
Bacteriodes, and Clostridiales

[102]

2. Saccharin may inhibit the growth
of six bacterial strains: three species
of lactobacilli and three strains of E.

coli in animal models

[95]

3. Associations between the
consumption of sweeteners and a

disturbed microbiota
[98]

Maltitol

1.Suppress cholesterol synthesis in the liver
leading to a decrease in circulating

cholesterol levels
[106,107]

2. Maltitol mimics indigestible fibers,
absorbs bile acids in the intestine, and

reduces circulating bile acid levels, which
leads to the activation of bile receptors in

the liver and an increase in circulating bile
acid levels

[108]

3. Prevents obesity, hyperglycemia,
hypercholesterolemia, and fatty liver

degeneration in mice fed a high-fat diet
[109]

Erythritol

1. Long-term administration of Ery has no
effect on body weight and glucose

tolerance of young/adolescent mice
[110]

2. Alleviate metabolic disorders in mice
induced by a high-fat diet (HFD), including
dyslipidemia, impaired glucose tolerance,

and obesity

[111]
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Table 1. Cont.

Nutrients/Category Effects on Liver Effects on Intestinal Microbiota References

Erythritol

3. Inhibits hepatic lipid accumulation and
alleviate hepatic oxidative damage in

HepG2 cells induced by fatty acid
treatment and in high-fat diet-induced

NAFLD models

[113]

4. Exerts an antioxidant function by
activating the Nrf2 signaling pathway, thus

inhibiting endoplasmic reticulum stress
and lipid accumulation and then playing a

role in alleviating NAFLD.

Soluble dietary
fiber (FDS)

1.Improvement caused by the
administration of fructo-oligosaccharide

(FOS) in improving NASH disease in mice

1. Improvement of intestinal
barrier function

[139]

2. Regulate the accumulation of lipids in
the liver [141]

3. Inhibit fat accumulation in adipose
tissue as well as promote lipid and glucose

metabolism in the liver
[144]

4. Provide potential ligands for the
peroxisome proliferator-activated receptor
γ- (PPARγ), and as a result can result in

improved insulin sensitivity

[145]

5. Decrease expression of pro-inflammatory
markers such as interleukin-6 and nuclear
factor-kappa-beta (NF-κB), thereby raising
the threshold for inflammatory reactions in

the liver of rats fed a high-fat diet

[146]

LDL, Low-density lipoprotein; HDL, High-density lipoprotein; VLDL, Very low-density lipoprotein; TNF-α,
Tumor necrosis alpha; NF-κB, Nuclear Factor-Kappa beta; ROS, Reactive oxygen species; AST, Aspartate amino-
transferase; ALT, Alanine transaminase; NASH, Non-alcoholic steatohepatitis; NAFLD, Non-alcoholic fatty liver
disease; TGs, Triglycerides; MDA, Malondialdehyde; IL-1β, Interleukin-1 beta; IL-6, Interleukin-6.

A current study found that FDS significantly increased the concentration of propionic
acid in the serum of NASH-induced mice and decreased the mRNA expression levels of
the rate-determining enzyme for glycerolipid-glycerol-3-phosphate acyltransferase [147]. It
has been reported that propionic acid decreases the hepatic mRNA and protein expression
of lipid biosynthetic enzymes [139,148], increases the expression of glucose transporter
type 4 (GLUT4), improves insulin sensitivity [149], and inhibits lipopolysaccharide (LPS)-
stimulated TNF α release by neutrophils [150]. In summary, FDS inhibits fat accumulation
in adipose tissue as well as promotes lipid and glucose metabolism in the liver.

7. Soy Lecithin as a Source for Choline and Inositol

Lecithin in the context of NAFLD is considered one of the most important sources
of choline and inositol. There is a general lack of awareness about the importance of the
essential nutrient choline. This is reflected in the consumption of less than recommended
levels of choline by most people. In fact, this relatively low intake of choline by the general
population may be directly linked to the great incidence of NAFLD in the Western world,
as choline deficiency is known to cause “fatty liver” or steatosis in animals and therefore
similarly in humans. Despite the current reported deficiencies, the importance of the
nutrient choline has long been demonstrated [151]. Despite the possibility that choline
can be obtained from its endogenous biosynthesis, the American Institute of Medicine
recognized its nutritional importance and established the minimum values for choline
already in 1998.
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It is well known that optimal nutrition is extremely important in reducing the risk of
metabolic disorders. Maintaining liver health has also been linked to adequate intake of
certain nutrients; one of the most important is choline. Choline and phosphatidylcholine
(PC), and therefore lecithin, are known to prevent the development of fatty liver [152].
There is now consensus that the potential for increased consumption of choline and lecithin
may prevent metabolic pathologies of the liver and other parts of the body [153].

Dietary choline deficiency has multiple consequences for human health, including
birth defects, neurological dysfunction, and the development of fatty liver [154]. With
regard to steatosis, or fatty liver, choline deficiency has been shown to play an important
role. Phosphatidylcholine (PC), found in lecithin, as mentioned above, is an essential struc-
tural component of VLDLs and is required for its secretion and the export of triglycerides
(TGs) from the liver [155]. Therefore, choline and subsequent PC deficiency may cause fatty
accumulation in the liver. In addition, the roles of betaine in homocysteine methylation,
antioxidant activity, and AMP-activated protein kinase (AMPK) stimulation have been
investigated in relation to NAFLD. In fact, choline and betaine have been shown in animal
and human studies to prevent and even ameliorate NAFLD [155] (Table 2).

Currently, only low quantities of lecithin are used in processed foods, usually due
to its role as an emulsifier. Increasing the lecithin content in foods for the purpose of
improving human health may definitely be an advantage since many people rely on
processed foods and do not consume natural sources of choline. A functional food enriched
with lecithin will definitely benefit foods that are natural sources of choline, such as soy
products, milk, and peanut butter [156]. This may also be an effective strategy in light
of the research showing that the consumption of lecithin by humans effectively increases
choline levels [157]. Increased levels of lecithin may play a direct role in the prevention of
NAFLD based on the essential role of PC as an essential phospholipid in ensuring adequate
TG export from the liver (Table 2). Thus, with increased lecithin intake, the incidence of
NAFLD can be reduced in the general population. However, the success of functional food
depends, at least in part, on consumer awareness of the aforementioned nutrient.

In summary, choline, phosphatidylcholine, and lecithin are associated with preventing
the development of fatty liver.

8. Turmeric and Curcumin Extracts

Turmeric (Curcuma Longa) has active ingredients called curcuminoids with the most
prominent curcuminoid being called curcumin. In vitro and animal studies, turmeric has
demonstrated potent antioxidant, anti-inflammatory, and anti-fibrotic properties, as well as
insulin-sensitizing effects [158]. As such, it may be promising in the treatment of patients
with NAFLD.

Several controlled studies investigated the effects of curcumin consumption on an-
thropometric measures including BMI and body weight and in patients suffering from
NAFLD [159,160]. The essential findings of these studies showed that curcumin supple-
mentation (a dose ranging from 80 to 1500 mg per day) significantly dropped BMI and
waist circumference in NAFLD patients [159,160].

Even though curcumin has a very low water solubility, it represents an option for use
as a dietary supplement and drug [161]. Therefore, its effectiveness on health variables
in randomized controlled trials is limited [162,163]. In recent years, researchers have
attempted to develop a more water-soluble and more available form of curcumin such
as an amorphous form, phospholipid complexes, the addition of piperine (black pepper),
liposomal curcumin, and nanoparticles [164]. The nonlinear dose–response test showed the
significant effects of nanocurcumin (80 and 400 mg/day) on abdominal obesity, while the
natural forms of curcumin (1000 and 1500 mg/day) had less effect on this parameter [159].

Several mechanisms have been proposed for the effects of anti-inflammatory diets
and their components, such as curcumin on obesity, and this includes the inhibition of
lipogenesis and inflammation (reduction in pro-inflammatory cytokines), the suppression of
angiogenesis in adipose tissue, the reduction in preadipocyte differentiation, the increase in
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lipolysis, and the activation of brown fat. Additionally, the increased energy metabolism of
adipocytes and/or the induction of apoptosis increased the expression of neseptin levels in
serum and probiotic-like effects [165–167]. The effects of nesceptin include loss of appetite,
reduction in body fat, anti-inflammatory activities, anti-hyperglycemic activity, as well as
metabolic and neuroendocrine regulation [168,169]. Thus, the improvements in NAFLD,
anthropometric indices, inflammation, glucose, and lipid metabolism, and subsequently
the increased levels of neseptin by curcumin supplementation can be noted. Additionally,
curcumin may reduce total body fat by increasing the basal metabolic rate [170].

The enzyme 1β-hydroxysteroid dehydrogenase 1 is expressed in adipose tissue and
the liver. This enzyme can increase the cortisol level in visceral (abdominal) fat by changing
the inactive form of the cortisol hormone to its active form [171]. A high amount of cortisol
hormone in adipocytes can cause adipogenesis and consequently central obesity [172].
Therefore, the inhibition of the enzyme 11β-hydroxysteroid dehydrogenase 1 can be effec-
tive for reducing visceral fat and treating the metabolic syndrome. According to a previous
study, curcumin can act as an inhibitor of this enzyme [173].

Curcumin reduces body fat mass by inhibiting adipocyte differentiation through the
suppression of peroxisome proliferator-activated receptor-γ and by increasing adenosine
monophosphate-activated protein kinase, resulting in lipolysis [174]. From all of the above,
it can be assumed that curcumin supplementation (especially nano-curcumin) may have a
moderate effect on BMI in patients with NAFLD.

The current therapeutic strategies for the treatment of NAFLD and NASH are mainly
aimed at correcting and changing risk factors such as obesity, diabetes, and hyperlipidemia.
However, there are several studies that indicate that curcumin can also intervene in the
oxidative stress that occurs in NAFLD [160]. Additionally, the turmeric plant (Curcuma
longa) or its component is indeed likely able to protect the liver with an anti-oxidant
mechanism; therefore, it has been used not only as a spice but also as a traditional medicine
for many centuries, and its properties have been reported in the literature [175]. A clinical
trial was recently conducted to evaluate the potential role of orally administered turmeric
on liver enzymes, lipid profile, oxidative stress status, malonaldehyde (MDA), and degree
of hepatic steatosis [176]. The study included 62 patients who were randomly divided into
intervention groups or placebo (wheat flour). The participants in the intervention group
received a turmeric supplement (2 g per day) as oral capsules and the other group received
a placebo. The intervention period was 8 weeks and the subjects were advised to consume
their capsules after the main meals to improve absorption in the small intestine due to the
presence of fat in the diet. The study revealed that taking a supplement containing 2 g per
day of turmeric for a period of 8 weeks resulted in a significant decrease in the degree of
steatosis compared to the beginning as seen in the liver ultrasound tests. The results of
the clinical study showed that supplementation with turmeric extracts reduces elevated
serum ALT and AST levels in patients with NAFLD (Table 2). A decrease in these two
enzymes can indicate an improvement in liver function. Therefore, it can be considered as
an adequate therapeutic supplement with hypolipidemic and antioxidant properties for
this disease. However, the reports in other studies do not always support the above results.

Previous studies have also highlighted the mechanism of the hepatoprotective effect of
curcumin [177] in both in vitro and in vivo studies. The antioxidant capacity of curcumin
in scavenging free oxygen radicals, reactive nitrogen molecules, and lipid radicals is one
of the most important mechanisms [178]. The role of oxidative stress and inflammation in
inducing hepatocyte injury and progression of NAFLD has long been established in previ-
ous studies [179]. Curcumin treatment also enhances the activities of detoxifying enzymes
such as glutathione-S-transferase, glutathione peroxidase, glutathione reductase, catalase,
and he-oxygenase-1, and thus suppresses oxidative stress in the liver [179–181]. Curcumin
inhibits the activation of key mediators of cellular inflammation such as 5-lipoxygenase
(5-LOX), NF-κB, and cyclooxygenase-2 (COX-2). These are involved in the stimulation
of different genes including several pro-inflammatory and cytotoxic cytokines such as
TNF-α, IL-1, IFN-γ, and NF-KB [182,183]. Curcumin also suppresses the activation and
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proliferation of stellate cells in the liver, which have a known role in the progression
of liver fibrosis [184] (Table 2). A decrease in hydroxyproline content in the liver and a
downregulation of collagen mRNA synthesis after curcumin administration supports this
claim [185].

9. Silymarin

Silymarin is derived from an extract from milk thistle (Silybum marianum L.), a plant
that originates from southern Europe through Asia with the active compound silymarin,
which is a natural flavonoid. Silymarin consists of four flavonolignan isomers, namely
silybin, silychristin, silydianin, and isolibin [186], and it is widely used as an over-the-
counter preparation for liver diseases [187]. Its beneficial effect on the liver is attributed to
possible anti-inflammatory, antioxidant, and anti-fibrotic activity. Silymarin also reduces
insulin resistance [188]. It has been tested in the treatment of various liver diseases,
exhibiting adequate results with remarkable safety [189].

Today, it is the most studied plant for the treatment of liver diseases and the most
common over-the-counter treatment for liver diseases [190]. Several studies have indicated
its promising antifibrotic activity in liver injury in experimental systems [191,192] (Table 2).
Silymarin may reduce liver inflammation by inhibiting lipooxygenase activity and reducing
the function of leukotrienes and their effect on Kupffer cells in the liver and by reducing
oxidative stress by increasing glutathione levels [193].

Treatment with milk thistle extract significantly improved serum superoxide dismutase
activity and malondaldehyde (MDA) levels in rats in which NAFLD was induced [192].
Milk thistle extract treatment reduced serum aspartate aminotransferase enzyme levels
and levels of triglycerides (TGs), as well as cholesterol including VLDL in NAFLD-induced
rats (Table 2). Treatment with milk thistle extract preparations also effectively protected
the liver against histological changes. From these data, it can be concluded that treatment
with milk thistle extract preparations can be a promising medicinal option for the treatment
of NAFLD.

Recently, several clinical trials have been conducted to treat NAFLD with milk this-
tle extract preparations. A recent randomized controlled trial (RCT) [194] concluded
that silymarin was effective in reducing alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) levels compared to the placebo treatment. In a double-blind,
placebo-controlled RCT by Kheong et al. [195] with adults with NASH, it was demon-
strated by biopsy that 48-week silymarin treatment did not lead to an improvement in
the NAFLD activity score compared to the placebo group, but it did lead to a significant
improvement in fibrosis after repeat liver biopsies. Another clinical trial in NAFLD patients,
conducted by Solhi et al. [196], tested the effect of silymarin after a treatment period of
8 weeks. They demonstrated that there was a marked improvement in transaminase levels
compared to placebo. Besides the mentioned RCTs that tested silymarin monotherapy in
NAFLD/NASH versus placebo treatment, other studies with methodological shortcomings
or not placebo-controlled were also performed [197,198].

In conclusion, turmeric, curcumin extracts, and silymarin may be therapeutic for
NAFLD patients.

10. Selenium (Se)

There are animal studies that indicate a link between selenium (Se) supplementation
and NAFLD. Although most indicate a beneficial effect, some report a negative effect of Se
supplementation on NAFLD.

10.1. Evidence Suggesting a Beneficial Effect of Se on NAFLD

Rats fed a Se-deficient diet exhibited a decrease in reduced glutathione (GSH) in the
liver and an increase in the ratio of n-6/n-3 fatty acids, which are considered to be detri-
mental to NAFLD [199]. Additionally, mice fed a Se-deficient diet exhibited an increase in
lipid peroxidation and a decrease in glutathione peroxidase (GPx) and thioredoxin reduc-
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tase activity in the liver, suggesting increased oxidative stress and impaired antioxidant
capacity [200], both of which are strongly associated with the pathogenesis of NAFLD [201].
Furthermore, rats fed a Se-deficient diet had lower levels of Se in the liver, which resulted
in changes in hepatocyte cells, such as abnormal chromatin and mitochondrial swelling,
as well as more severe fibrosis around the portal vein, upregulation of metalloproteinases,
and downregulation of tissue inhibitors of metalloproteinases type 1 and 3, all of these
changes being associated with increased liver inflammation [202].

Liver fibrosis induced by N-Nitrosodimethylamine treatment in rats was associated
with decreased circulating Se, decreased hepatic GSH and GPx, and increased circulating IL-
6 and TGFβ1 cytokines. Another study demonstrated that low Se levels and consequently
lower -GPx activity may impair cellular antioxidant defense, leading to oxidative stress
and liver fibrosis [203]. In addition to the link between Se deficiency and NAFLD, there are
also studies that indicate a positive effect of Se supplementation, alone or in combination
with other drugs, on liver function tests and liver steatosis (Table 3).

Se supplementation improved abnormal liver functions induced by carbon tetrachlo-
ride (CCl4) treatment in rats [204]. The administration of Se plus magnesium prevented
high-fat diet (HFD)-induced lipid increase in rats, possibly by enhancing the activity of
several antioxidant enzymes [205]. Another study showed that the administration of a
combination of Se and zinc improved the lipid profile, liver functions, and liver steatosis
in rats [206]. Additionally, the administration of Se and probiotics reversed the negative
effect of feeding in mice on HFD and improved liver functions and steatosis [207]. Another
study demonstrated that administering selenomethionine (the organic form of selenium
which is the same form found naturally in foods such as grains, soybeans, and yeast) to
rats induced steatosis. The improvement was accompanied by increasing GPx activity,
weakening the steatosis in the liver and allowing for the appearance of hepatocytes in a
balloon-like configuration (a hallmark of hepatitis) [208]. The effect of Se supplementation
on liver fibrosis, the principal histological prognostic factor for advanced disease observed
in the study [208], appears to be even more important. Other studies demonstrated that Se
supplementation decreased the number of hepatic stellate cells (HSCs) and liver fibrosis
induced by CCl4 treatment in mice [209]. It should be emphasized that HSCs are considered
to be key players in the pathogenesis of liver fibrosis [210] (Table 3).

10.2. Evidence Suggesting a Negative Effect of Se Administration on NAFLD

Contrary to the evidence presented above, some articles reported a negative effect
of Se administration on NAFLD, which, at the same time, may be related to exposure to
high doses of Se (higher doses and/or longer duration). Early reports suggested that oral
administration of Se for 2 months in rats induced the formation of nodular regenerative
hyperplasia with sinusoidal damage in certain areas of the liver [211]. These areas are found
around nodules (perinodular areas) and in which atrophic hepatocytes appear around
capillary sinusoids but without fibrosis [212]. Based on these findings, another study
showed that a Se-enriched diet induced hepatic nodular hyperplasia in rats [211].

11. The Enzyme Stearoyl-CoA Desaturase 1 (SCD1) in NAFLD and the Use of
Supplements That Lower Its Activity

In many tissues, stearoyl-CoA desaturase 1 (SCD1) catalyzes the biosynthesis of
monounsaturated fatty acids (MUFAs), (i.e., palmitoleate and oleate) derived from their
saturated fatty acid (SFA) counterparts (i.e., palmitate and stearate), leading to broad effects
in terms of physiology in humans. In addition to its main role in fatties metabolism and
body weight control, SCD1 has recently appeared as a potential new target for the treatment
of various diseases, such as cancer, Alzheimer’s disease, skin disorders and, in our case,
NAFLD [213].

Under normal conditions, lipogenesis and lipolysis are in dynamic balance. Signals
arrive from both the central nervous system, as well as peripheral tissues, inducing the
balance of synthesis and breakdown of triglycerides. There are two different sources of
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lipogenesis in the endogenous formation of fats (de novo lipogenesis). In tissues with
a high metabolic rate, such as the liver or adipose tissue, de novo lipogenesis is more
active, although every single cell is capable of performing lipogenesis. In particular,
human adipose tissue appears to be the primary tissue in which de novo lipogenesis takes
place [214]. This type of lipogenesis is characterized by the conversion of carbohydrates
into fatty acids, which are then stored as triglycerides if the body does not need energy.
This process begins with the glycolysis of carbohydrates to obtain acetyl-CoA. The enzyme
acetyl-CoA carboxylase 1 (ACC1) converts acetyl-CoA into malonyl-CoA, which is then
converted to palmitate by fatty acid synthase (FASN) [214]. Finally, the last step of de
novo lipogenesis is carried out by stearoyl-CoA desaturase (SCD), the first rate-limiting
enzyme involved in desaturation [215]. SCD catalyzes the reaction in converting palmitoyl-
CoA to palmitoleoyl-CoA, in a reaction that also involves redox by nicotinamide adenine
dinucleotide (NADH), flavoprotein cytochrome β5 reductase, after receiving the electrons
from cytochrome β5 [216]. In addition to the palmitic acid reaction, stearic acid is also one
of the major substrates of SCD, which is ultimately converted into oleic acid [217]. SCD
also catalyzes the conversion of myristic acid into myristolic acid [218] but this reaction is
carried out to a lesser extent.

De novo lipogenesis is triggered when blood glucose and insulin levels are increased [214].
These nutrients cause the activation of the transcription factor ChREBP by using another
transcription factor, SREBP-1c, and the liver type receptor (X -LXR). These transcription
factors are specific and their activation promotes lipogenesis again [215]. Thus, the hepatic
expression of SCD-1 is induced after high-carbohydrate consumption through an SREBP-1c-
dependent mechanism involving the binding of LXR to the LXR response to the promoter
activation of SCD-1 through the transcriptional activation of SREBP-1c [219]. Pharmaco-
logically administered SCD1 inhibitors have been tested with adequate results in NAFLD,
diabetes, dyslipidemic failure, and hepatitis C virus infections [220]. For example, a drug
called MK-8245 was developed and is currently in advanced clinical trials in humans,
including against NAFLD [221].

Researchers have reported that an SCD inhibitor called Daiichi Sankyo [222] may
be effective for the treatment of NASH. The Daiichi Sankyo compound was given orally
once daily at a dose of 30 or 100 mg per kg to rats fed a methionine-deficient choline
diet for 2 months before treatment of the SCD inhibitor. After 1 month of administration
with the above compound (100 mg/kg), there was a reduction in the accumulation of
triglycerides in the liver of rats suffering from NASH by 80% (Table 4). The Daiichi Sankyo
compound also reduced the increase in aspartate aminotransferase (AST) enzyme levels and
alanine transaminase (ALT) by 86% and 78%, respectively. Hepatic steatosis, hepatocellular
degeneration, and inflammatory cell infiltration were also treated after treatment with this
compound (Table 4).

Adverse Effects of SCD1 Inhibitor Treatments

It is important to note that SCD suppression can also produce unwanted effects in
mammals. Tissues, where lipogenic mechanisms have to be active to function normally,
can be affected by long-term systemic treatments with SCD1 inhibitors. For example, SCD1
knockout mice develop multiple skin eczemas accompanied by weight disturbances [223].
These animals exhibit dysfunction of the epidermal lipid barrier with subsequent ther-
moregulation failure, transepidermal water loss, and metabolic problems [224]. The SCD1-
deficient mice also suffer from atherosclerosis accompanied by an increased inflammatory
response of the macrophages [225]. In addition, treatments with SCD1 inhibitors usually
cause the atrophy of sebocyte cells (epithelial cells in the skin), due to which hair loss and
dry eyes are caused [226]. On the basis of these findings, the development of new SCD
inhibitors with fewer adverse effects, as well as a better understanding of the mechanisms
involved, are of crucial interest. Using nutritional supplements that perform the activity in
a moderate way is possible. An example is sterculic acid (SA) (see below).
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12. Sterculic Acid (SA)

Sterculic acid (SA) is a cyclopropane fatty acid with many biological activities. SA
is a fatty acid mainly obtained from the seeds of Stracolia petida and it forms more than
50% of its oil composition. SA is known for the inhibitory effect it exerts on the SCD1
enzyme, both in vivo and in vitro [227,228]. Studies in adipocyte cells have shown that this
inhibition occurs by regulating enzyme activity without affecting SCD mRNA levels or
protein expression [229]. Thus, this inhibition could be due to the irreversible binding of
the sulfhydryl groups of the enzyme with cyclopropane groups found in sterculic acid [230]
or through the conversion of SA to stearoyl-CoA, which appears to be the active form [231].

SA is one of the main components of sterculic oil (SO) [232]. SO contains not only
SA, which is its main component, but also malvalic acid, another cyclopropane acid with
properties similar to that of SA, including an inhibitory ability of SCD [233]. The beneficial
effects of SO include improvement in terms of glucose tolerance and blood pressure,
reduction in body mass, and benefit in serum levels of triglycerides and adiponectin [228]
(Table 2).

However, a number of side effects have also been described. These include hyperc-
holesterolemia, reproductive problems in animals, and inhibition of the beneficial effect of
CLA (conjugated linoleic acid) in rats due to disruption of SCD activity [234].

13. Aquamin

Aquamin is a multimineral complex containing calcium, magnesium, and 72 other
marine minerals that are absorbed from the surrounding seawater. It can be used in foods,
beverages, and nutritional supplements.

The effect of Aquamin treatment was tested in a murine model of NAFLD. Groups of
mice were fed a high-fat diet with fructose added to the drinking water with and without
the addition of Aquamin for a period of 16 weeks [235]. They proved that Aquamin, which
is rich in calcium, magnesium, and other elements (derived from red algae), prevents
and can even help stop the progression of NAFLD (Table 2). Previous studies by this
group [236,237], were conducted with black mice that were fed a high-fat Western-style
diet (HFWD) for up to 18 months. The long feeding period of HFWD allowed for the
development of extensive liver damage in most animals, especially males. In addition
to the widespread steatosis found in mice fed HFWD, the mice exhibited widespread
inflammation of the liver, liver injury, and the development of collagen deposits (Table 2).
The diet caused the appearance of large fibrotic nodules. It was even possible to identify
liver tumors including liver adenomas and carcinomas in several animals. Their studies
demonstrated that supplying an adequate level of calcium (estimated as 20–25 mg per
day consumed) together with several other trace elements in the mineral supplement
Aquamin dramatically reduced the formation of tumors [236,237]. Inflammation, damage
to hepatocytes, and the appearance of collagen deposits were also reduced, but the steatosis
indices themselves were largely unaffected.

Calcium, which is the distinct “driver” of epithelial cell differentiation [238], is the
most abundant mineral in Aquamin. Thus, epithelial cell differentiation induced by cal-
cium in the multimineral product may underlie the suppression of the precancerous and
cancerous processes in the liver induced by the HFWD diet and prevented by Aquamin
treatment. Furthermore, it is well documented that some of the trace elements in the
Aquamin multimineral product can act as calcimimetic (calcium-like) agonists, promoting
the calcium response. Support for this is that an extracellular calcium-sensing receptor is
also expressed in rat hepatocytes [239]. Inadequate mineral intake is not limited to people
consuming a Western-style diet. A recent study showed that most people living in many
developing regions of the world also lack an adequate amount of calcium in their diet [240].
The question that is asked is whether the mineral supplement Aquamin may ensure the
consumption of minerals at an adequate level. A recent 90-day pilot trial was conducted in
which 30 healthy subjects were randomly divided into several groups: one group designed
to receive Aquamin that should provide 800 mg of calcium per day, another group that
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received calcium carbonate at the same level, and a third group that received a placebo [241].
In conclusion, no safety or tolerability issues were seen with Aquamin. At the same time,
the colon biopsies obtained before and after the treatment demonstrated the regulation
of several proteins related to cell differentiation in the colon mucosa. In the calcium-only
group, differentiation proteins were also formed, but the levels of increase were much
lower compared to what was seen with Aquamin. Finally, a decrease in the levels of certain
primary and secondary bile acids was also observed in subjects who received Aquamin in
combination with a change in the intestinal bacterial profile. These metabolic and microbial
changes were not observed with calcium alone. While the focus of these clinical studies
was colon health, the same approach may also provide benefits in terms of liver health.

In conclusion, previous studies have clearly demonstrated the importance of adequate
mineral intake to prevent the consequences of fat accumulation in fatty liver in a murine
model. Current studies attempt to provide mechanistic insight into how mineral supple-
mentation may contribute to a reduction in liver tumor formation in a murine model, one of
the most devastating consequences of fatty liver disease versus steatosis. There is currently
no evidence of the effectiveness of using Aquamin to prevent NAFLD in humans.

14. Oleic Acid

The main fatty acid provided by olive oil is oleic acid or oleate (C18:1 n-9), and it is
known for being the main contributor to the beneficial effects of olive oil consumption
(Hu, 2003).

Ducheix et al. [242] recently investigated the effects of dietary-supplied oleic acid on
the regulation of gene expression in the liver. Indeed, while oleic acid can be synthesized
de novo through the activity of Stearoyl-CoA desaturase 1 (SCD1), it is clear from the
results obtained in mice lacking the SCD1 gene (general Scd1 KO) [243] as well as in
liver-specific Scd1 KO mice [244] and in mice overexpressing Scd3 [245] that oleate can
positively contribute to various physiological functions, mainly in the liver. Dietary-
supplied olive oil [246] and oleic acid [247] have been shown to have beneficial effects in
various experimental models of liver pathologies in NAFLD, ranging from steatosis to
steatohepatitis (NASH). In addition to the effect that prevents the accumulation of lipids in
the liver, oleic acid synthesized de novo also contributes to the protection of hepatocytes
against insulin resistance [248].

Recently, it has been shown that oleic acid can modulate the activity of liver X receptors
(LXRs) in human neutrophils [249] (Table 2). Moreover, LXR activity is sensitive to fatty
acids as tested in vitro [250]. The LXRs are type II nuclear hepatocyte receptors [251].
They are sensitive to derivatives of oxidized cholesterol, the oxysterols, which bind to
and activate both isotypes of LXR (β α, NR1H3 NR1H2). An increase in the oxysterol
concentration stimulates the transcription of the LXR target genes. For example, LXR α

and β regulate genes involved in lipogenesis [252]. LXRα binds to transcription factors
responsible for the control of lipogenic genes such as Fasn (responsible for fatty acid
synthesis) [253] or Scd1 [254] and directly promotes de novo fatty acid synthesis. Therefore,
the pharmacological activation of LXR leads to the accumulation of neutral lipids in the
liver, which is the hallmark of NAFLD [255]. LXRs are also involved in the reverse transport
of cholesterol and the breakdown of cholesterol into bile acids. LXR is not only involved
in cholesterol secretion [256] but also in suppressing inflammation [257], and thus may
be involved in protecting the liver against inflammatory processes that may occur in
NAFLD [258]. Indeed, the contribution of LXR to the modulation of lipogenesis, cholesterol
metabolism, and liver inflammation by dietary oleic acid was recently investigated [242].
It was demonstrated that LXR is required for the lipogenic genetic response as well as for
the decrease in cholesterol in response to a diet that provides a high content of oleic acid.
Moreover, it was identified that, in this process, LXR protects against inflammation and
liver damage caused by lipogenesis. The authors’ work reveals that LXR contributes to
the effects induced by dietary oleic acid and protects the liver from inflammation while
inducing lipogenesis. Support for the above findings was published in the in vivo work
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carried out by Moravcová et al. [259], who found that in in vitro models of steatosis, oleic
acid protects against the cytotoxic activity of steatosis caused by treatment with palmitic
acid in primary rat hepatocytes in culture (Table 2).

Table 2. General and nutritional-associated compounds with beneficiary action on NAFLD.

Compounds Effects on Liver Effects on Intestinal
Microbiota References

Glutathione

1. Therapeutic effect of oral glutathione in patients
with NAFLD [121]

2. Improvement of ALT blood levels [122]

3. Decrease in triglycerides, NEFAs, and ferritin levels [127]

4. Lowers protein-bound glutathione to normal
basal levels

5. Improvement of hyperferritinemia and oxidative
stress, and exertion of therapeutic effects in patients

with NAFLD

Soy lecithin as a source of
choline and inositol

1. Lecithin in the context of NAFLD is considered one
of the most important sources of choline and inositol [151]

2. Choline, phosphatidylcholine, and lecithin are
associated with the prevention of the development of

fatty liver
[152]

3. Choline and betaine have been shown in animal
and human studies to prevent and even

ameliorate NAFLD
[155]

4. Lecithin ensures adequate TG export from the liver [157]

Turmeric and
curcumin extracts

1. Antioxidant, anti-inflammatory, and anti-fibrotic
properties, as well as insulin-sensitizing effects

1. Probiotic-like effects

[158]

2. Induces increased energy metabolism of adipocytes
and/or induction of apoptosis, increased expression

of neseptin levels in serum
[165,167]

3. Loss of appetite, reduction in body fat,
anti-inflammatory activities, anti-hyperglycemic

activity, metabolic and neuroendocrine regulation
[168,169]

4. Reduces body fat mass by inhibiting adipocyte
differentiation through suppression of peroxisome
proliferator-activated receptor-γ and by increasing
adenosine monophosphate-activated protein kinase

resulting in lipolysis

[174]

5. Enhances the activities of detoxifying enzymes
such as glutathione-S-transferase, glutathione

peroxidase, glutathione reductase, catalase, and
he-oxygenase-1 in the liver and thus suppresses

oxidative stress in the liver

[179–181]

6. Blocks the activation of key mediators of cellular
inflammation such as NF-κB, 5-lipoxygenase (5-LOX),

and cyclooxygenase-2 (COX-2)
[182,183]

7. Inhibits the activation and proliferation of stellate
cells in the liver, which have a known role in the

progression of liver fibrosis
[184]

Silymarin

1. Anti-inflammatory, antioxidant, and
anti-fibrotic activity [188]

2. Reduces insulin resistance [193]

3. Reduces liver inflammation by inhibiting
lipooxygenase activity and reducing the function of
leukotrienes and their effect on Kupffer cells in the
liver and by reducing oxidative stress by increasing

glutathione levels
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Table 2. Cont.

Compounds Effects on Liver Effects on Intestinal
Microbiota References

Silymarin

4. Improvement of serum superoxide dismutase
activity and malondaldehyde (MDA) levels in rats in

which NAFLD was induced
[192]

5. Reduce serum aspartate aminotransferase enzyme
levels and levels of triglycerides (TGs) and cholesterol

including VLDL in NAFLD-induced rats

Sterculic acid (SA)
1. Improvement in glucose tolerance and blood
pressure, reduction in body mass, and benefit in

serum levels of triglycerides and adiponectin
[228]

Aquamin [241]

1. Prevents and can even help stop the progression
of NAFLD

1. Regulates expression of
several proteins related to cell

differentiation in the
colon mucosa

[235,241]

2. Reduce the formation of tumors [236,237]

3. Reduces inflammation, damage to hepatocytes, and
the appearance of collagen deposits

2. Change the intestinal
bacterial profile [241]

Oleic acid

1. Prevents the accumulation of lipids in the liver
[248]2. De novo synthesized oleic acid contributes to the

protection of hepatocytes against insulin resistance

3. Modulates the activity of liver X receptors (LXRs) [249]

4. Protects against the cytotoxic activity caused by
treatment with palmitic acid-induced steatosis in

primary rat hepatocytes in culture.
[259]

Bilirel (BIL) 1. Rapid improvement in liver fat accumulation,
improvement in glucose levels and metabolism [260]

Cannabinoids

1. Decreases fibrosis [261]

2. Stimulation of adipocyte metabolism [262]

3. Improvement on the insulin–glucose circuit and
inhibition of weight gain [263]

4. Suppresses the development of NAFLD [264–266]

5. Decreases hepatic TG synthesis, as does VLDL
synthesis, and increases insulin sensitivity

LDL, Low-density lipoprotein; HDL, High-density lipoprotein; VLDL, Very low-density lipoprotein; TNF-α,
Tumor necrosis alpha; NF-κB, Nuclear factor-Kappa beta; ROS, Reactive oxygen species; AST, Aspartate amino-
transferase; ALT, Alanine transaminase; NASH, Non-alcoholic steatohepatitis; NAFLD, Non-alcoholic fatty
liver disease; TGs, Triglycerides; MDA, Malondialdehyde; IL-1β, Interleukin-1 beta; IL-6, Interleukin-6; 5-LOX,
5-lipoxygenase; COX-2, cyclooxygenase-2.

15. Antioxidants and NAFLD
15.1. Oxidative Stress and NAFLD

Oxidative stress has a key role in the initiation of NAFLD as well as its development
and progression to NASH. As mentioned above, the perturbation of lipid metabolism
determines fat accumulation in hepatocytes. In this way, the intracellular organelles such
as mitochondria, endoplasmic reticulum (ER), and NADPH oxidase are stimulated to
generate acid radicals or reactive oxygen species (ROS). The increased oxidation of the
fatty acids and the increased mitochondrial activity stimulate the generation of ROS within
the components of the electron transport chain (I, II, and III) in the reaction chain of
cytochrome C oxidase. In particular, increased β-oxidation of fatty acids in mitochondria
and microsomes appears to generate more ROS in NAFLD [267]. The mitochondria produce
ATP through phosphorylation in an oxidative process, and thus superoxide radicals are
formed as a byproduct of the oxidative phosphorylation. Similarly, oxidative stress in
NAFLD may be caused by the changes that occur in NADPH oxidase and ER stress [268].
Intracellular oxidative stress usually occurs when there is an imbalance between the levels
of intracellular ROS and endogenous and enzymatic antioxidants. Clinically, a decrease



Antioxidants 2023, 12, 903 25 of 52

in endogenous antioxidants has been reported in NAFLD patients [269]. In a clinical
study, it was reported that the levels of catalase (CAT), superoxide dismutase (SOD),
glutathione peroxidase (GPx), glutathione (GSH), and glutathione reductase (GR) in the
serum/plasma of NAFLD patients were disturbed in patients with early and advanced
disease characteristics [270]. Increased intracellular ROS provokes changes in insulin
sensitivity and the alteration of various essential enzymes involved in lipid metabolism. In
liver steatosis, oxidative stress is responsible for triggering immune responses [271]. The
experimental and clinical studies demonstrated the infiltration of adaptive immune cells
(T cells) into the liver during NASH and the presence of circulating antibodies targeting
antigens derived from oxidative stress (Van Herck et al., 2019). In NAFLD, oxidative stress
causes the activation of many redox-sensitive transcription factors such as NF-κB and
pro-inflammatory mediators (TNF-α), interleukins (IL), etc., leading to liver inflammation,
fibrosis, and cell death [272].

NAFLD is a multifactorial disease involving insulin resistance, oxidative stress, and
excessive fat intake, and a carbohydrate-based diet that causes the accumulation of excess
fat in the liver leading to steatosis [273]. Simple steatosis of the liver can cause intracellular
ROS upregulation through induction of the CYP2E1 enzyme. The increased intracellular
ROS causes oxidative stress [274]. Accumulations of fat, ROS, and decrease in intracel-
lular antioxidants together cause lipotoxicity, mitochondrial dysfunction, and ER stress
in the liver. Fat infiltration in hepatocytes leads to impaired β-oxidation and oxidative
phosphorylation in mitochondria, while disturbances in β-oxidation in peroxisomes, and
lysosome dysfunction lead to the accumulation of intracellular ROS and hydrogen peroxide
radicals [275]. Thus, damaged lipid metabolism is involved in the alteration of oxidative
and antioxidant homeostasis, causing redox imbalance and oxidative stress. Impaired
lipid metabolism in hepatocytes increases fatty acid uptake via the CD36 transporter, and
mitochondrial dysfunction may result in the accumulation of intracellular triglycerides.
Redox imbalance in fatty liver increases endoplasmic reticulum (ER) stress by regulating
protein response. The chronic stress of the ER and the activation of a prolonged protein
response increase the expressions of ER stress proteins such as PKR-like ER kinase, the
activation of HNF4α, which is transcription factor 4, a homologous protein that binds
CCAAT-enhancer-enhancer, which leads to the activation of pro-inflammatory marker
expression and to the activation of cell death pathways in hepatocytes [276]. Furthermore,
sustained ER stress leads to activation of the SREBP1c protein to bind sterol elements. Its
nuclear translocation can induce the transcription of genes related to lipogenesis. Thus,
oxidative stress plays a central role in the initiation and exacerbation of NAFLD.

15.2. Antioxidants Effects on NAFLD

Raised lipid peroxidation and dropped antioxidant status have been correlated with
NAFLD progression. Thus, oxidative stress is involved in NAFLD progression. For this
reason, different antioxidants have been studied experimentally and clinically against
NAFLD patients [277]. In the last decade, several clinical and experimental studies have
involved oxidative stress in NAFLD conditions and aimed NAFLD with antioxidants. We
will further address the effect of some of the entirely studied plant-derived and synthetic
antioxidants and antioxidant vitamins to date against experimental and clinical NAFLD
conditions. For example, antioxidants such as silybin or silibinin, silymarin vanillin (apoc-
ynin), resveratrol, pentoxifylline, and vitamins A, C, and E have come to clinical trials
against NAFLD.

Apocynin, also known as acetonylon, is the natural organic compound structurally
related to vanillin (natural vanilla). In a study, CCl4 was orally administrated to rats
(1 mL/kg) twice a week for two weeks and they were treated with apocynin (100 mg/kg,
orally) daily for two weeks. Apocynin notably lowers serum AST, ALT, and ALP activity
and suppresses OS markers (MDA and NO levels) in CCl4-treated rats. Apocynin treatment
also recovers catalase and SOD activity in CCl4-treated rats. Thus, apocynin has protective
effects in CCl4-induced liver damage by inhibiting lipid oxidation and stimulating the
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cellular antioxidant system. Synthetic vanillin is a cheap and unhealthy alternative to real
vanilla extract. Today, the vast majority of synthetically produced vanillin is made from
eugenol or guaiacol, petrochemicals that are often derived from crude oil. Hence, this
product is not recommended for use in general and especially not for fatty liver [278].

15.2.1. Bilirel (BIL)

Abenavoli et al. [260] reported the effect of a new antioxidant complex, called Bilirel
(BIL) (Pharmaluce, Republic of San Marino), recently introduced on the Italian market. The
composition of one pill of BIL was as follows: silymarin 75 mg, chlorogenic acid 3.75 mg,
protopine 0.02 mg, L-methionine 75 mg, and L-glutathione 75 mg. They report a case
series of seven overweight patients with NAFLD, in which the combination of an Italian
Mediterranean diet, increased physical activity, and daily administration of two BIL pills
for 6 weeks, resulted in rapid improvement in liver fat accumulation, improvement in
glucose levels and metabolism, and weight reduction (Table 2).

15.2.2. Additional Antioxidants

As NAFLD is strongly associated with the presence of oxidative stress, mitochondrial
dysfunction, and inflammation, antioxidants can therefore exert a significant ameliorative
effect. The products of the plant Silybum marianum, especially silybin, have a specific role
in regulating oxidative stress and lipid metabolism. The antioxidant effect of silybin was
achieved by activating Nrf-2-related genes, and the lipid-lowering effect was achieved by
promoting PPARα, while the anti-inflammatory effect was achieved by inhibiting NF-κB
signaling. Resveratrol, a known SIRT 1 and AMPK activator, inhibits SREBP1c, which is
responsible for de novo lipogenesis. Resveratrol also inhibits Nrf-2 promoter methylation
and protects the NAFLD liver from epigenetic changes.

16. Vitamins with Antioxidant Activity in NAFLD

Vitamins control various fundamental enzymatic processes in the liver, and modifi-
cations in the metabolism of vitamins have a crucial role in the progression of NAFLD.
Vitamins A, C, and E have been particularly studied in relation to NAFLD due to their
antioxidant activity. Likewise, serum concentrations of vitamins D and B12 have been
reported to have a strong correlation with NAFLD severity [279] (Figure 2). Hepatocyte
cells (HSC) store most of the body’s retinol [280].

16.1. Vitamin A and NAFLD

At the same time, the impaired metabolism of Vitamin A caused its accumulation in
hepatocytes and not in HSC in mice in which NAFLD was induced. Thus, NAFLD causes
the amassment of Vitamin A in hepatocytes, which may provoke disease progression [281].
Retinoic acid (RA) treatments have been demonstrated to be effective and antioxidant by
lowering mitochondrial ROS and enhancing SOD2 in mice (Table 3). Retinoic acid treatment
also increased the expression of hepatic Sirt1 and inhibited SREBP1c expression in HFD-fed
mice [282]. Moreover, through signaling regulation of lipid metabolism involving Retinoid
X receptors alpha (RXRsα), the liver could be protected by RA. In this sense, the increased
concentrations of circulating RA protect against hepatic steatosis itself, as well as against
liver damage in NAFLD populations [283]. A considerable presence of lipid droplets in
stellate cells of the liver can affect the release of retinol. It is known that once released,
it converts into retinoic acid with a beneficial role regarding inflammation, fibrogenesis,
and carcinogenesis. This process is closely related to the triggering of a pro-inflammatory
and pro-fibrogenic phenotype in hepatic stellate cells [284] (Table 3). A reduction in the
release of transforming growth factor-beta 1 (TGF-β1) induces the suppression of hepatic
stellate cells, and ultimately of fibrogenesis caused by NAFLD due to the ability of RA
to inhibit proto-oncogene tyrosine-protein kinase MER (MERTK) in Kupffer cells. Thus,
the modulation of RA release may represent a common genetic pathway associated with
NAFLD [285] (Figure 2).
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16.2. Vitamin C and NAFLD

In vivo Vitamin C supplementation reduces the hepatic fatty acid load by promoting
the gene expression of PPARα-dependent β-fatty acid genes in in mice fed HFDs and
in which NAFLD is induced [286] (Table 3). It can be emphasized that the prophylactic
treatment of Vitamin C (15 and 30 mg/kg/day) significantly dropped body weight and
steatosis, and thus induced a decrease in the risk of NAFLD in mice. In a therapeutic study,
the administration of 30 mg/kg/day of Vitamin C reduced steatosis and NAFLD in mice.
However, the administration of Vitamin C overdoses (90 mg/kg/day) did not reduce the
risk of NAFLD development. In fact, high-dose Vitamin C intake significantly increased
body weight, inflammation, and adipose tissue mass. [287]. This study clearly shows that
an accurate dose of Vitamin C must be determined in cases of NAFLD. In NAFLD rats
with choline deficiency, the administration of Vitamin C (30 mg/kg/day) significantly
suppressed steatosis and oxidative stress. In the MCD diet-induced NASH model, a
megadose administration (2.5 g/kg/day) of Vitamin C reduced macro-vesicular steatosis.
However, AST and ALT were also increased after overdose Vitamin C administration [122].

In contrast, a recent study reported that Vitamin C deficiency leads to the inhibition
of NAFLD. Vitamin C-deficient knockout mice reduced NAFLD progression compared
to control mice. Vitamin C-deficient mice exhibit increased levels of the transcription
factor -SREBP-1c and decreased expression of FAS [288], suggesting that long-term Vitamin
C deficiency may be useful for inhibiting de novo lipogenesis via the SREBP-1c protein.
However, NAFLD inhibition mediated by Vitamin C deficiency should be carefully investi-
gated. There are reports according to which long-term Vitamin C is beneficial by improving
adiponectin and reducing liver TG level, and therefore the chances of NASH in NAFLD
patients (Figure 2).

Wei et al., 2016, demonstrated that, in the middle-aged male population without obe-
sity, there is a significant inverse association between ingested Vitamin C and NAFLD. [289].
They explained that estrogens are responsible for these sex differences because their benefi-
cial roles against NAFLD in middle-aged women may inhibit Vitamin C effects [290]. A
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strong causal relation has been demonstrated between obesity and NAFLD. Regarding the
relationship between Vitamin C, obesity, and NAFLD (Table 3), Ipsen et al. have speculated
that the therapeutic effects of this vitamin can be counteracted by obesity [291].

16.3. Vitamin E and NAFLD

Regarding Vitamin E, it was demonstrated that three weeks of Vitamin E administra-
tion (0.5 g/kg) to HFD-induced phosphatidylethanolamine N methyltransferase-deficient
NAFLD mice induced the normalization of cholesterol metabolism as well as reduced the
inflammation and fibrosis associated with oxidative stress; however, it failed to reduce
liver TG content [292] (Table 3). Additionally, Vitamin E administration reduced fructose
diet-induced NAFLD by stimulating the Nrf2/carboxylesterase 1 pathway implicated in
lipogenesis [293]. Therefore, as a strong antioxidant, Vitamin E has been extensively studied
as an adjuvant along with other medicines against NAFLD pathology, but there are no
unequivocal conclusions for human use. In mice who received a diet poor in methionine-
choline (MCD), Vitamin E, due to decreasing liver markers and decreasing histological
steatosis, can be considered an inhibitor of steatohepatitis [294]. As a result, SOD activity
increased and malonaldehyde (MDA) concentration decreased. In addition, the genes
responsible for fibrosis, inflammation, and apoptosis were inhibited. Additionally, the
activation of hepatic stellate cells and the replenishment of hepatic glutathione are also
therapeutic effects of Vitamin E in mice with NAFLD [295]. Abdel-Maboud et al. [296]
found that, depending on the dose of Vitamin E, the levels of some liver markers such as
ALT and AST improve. Among these, the most significant variation was observed in AST
activity, with adequate repercussions on the NAFLD activity score (NAS). Moreover, this
process strongly influenced anthropometric parameters such as weight and IMC [296]. As
previously mentioned, the increase in oxidative stress is one of the most common changes
in NAFLD. This result is represented by the accumulation of reactive oxygen species,
concomitantly with the incapacity of the body to defend itself through the antioxidant
systems, which ultimately leads to damage to DNA and tissues [297]. In this sense, it
is known that Vitamin E is one of the most powerful antioxidants [298]. These effects
are observed at the molecular level through cellular, biochemical, genetic, and signaling
pathways, with results in the modulation of the inflammatory response and cell prolifera-
tion. Moreover, it is responsible for regulating the cellular signaling of different enzymes
essential in molecular signal translation, such as 5-lipoxygenase, cyclooxygenase-2 (COX-2),
protein kinase C (PKC), and protein phosphate 2A (PP2A) (Table 3). Additionally, there are
certain factors such as mitogen-activated protein kinase (MAPK) that can be modulated
by Vitamin E [299]. Wang et al. demonstrated that Vitamin E reduces liver fibrosis by sup-
pressing TGF-β expression, [294]. In addition, due to its capacity to stimulate the activation
and transcription of PPARγ in adipocytes in mice, Vitamin E stimulates the expression
of adiponectin (Figure 2). It is well documented that the protein–hormone adiponectin is
involved in the regulation of glucose concentration and the degradation of fatty acids [300].
The effects of Vitamin E on gut microbiota in NAFLD are discussed in several studies and
seem to change the gut microbiota composition into a healthier one [301]. Similarly, in mice
models in which colitis was induced, the changes provoked by Vitamin E administration
were observed through favorable modifications in intestinally disturbed microbiota by the
increases of portal LPS [302] (Table 3).

16.4. Vitamin D and NAFLD

Like all organs, the liver has its own typical immunity configuration. The components
that belong to innate immunity and influence the pathology of NAFLD are represented
by Kupffer cells, hepatic stellate cells, and natural killers. Besides these cells, there are
macrophages and monocytes involved [303]. Recruited macrophages and Kupffer cells have
been associated with insulin resistance and NASH, since they synthesize the well-known
pro-inflammatory cytokines interleukin-1 beta (IL-1β), IL-6, and TNF-α, [304]. Regarding
macrophages, they are divided into M1 and M2, the difference consisting of the fact that the
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M1 macrophages are classically activated, whereas the M2 macrophages are alternatively
activated [305]. The polarization and dysregulation of M1-like/M2-like macrophages, in
which M1-like initiate and sustain inflammation, whereas M2-like attenuate chronic in-
flammation, are linked to NAFLD pathology. Finally, all these processes determine insulin
resistance and some metabolic diseases such as diabetes and obesity [304]. Due to the fact
that liver cells express receptors for Vitamin D (VDR), the liver can be protected against the
inflammation induced by chronic hepatitis following the administration of Vitamin D [306]
(Figure 2). Moreover, by stimulating VDR expression, insulin sensitivity increases. This
process involves the Glut-4 translocators of muscle cells which therefore transport glucose
inside the cell and then decrease blood glucose concentration. In addition, the modulation
of free fatty acids (FFAs) is associated with the improved expression of these receptors [307].
Additionally, Vitamin D treatment decreases the cytokeratin 18-associatedapoptotic frag-
ment M30 and thus reduces liver damage; therefore, Vitamin D exerts anti-fibrotic, anti-
inflammatory, and anti-cirrhotic effects [308,309]. Sharifi et al. demonstrated that tumor
necrosis factor alpha (TNFα) and C-reactive protein were significantly affected by Vitamin
D administration [310]. In the pathogenesis of NAFLD, insulin resistance is very critical
and is considered a significant risk factor associated with NAFLD. As previously described,
it is linked to the increase in oxidative stress and lipotoxicity [311]. Nuclear factor κ-β
(NF-κB) represents a mediator through which, if activated, a pro-inflammatory modulation
can be made, resulting in the release of pro-inflammatory cytokines such as IL-1β, IL-6,
or TNF-α. In this way, Kupffer cells are finally activated [312]. Additionally, histological
features of NASH can be induced by the activities of these cytokines. In humans, the
increased gene expression of these cytokines is much more frequent in the liver of patients
with NASH compared to the normal liver of obese patients. The higher the secretion of
these cytokines, the greater the severity of NAFLD [313]. In this regard, Neyestani et al.
2012 observed that, in type 2 diabetic patients, supplementing a daily intake of 1000 IU of
Vitamin D single or combined with calcium, for 12 weeks, led to a decrease in IL-1β and
IL -6 pro-inflammatory cytokines secretion [314] (Table 3). In other studies, after 10 weeks
of administration of 50,000 IU Vitamin D weekly, a notable decrease in TG was shown
in patients with NAFLD [315] (Figure 2). Interestingly, regarding transaminases, Amiri
et al., [316] discovered that the combination of 25 µg/day Vitamin D with 500 mg calcium
carbonate during 12 weeks, decreases ALT and AST activities compared to patients who
were administered only Vitamin D or the placebo group. Different studies have shown
that the dietary intake of calcium influences the absorption of Vitamin D and through this
changes the blood lipid profile. Thus, after 12 weeks of simultaneous administration of
Vitamin D together with calcium, the ratios of LDL-C/HDL-C, and TC/HDL-C decreased.
Concomitantly, non-HDL-C increased [317].

At the liver cells level, depending on the time and the administered dose, vitamins can
have a positive or negative impact. Vitamin A can inhibit the release of the cytokine TGF-β1.
Chronic administration of low doses of Vitamin C exerts antioxidant effects by suppressing
ROS release. It stimulates PPAR γ, which in this way decreases the concentration of FFAs.
The same effect is observed in the case of Vitamin D. However, chronic administration of
high doses of Vitamin C activates lipogenesis, which ultimately leads to NAFLD. Another
beneficial vitamin in this disease is D, which increases insulin sensitivity. Additionally,
Vitamin B12 has the same properties. Vitamin E, known for its role in the fight against ROS,
has stimulating effects on the activity of the SOD enzyme.

16.5. Vitamin B12 and NAFLD

DNA synthesis and repair are dependent on appropriate levels of Vitamin B12 [303].
Likewise, the disruption of mitochondrial metabolism, involved in the pathology of
NAFLD, is influenced by Vitamin B12 [318]. Only a few studies evaluated the effect
of Vitamin B12 and NAFLD. Even so, the results were contradictory. There are studies that
discovered an association between NAFLD and hyperhomocysteinemia [319]. This can be
demonstrated by the fact that intracellular lipid metabolism is altered at high serum con-
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centrations of homocysteine, which in the hepatocyte causes in the endoplasmic reticulum
an increase in oxidative stress. This affects the signaling pathway in response to sterols,
and as a consequence, the progression of NAFLD occurs [319]. In this way, the daily ad-
ministration of 1000 µg of cyanocobalamin for 3 months in NAFLD patients decreased the
serum concentration of homocysteine [320]. In NAFLD patients, by administering Vitamin
B12, the serum concentration of homocysteine decreased significantly. Therefore, Vitamin
B12 supplementation exerts therapeutic effects regarding the pathology of NAFLD [320].
Moreover, in NAFLD pathology, it has been observed that MDA, which is a marker of
lipid peroxidation, is always increased [321]. After the administration of Vitamin B12, the
serum concentration of MDA decreased significantly. It is believed that the basis of this
change could be the fact that Vitamin B12 lowers the levels of homocysteine, and in this
way, changes the metabolism of MDA, in the sense of the decrease. There are studies that
confirm this speculation since it was demonstrated that supplementation with folate or
B12 decreased induced decrease in MDA activity [322] (Table 3). Unfortunately, it is not
known whether Vitamin B12 action is direct or indirect. Regarding insulin resistance, it was
observed that treatment with Vitamin B12 reduces fasting blood glucose (FBG) (Table 3).
An inversely proportional relationship was observed in the study of Al-Daghri et al. [323]
between Vitamin B12 and FBG [323]. Moreover, other studies have reported [324] that the
combined daily administration of B12 (500 µg) with folic acid (5 mg) significantly improves
the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), as well as FBG. The
results are not very relevant because the vitamins therapy was not performed separately.
Additionally, in this case, the mechanisms underlying the improvement of the carbohydrate
profile target homocysteine [325].

Table 3. Impact of micronutrients on NAFLD.

Type of
Micronutrient Effects on Liver Effects on Intestinal

Microbiota References

Se

1. Administration of a combination of Se and zinc
improved the lipid profile, liver functions, and liver

steatosis in rats
[206]

2. Se and probiotics reversed the negative effect of feeding
in mice on HFD and improved liver functions

and steatosis
[207]

3. Decreases the number of hepatic stellate cells (HSCs)
and liver fibrosis induced by CCl4 treatment in mice [209]

Vitamin A

1. Retinoic acid (RA) administration has been shown to be
an effective antioxidant by reducing mitochondrial ROS

and by increasing SOD2 in mice
[282]

2. Protects the liver against hepatic steatosis itself, as well
as against liver damage in NAFLD populations [283]

3. Reduces the release of transforming growth factor beta
1 (TGF-β1) [285]

4. Suppresses the activation of hepatic stellate cells
and fibrogenesis

Vitamin C

1. Reduces hepatic fatty acid load by promoting the gene
expression of PPARα-dependent β-fatty acid genes in

HFD-induced NAFLD mice
[286]

2. Attenuates steatosis and NAFLD in mice

3. Improves adiponectin levels and reduces liver TG levels
and thus prevents NASH progression in NAFLD patients [288]

4. Significant inverse association between ingested
Vitamin C and NAFLD [289]
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Table 3. Cont.

Type of
Micronutrient Effects on Liver Effects on Intestinal

Microbiota References

Vitamin E

1. Normalizes cholesterol metabolism and reduces
inflammation and fibrosis associated with oxidative stress [292]

2. Attenuates fructose diet-induced NAFLD by activating
the Nrf2/carboxylesterase 1 pathway involved

in lipogenesis
[293]

3. Is considered an effective inhibitor of steatohepatitis [295]

4. Inhibits the expression of genes responsible for fibrosis,
inflammation, and apoptosis [296]

5. Improves the blood levels of ALT and AST [299]

6. Responsible for regulating the cellular signaling of
different enzymes essential in molecular signal translation,

such as 5-lipoxygenase, cyclooxygenase-2 (COX-2),
protein kinase C (PKC), and protein phosphate 2A (PP2A)

[300]

7. Stimulates the expression of adiponectin [302]

8. Induces favorable modifications in intestinal disturbed
microbiota by the increases of portal LPS

Vitamin D

1. Protects the liver against the inflammation induced by
different chronic hepatitises [306]

2. Increases insulin sensitivity [307]

3. Induces anti-fibrotic, anti-inflammatory, and
anti-cirrhotic properties [308]

4. Decreases secretion of the pro-inflammatory cytokines
IL-1β and IL-6 [314]

5. Decreases TG levels in NAFLD patients [315]

6. Improves blood lipid profile [317]

Vitamin B12

1. Affects the disruption of mitochondrial metabolism,
involved in the pathology of NAFLD [318]

2. Therapeutic effects regarding the pathology of NAFLD [320]

3. Significantly decreases the serum concentration of MDA [322]

4. Reduces fasting blood glucose (FBG) [323]

LDL, Low-density lipoprotein; HDL, High-density lipoprotein; VLDL, Very low-density lipoprotein; TNF-α,
Tumor necrosis alpha; NF-κB, Nuclear Factor-Kappa beta; ROS, Reactive oxygen species; AST, Aspartate amino-
transferase; ALT, Alanine transaminase; NASH, Non-alcoholic steatohepatitis; NAFLD, Non-alcoholic fatty
liver disease; TGs, Triglycerides; MDA, Malondialdehyde; IL-1β, Interleukin-1 beta; IL-6, Interleukin-6; 5-LOX,
5-lipoxygenase; COX-2, cyclooxygenase-2; PKC, Protein kinase C; PP2A, Protein Phosphate 2A; LPS, lipopolysac-
charide; PPARα, Peroxisome Proliferator Activated Receptor alpha.

In conclusion, when we take vitamins, we must take into account several aspects,
namely the dose, the physiological and pathological state of humans, and the duration of
the treatment.

17. Bile Acids and NAFLD

Regarding fat absorption, bile acids are essential [326]. They are obtained through the
oxidation of cholesterol in hepatocytes. The process involves several stages and results
in primary bile acids such as chenodeoxycholic and cholic acids. The synthesis pathways
of primary cholic acids are defined as classical (75%) or alternative (25%) [327]. The
primary bile acids obtained are then conjugated with taurine or glycine. These acids are
water-soluble when entering the duodenum at a pH of 3–5. Then, they are capable of
emulsifying and solubilizing fats [328]. The bile ducts store bile acids via the bile salt
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export pump. Then, through a biliary tree system, the bile with newly formed bile acids is
stored in the gallbladder during the inter-digestive periods. During the digestive period,
through the contraction of the gallbladder, the bile is transported into the duodenum [329].
Primary bile acids are converted into secondary acids (lithocholic acid, deoxycholic acid,
and ursodeoxycholic acid) by the intestinal microbiota [330]. Enterocytes from the distal
ileum carry out the reabsorption of bile acids in a proportion of over 95%. Then, they are
transported back to the liver. The intestinal microbiota is responsible for the deconjugation
of the remaining 5%, which is then excreted in the feces. However, a very small amount
reaches the peripheral tissues, where it causes peripheral effects [329].

Additionally, bile acids are considered signaling molecules in charge of regulating
glucose and lipid metabolism. This is achieved by activating several factors such as Takeda
G protein-coupled receptor 5 (TGR5), farnesoid X receptor (FXR), and multipurpose nuclear
receptor. In NAFLD patients, a disturbance of bile acid signaling as well as dysbiosis is
observed [331]. The stimulation of bile acid signaling pathways regulates glucose and lipid
homeostasis by changing the intestinal microbiota, resulting in the improvement of the
metabolic phenotype [332]. The intestinal microbiota are characterized by four types of
bacteria: Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria [333]. The imbalance
determined by the intestinal microbiota is called dysbiosis. Obesity is associated with
an increase in Firmicutes and a decrease in Bacteroidetes, which results in the stimulation
of dietary energy gain [334]. It was demonstrated that colonizing mice with a specific
microbiota from obese individuals had as a result an increase in body fat. In addition, mice
fed a Western diet had a lower Bacteroidetes/Firmicutes ratio in the distal intestine [335].
The influence of bile acids on the intestinal microbiota can be direct or indirect, when it
is mediated by FXR. The acid with the greatest antibacterial influence on the intestinal
microflora is deoxycholic acid [330]. Moreover, the antibacterial action of non-conjugated
acids is much stronger compared to that of conjugated acids [336]. In addition, the ac-
tivation of FXR results in the stimulation of peroxisome proliferator-activated receptor
alpha (PPAR-alpha). This nuclear receptor regulates the metabolism of glucose, lipids, and
anti-inflammatory activity [337]. Thus, bile acids via FXR activation can reduce TG concen-
tration through a signaling mechanism involving sterol regulatory element-binding protein
1 (SREBP-1) and its small heterodimer partner (SHP). This modulates the transcription of
lipogenic genes [338]. Thus, from what can be seen, the most important mechanism for the
development of NAFLD is the damage to the acid bile-signaling pathways [325].

18. Imbalance of the Intestinal Microbiota, Choline Metabolism, and NAFLD

In the causal link that exists between NAFLD and the imbalance of the intestinal
microbiota, the increase in the permeability of enterocytes, the energy from food, the
decrease in the metabolism of choline, the excessive growth of intestinal bacteria, and
finally, the suppression of the metabolism of bile acids can be highlighted. The most
well-known mechanism involved in the deregulation of the intestinal microbiota with
repercussions on NAFLD includes the amplification under the action of this destabilization
of the energy from the diet. It has been shown that the synthesis of short-chain fatty
acids is much higher in obese patients. These acids are the main fermentation product
of the bacteria that metabolize dietary fibers [334]. Thus, the total energy produced by
the diet is increased, due to the bacterial metabolism of fibers, which in physiological
conditions would be eliminated through defecation [339]. Additionally, increased intestinal
permeability is closely associated with NAFLD. Enterocytes are essential for adequate
intestinal immunity. Between some pathogens and the lamina propria, intestinal cells
represent a physical barrier. These cells communicate with each other through junctions.
The dysregulation of the intestinal microbiota can be closely linked to certain signaling
pathways, which can regulate the expression and distribution of proteins and thereby
intestinal permeability [340]. Regarding the increased permeability, this is responsible
for triggering an inflammatory response in the liver through the receptor for bacterial
DNA (TLR9) and receptor for bacterial flagellin (TLR5), due to the fact that translocation
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of bacterial components takes place in intestinal cells [341]. The increase in enterocyte
permeability, as well as the multiplication of bacteria, in NAFLD patients, was correlated
with the severity of steatosis [342]. It is known that LPS is closely related to the TLR4/NF-κB
signaling pathway [343].

The role of choline in the pathogenesis of NAFLD is major. It has been observed that
the deficiency of choline and methionine is correlated with the increase in the release of
interleukins IL-1β, hepatic inflammation, and finally with the occurrence of NAFLD [344].
This is possible due to the fact that phosphatidylcholine results from choline metabolism,
which is involved in the degradation of lipids in the liver [345]. Moreover, there is an
inversely proportional relationship between supplementing food intake with choline and
NAFLD [346].

19. The Activity of the Enzyme AMPK (5′ Adenosine Monophosphate-Activated
Protein Kinase) in NAFLD

Considering that most therapies for NAFLD have focused on caloric restriction and
sports [347], treatment strategies have been proposed to improve this disease. The majority
of the strategies are based on AMP-activated protein kinase (AMPK), which is linked to dif-
ferent metabolic mechanisms. Furthermore, many of the effects of therapeutic compounds
are mediated by the modulation of AMPK activity [348,349].

AMPK is a heterotrimer consisting of two regulatory units (β and γ) and one with
catalytic activity [350]. Each of the three subunits have several isomers. AMPK is an
enzyme considered crucial in the maintenance of energy balance. It is activated by different
stimuli that mainly lead to the consumption of ATP. Between both, there is a relation of
inverse proportionality. This explains the activation of AMPK under physical and cellular
stress conditions, in which ATP production is considerably low or ATP consumption is
increased (physical activity) [351]. AMPK, in the liver, is controlled by liver kinase B1
(LKB1). In NAFLD patients, even if the ATP content is reduced, the activity of AMPK is
altered [352].

In NAFLD, increasing the activity of AMPK can inhibit the synthesis of fatty acids and
cholesterol by downregulating the expression of the adipogenesis gene. Simultaneously, by
increasing the expression of fatty acid oxidation and lipid decomposition genes involved
in fatty acid oxidation and lipid decomposition, the body’s natural lipid balance can
be maintained.

Secondary factors also play an essential role in the control of AMPK activity. The most
plausible explanation for this can be related to the fact that LPS and TNFα (inflammatory
factors) can decrease the activity of AMPK [353].

At present, some AMPK activators are thought to be beneficial during adequate treat-
ment. Therefore, the activation of the AMPK signaling pathway is a potential therapeutic
target for disorders of the liver. In the pathology of NAFLD, the increased concentration of
FFAs is the most important factor contributing to the increase in hepatic lipids [354]. There-
fore, the control of the factors involved in the regulation of their metabolism represents an
aspect that must be taken into account. Insulin is one of them, because, in healthy people
(sensitive to insulin), it suppresses lipolysis in white adipose tissue. In this respect, in
NAFLD patients who also have insulin resistance, the insulin loses its suppression capacity.
The result is the release of FFAs into circulation. Considering that FFAs reach the portal
circulation directly, the effect is more dangerous because they make deposits in the form
of visceral fat [355]. In addition, a part of FFAs reach the liver, and under esterification
they form TGs, leading to an increase at the liver level. However, the hepatic esterification
process is independent of insulin and dependent on the concentration of FFAs [356]. Insulin
resistance is correlated with reduced AMPK activity in obese persons. In this sense, AMPK
in adipose tissue is a very important factor for NAFLD [357]. Mottillo et al., 358 in a
knockout mouse model showed that the ablation of AMPK activity in adipose tissue is
correlated with increased insulin resistance and lipid accumulation in the liver [358].
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Moreover, AMPK from adipose tissue macrophages can inhibit different signaling
pathways such as TNF-α and IL-1β (Table 4). This is why AMPK activation has been pro-
posed to suppress inflammation [359] (Figure 2). Due to the fact that AMPK is responsible
for suppressing primary inflammatory lesions and HSCs, it is used to mitigate fibrosis [360].
Thus, by phosphorylating transcription factors such as ChREBP and SREBP-1c, AMPK
inhibits the transcription of lipogenic genes [361] (Table 4).

Contrary to what is believed, an excess in amino acids (AAs, high-protein diet) has
been shown to inhibit AMPK activity [362]. Increased protein intake reduces AMPK
phosphorylation. In the liver and hypothalamus, mTOR phosphorylation is increased.
Thus, the increased concentration of AAs decreases the AMP/ATP ratio. In this way,
AMPK activity is suppressed [363]. Moreover, AMPK improves NAFLD by stimulating
metabolism at the mitochondrial level and intensifying the oxidation of fatty acids in the
liver [364] (Figure 2).

Table 4. The effects of different enzymes on NAFLD.

Type of Enzyme Positive Effects of Enzymes
and/or Supplements on Liver

Adverse Effects of Enzymes
Inhibitor Treatments References

Stearoyl-CoA desaturase
1 (SCD1) inhibitors

1. SCD1 inhibitors are associated
with amelioration of NAFLD,

diabetes, dyslipidemic failure, and
hepatitis C virus infections

1. Knockout mice develop multiple
skin eczemas accompanied by

weight disturbances [223]
[220,223]

2. SCD1 inhibitors reduces the
accumulation of triglycerides in the
liver of rats suffering from NASH

by 80%

2. Failure of thermoregulation,
transepidermal water loss, and

metabolic problems [224]
[222]

3. Attenuate the increase in
aspartate aminotransferase (AST)

enzyme levels and alanine
transaminase (ALT) by 86% and

78%, respectively

3. Cause atrophy of sebocyte cells
(epithelial cells in the skin), effects

reflected in hair loss and dry
eyes causation

[226]

AMPK (5′ adenosine
monophosphate-activated

protein kinase)

1. Inhibits different signaling
pathways such as TNF-α and IL-1β [359]

2. Suppresses inflammation [361]

3. Inhibits the transcription of
lipogenic genes [364]

4. Improves NAFLD by stimulating
metabolism at the mitochondrial

level and intensifying the oxidation
of fatty acids in the liver

NASH, Non-alcoholic steatohepatitis; NAFLD, Non-alcoholic fatty liver disease; TNF, Tumor necrosis factor alpha;
IL-1β, Interleukin-1 beta.

20. Cannabinoids and NAFLD

Since many nutritional and pharmacological therapies have been used to treat NAFLD,
there are additional compounds that must be considered. One of them is the endocannabi-
noid system (ECS), which represents a physiological complex. The endocannabinoid system
(ECS) represents an endogenous signaling system demonstrated to play a key role in the
regulation of appetite, metabolic processes, and energy balance. The ECS is made up of
bioactive lipids, the endocannabinoids, enzymes that regulate their production and degra-
dation, and receptors through which they transmit their signal [365]. The most studied and
well-known receptors of the ECS are the G-protein-coupled receptors: cannabinoid receptor
1 (CBr1) and 2 (CBr2). CBr1 is mainly expressed, but not limited to, the central nervous
system (CNS) and centrally and peripherally regulates metabolic homeostasis. CBr2, on
the other hand, is mainly expressed by immune cells and plays a role in inflammation
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processes [366]. It is well established that obesity is associated with dysregulation of the
ECS, resulting in high endocannabinoid “tone”, which in turn leads to increased appetite,
lipogenesis, adipogenesis, and decrease in energy expenditure, which further exacerbates
adiposity, thus creating a vicious cycle. In addition to CB1 and CB2, endocannabinoids
can also be related by other receptors such as G protein-coupled receptor 55 (GRP55) and
peroxisome proliferator-activated nuclear receptors (PPARs). Therefore, the independent
effects promoted by cannabinoids may be related to their high lipophilicity.

Moreover, in the endocannabinoid system there are other important compounds such
as exocannabinoids or phytocannabinoids. They are used as a treatment for different
metabolic diseases [367]. The most studied compounds from Cannabis sp. are delta-9-
tetrahydrocannabinol (THC), cannabidiol (CBD), followed by tetrahydrocannabivarin
(THCV). Even if they were performed on in vivo models in terms of the effects of their
studies in certain metabolic pathologies [368], only a few studies focused on their effects on
NAFLD patients [369].

Regarding the endocannabinoid system, there are studies in which CB1 and CB2 in
animals, as well as in cell cultures, had fibrosis-stimulating effects. At the same time, CB2
had a pro-inflammatory effect and determined insulin resistance [370]. Insulin resistance is
linked to the modification of CB2Rs-dependent signaling pathways, through a different
mechanism than CB1Rs [264].

Animal studies have shown that decreasing food intake and increasing energy con-
sumption are correlated with the antagonism of CB1. This effect results in the improvement
of different metabolic diseases [365]. In addition, the stimulation of adipocyte metabolism
is correlated with the reduction in CB1 activity in visceral fat [371].

In human cell cultures, the CB1 antagonist decreases fibrosis [261]. It is important to
note that, regarding phytocannabinoids, their effects on different organs can be different
because they can interact with each other. An important example relates to the fact that
CBD can antagonistically affect THC through different CBR1 and non-CBR1 receptor-
related mechanisms of action. Other effects can be complementary or synergistic [372].
Regarding the medicinal effects of this plant, the most important is the ratio THC: CBD:
THCV [373]. In addition to the previously mentioned compounds, there are also precursor
compounds such as cannabidiol acid (CBDA), ∆9 tetrahydrocannabinol acid (THCA),
and tetrahydrocannabivarin acid (THCVA). They are recognized for their therapeutic
properties in obese mice, such as their improvement effects on the insulin–glucose circuit
and inhibition of weight gain [262] (Table 2). The dysregulation of the endocannabinoid
system is one of the main factors in the development of NAFLD. It is expected that the
consumption of cannabis will increase in the next years due to its therapeutic properties
in different pathologies. However, it is known that the majority of metabolic disorders
that lead to the development of NAFLD are associated with chronic consumption of
cannabis. Additionally, it is well established that chronic consumption of cannabis causes
an increase in appetite as well as in ingested calories [374]. In addition, with the increasing
appetite, a large number of unhealthy foods rich in fats and refined carbohydrates are
consumed. We cannot neglect the fact that there are many studies which have shown
the therapeutic effects of cannabis suppressing the development of NAFLD (Table 2).
In this sense, chronic consumption was associated with a decrease in the prevalence of
metabolic syndrome and type 2 diabetes [263]. Moreover, chronic marijuana use has been
associated with lower obesity among users [375]. The antagonistic action of CBD and
THCV on CB1R may be one of the mechanisms by which cannabis consumption decreases
the prevalence of NAFLD as well as other metabolic pathologies [376]. Through CB1R
antagonism, hepatic TG synthesis decreases [264], as does VLDL synthesis [266] while
insulin sensitivity increases [265] (Table 2). By improving IR, hepatic glucose homeostasis
is restored, fat deposits decrease, and therefore cannabis inhibits the development of
NAFLD [377]. Additionally, phytocannabinoids have anti-inflammatory roles. They may
decrease adipokines and different cytokines, such as IL-6 and TNF-a. This can lead to
NF-kB upregulation [378]. Another beneficial mechanism for NAFLD regarding cannabis
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consumption is represented by the ability of THC to downregulate CBR1 and develop
tolerance to these receptors. In this way, an inversely proportional relationship between
marijuana consumption and NAFLD develops [379]. In conclusion, cannabinoids may
suppress the development of NAFLD.

21. Conclusions

We can conclude that, even though the mechanisms associated with NAFLD initiation
and progression remain not fully deciphered in this review, we address a number of factors
demonstrated to be involved in NAFLD including genetic and epigenetic modifications,
signaling, molecular, and biochemical factors, effects of dietary factors, effects of microbiota,
and additionally we address the effects of behavioral factors. All these effects can be related
from the “two hits” hypothesis to the current “multiple parallel hits hypothesis”. In this
context, we present specific compounds and the mechanisms associated with their effects
which can ultimately prevent or diminish the progression of NAFLD. In this regard, we
concentrate on the following:

1. Potential bioactive nutrients that may interfere with NAFLD. In this sense, dark
chocolate, cocoa butter, and peanut butter may be involved in decreasing cholesterol con-
centration. Moreover, dark chocolate can affect glucose metabolism by reducing oxidative
stress. Additionally, cocoa butter has anti-inflammatory effects. Usually, this pathology
is accompanied by insulin resistance, which over time perpetuates with reaching type
2 diabetes. That is why it is important to know how it can be prevented and/or efficiently
fought against.

2. In addition to physical exercise, the sweeteners used in coffee and other frequent
beverages also play an important role. On the one hand, most of them are consumed
without knowing their effects on the body. For this reason, is necessary to know that
some sweeteners have negative effects on the intestinal microbiota, others have no effects,
and some have beneficial effects. Thus, stevia has proven to be adequate for improving
carbohydrate metabolism, liver steatosis, and liver fibrosis. Moreover, it can decrease in-
flammation through the suppression of oxidative stress. Maltitol is used to prevent obesity,
hyperglycemia, hypercholesterolemia, and fatty liver degeneration. Another sweetener
widely used is Erythritol, which may have a role in alleviating NAFLD.

3. On the other hand, there are adequate compounds demonstrated to exert beneficial
actions on NAFLD. Most of them are used for therapeutic purposes in NAFLD. In order
to lower the serum concentration of triglycerides, glutathione, soy lecithin, silymarin,
Aquamin, and cannabinoids are used. In addition, turmeric and curcumin extracts have
antioxidant, anti-inflammatory, and anti-fibrotic properties, as well as insulin-sensitizing
effects. Bilirel decreases liver fat accumulation and improves glucose metabolism. Ad-
ditionally, serum superoxide dismutase activity and malonaldehyde (MDA) levels are
improved by silymarin.

4. We additionally address the effects of micronutrients, especially vitamins. The
effects of micronutrients directly depend on the dose administered. Even if most studies
demonstrate the beneficial role of vitamins in the pathology of NAFLD, there are excep-
tions. Thus, the widely used Vitamin C, especially in overdose during the COVID-19 and
post-COVID-19 period, is no longer beneficial. In fact, high-dose Vitamin C administration
significantly increased body weight, adipose tissue mass, and inflammation. Regarding the
administration of selenium, even if in most studies there is a positive correlation between it
and NAFLD, there are reports that indicate negative effects. A Se-enriched diet provoked
hepatic nodular hyperplasia in rats. Vitamin A has a protective role against mitochon-
drial ROS and may suppress fibrogenesis. Vitamin E seems to alter the gut microbiota
composition into a healthier one. Vitamin D exerts anti-fibrotic, anti-inflammatory, and
anti-cirrhotic effects. Vitamin B12 significantly decreases the serum concentration of MDA.

5. Additionally, the activity of some enzymes is related to the pathology of NAFLD.
For example, SCD1 inhibitors are recognized for their beneficial effects on NAFLD, diabetes,
dyslipidemic failure, and hepatitis C virus infections. Specifically, they can significantly
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decrease the accumulation of triglycerides in the liver of rats suffering from NASH. As
one of the key enzymes in human metabolism, AMPK can suppress inflammation by
inhibiting different signaling pathways such as TNF-α and IL-1β. Moreover, it inhibits the
transcription of lipogenic genes.

Having mentioned these, we conclude that NAFLD can be prevented or improved
by different factors through their involvement in the signaling, genetic, and biochemical
pathways that underlie NAFLD. Therefore, exposing this vast knowledge to the public is
particularly important.

As future perspectives, through the information that this work provides, we hope that
it can be used by clinicians as a therapeutic nutritional alternative, starting from the premise
that an adequate diet can prevent, in healthy individuals, the occurrence of NAFLD. In
the case of patients with this disease, proper nutrition can delay, and even suppress, its
progression and development, as well as collateral diseases such as type 2 diabetes or
cardiovascular diseases.

In addition, we believe that this paper contains information that could represent a
sustainable alternative to public health policy. Considering the vast information that has
been presented, and based on it, nutritional guides can be created for patients who are
often lacking in awareness and scientifically correct information regarding the vital role
of nutrition in this disease. Along with patients, the clinicians are the direct beneficiaries,
helping them to have a better view of the mechanisms and interactions of the nutrients
with each other, but also with the medication associated with NAFLD.
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259. Moravcová, A.; Červinková, Z.; Kučera, O.; Mezera, V.; Rychtrmoc, D.; Lotková, H. The effect of oleic and palmitic acid on
induction of steatosis and cytotoxicity on rat hepatocytes in primary culture. Physiol. Res. 2015, 64 (Suppl. 5), S627–S636.
[CrossRef]

260. Abenavoli, L.; Peta, V.; Milic, N. Lifestyle changes associated with a new antioxidant formulation in non-alcoholic fatty liver
disease: A case series. Ann. Hepatol. 2015, 14, 121–126. [CrossRef]

261. Wasmuth, H.E.; Trautwein, C. CB1 cannabinoid receptor antagonism: A new strategy for the treatment of liver fibrosis. Hepatology
2007, 45, 543–544. [CrossRef]

262. Palomares, B.; Ruiz-Pino, F.; Garrido-Rodriguez, M.; Eugenia Prados, M.; Sánchez-Garrido, M.A.; Velasco, I.; Vazquez, M.J.;
Nadal, X.; Ferreiro-Vera, C.; Morrugares, R.; et al. Tetrahydrocannabinolic acid A (THCA-A) reduces adiposity and prevents
metabolic disease caused by diet-induced obesity. Biochem. Pharmacol. 2020, 171, 113693. [CrossRef]

263. Rajavashisth, T.B.; Shaheen, M.; Norris, K.C.; Pan, D.; Sinha, S.K.; Ortega, J.; Friedman, T.C. Decreased prevalence of diabetes in
marijuana users: Cross-sectional data from the National Health and Nutrition Examination Survey (NHANES) III. BMJ Open
2012, 2, e000494. [CrossRef]

264. Osei-Hyiaman, D.; DePetrillo, M.; Pacher, P.; Liu, J.; Radaeva, S.; Bátkai, S.; Har-vey-White, J.; Mackie, K.; Offertáler, L.; Wang, L.;
et al. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity.
J. Clin. Investig. 2005, 115, 1298–1305. [CrossRef] [PubMed]

265. Osei-Hyiaman, D.; Liu, J.; Zhou, L.; Godlewski, G.; Harvey-White, J.; Jeong, W.I.; Bátkai, S.; Marsicano, G.; Lutz, B.; Buettner, C.;
et al. Hepatic CB1 receptor is required for development of diet-induced steatosis, dyslipidemia, and insulin and leptin resistance
in mice. J. Clin. Investig. 2008, 118, 3160–3169. [CrossRef] [PubMed]

266. Tam, J.; Liu, J.; Mukhopadhyay, B.; Cinar, R.; Godlewski, G.; Kunos, G. Endocannabinoids in liver disease. Hepatology 2011, 53,
346–355. [CrossRef] [PubMed]

267. Chen, Z.; Tian, R.; She, Z.; Cai, J.; Li, H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free. Radic.
Biol. Med. 2020, 152, 116–141. [CrossRef] [PubMed]

268. Gabbia, D.; Cannella, L.; De Martin, S. The Role of Oxidative Stress in NAFLD-NASH-HCC Transition-Focus on NADPH
Oxidases. Biomedicines 2021, 9, 687. [CrossRef] [PubMed]

269. Salomone, F.; Li Volti, G.; Rosso, C.; Grosso, G.; Bugianesi, E. Unconjugated bilirubin, a potent endogenous antioxidant, is
decreased in patients with non-alcoholic steatohepatitis and advanced fibrosis. J. Gastroenterol. Hepatol. 2013, 28, 1202–1208.
[CrossRef]
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