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Abstract: This review explores the antioxidant properties of oak (Quercus sp.) extracts and their po-
tential application in preventing oxidative rancidity in food products. Oxidative rancidity negatively
impacts food quality, causing changes in color, odor, and flavor and reducing the shelf life of products.
The use of natural antioxidants from plant sources, such as oak extracts, has gained increasing interest
due to potential health concerns associated with synthetic antioxidants. Oak extracts contain various
antioxidant compounds, including phenolic acids, flavonoids, and tannins, which contribute to
their antioxidative capacity. This review discusses the chemical composition of oak extracts, their
antioxidative activity in different food systems, and the safety and potential challenges related to
their application in food preservation. The potential benefits and limitations of using oak extracts as
an alternative to synthetic antioxidants are highlighted, and future research directions to optimize
their application and determine their safety for human consumption are suggested.
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1. Introduction

Food rancidity is defined as food spoilage due to the oxidation of lipids, mainly
unsaturated fatty acids, which results in the formation of off-flavors, off-odors, and harmful
compounds. This process is characterized by the breakdown of fats and oils into fatty
acids and other oxidation products responsible for the negative impact of rancidity [1,2].
Lipid oxidation can occur during raw material handling, processing, and storage [3]. The
main effects of lipid oxidation on food are changes in color and texture and the appearance
of rancid tastes and odors, decreasing shelf life and causing consumer rejection [4,5]. In
addition, advanced lipid oxidation end products (ALEs) can affect human health, being
implicated in diseases such as arteriosclerosis, cancer, inflammation, and aging processes,
among others [4,6]. Moreover, lipid oxidation and rancidity represent a problem in the
food industry, as they are directly involved in increased food waste and economic losses [3],
so it is necessary to find safe solutions to lessen the damage they cause.

Food antioxidant additives can counteract the adverse effects caused by lipid oxida-
tion. An antioxidant is defined as any substance that can significantly delay or prevent
substrate oxidation at low concentrations [7]. A wide variety of antioxidants are used to
prevent food from spoiling, which can be synthetic or natural [8,9]. Synthetic additives
have been widely used since their appearance due to their low cost, high purity, and con-
stant activity at low concentrations; however, some harmful effects have been reported in
animals [8–10]. It has been pointed out that synthetic antioxidants such as butyl hydrox-
yanisole (BHA) and butylated hydroxytoluene (BHT) could have carcinogenic properties in
addition to increasing the risk of allergies and causing poisoning and metabolic disorders
when consumed in high doses [9,11]. In addition, its use in foods for infants and children
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has been prohibited, and antioxidants such as BHA have been banned in certain countries,
such as the European Union and Japan [8,11,12]. For this reason, efforts have focused on
the search for new antioxidant compounds that can be added to foods without causing
harm to consumers.

A proposed strategy to reduce food rancidity is using extracts from safe and effective
natural sources with antioxidant potential. Specifically, extracts from oak (Quercus sp.) are
an alternative against oxidative rancidity that present antioxidant phenolic compounds [13].
Some studies have reported positive results by adding extracts from different oak species
to meat products. For example, chicken breasts treated with Q. suber extract inhibited lipid
oxidation by up to 97.7% [14], while Q. ilex-treated chicken patties had an inhibition of
~75% during their cooking, chilled, and reheated process [15]. Pork patties treated with
Q. alba showed inhibition values of 97.1% [16]. In all the previous cases, adding the Quercus
extract to foods significantly decreased lipid oxidation compared to untreated samples.
Other foods added with oak extracts are pasteurized milk (Q. infectoria) [17], soybean oil
(Q. branti) [18], sunflower oil, and orange juice (Q. ballota) [19]. Even when these results are
promissory to reduce food waste and assure safety against rancidity, still more knowledge
can be generated regarding its efficacy in other susceptible food systems and at different
stages of the supply chain (i.e., raw material handling, processing, or storage). In addition,
this review describes how determining the optimal concentration of oak extracts for specific
food products can be used to achieve maximum antioxidant activity while minimizing any
potential adverse impacts on flavor, odor, and appearance.

The antioxidant activity of the Quercus species has been associated with the high
presence of bioactive compounds, such as polyphenols [20]. Among the main compounds
reported are gallic acid, ellagic acid, vanillic acid, syringic acid, ferulic acid, quercetin,
kaempferol, catechin, epicatechin, caffeic acid, and others [21,22]. The primary mechanism
of action of these compounds is radical scavenging activity, showing a high inhibition of rad-
icals such as 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,20-azinobis (3-ethylbenzothizoline-
6-sulfonic acid) diammonium salt (ABTS), and the hydroxyl radical (•OH) [23]. Likewise,
it has been reported that extracts of Q. salicina rich in phenolic compounds increased the
activity of superoxide dismutase (SOD) and catalase (CAT), two important enzymes for
antioxidant defense in cells exposed to oxygen [23,24]. However, a lack of knowledge
was detected regarding the potential synergistic effects of oak extract compounds with
other natural or synthetic antioxidants. Similarly, it is suggested to optimize the extraction
procedures and perform a deep molecular characterization in the extracts. Finally, it is
recommended to guarantee the economic feasibility of incorporating oak extracts into food
products and their potential impact on reducing food waste and economic losses. Therefore,
this review aims to discuss the potential uses of oak extracts as a suitable additive to reduce
oxidative rancidity in different food matrices.

2. Spoilage in Food: Oxidative Rancidity
2.1. Rancidity in Food: Economic and Health Consequences

Rancidity has become a challenge that compromises food security [5,25,26]. This phe-
nomenon shortens the food product's shelf life, causes consumer rejection, economic losses,
and food waste [3,5,26]. Even when no specific records of food waste caused by rancidity
were found, the Food and Agriculture Organization of the United Nations (FAO) reports
that approximately 1/3 of all food produced for human consumption, corresponding to
1300 million tons, is lost (decrease in edible food at production level) and wasted (discard of
edible food at retail and consumer levels) by different causes during the production chain,
which translates into 936 billion dollars per year [27–29]. Notably, 14% of food produced is
lost during harvest and retail, while 17% of total production is wasted at home (11%), food
service (5%), and retail trade (2%) [30].

Comparing developed and developing countries shows significant food loss and
waste differences. In developed countries, the total amount is 56%, of which 21% is lost,
and 35% is wasted. In the case of developing countries, the total is equivalent to 44%,
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where loss comprises 30%, and waste is 14% [29]. Meanwhile, about 20 million tons of
food in Mexico are wasted annually, resulting in economic losses of 400 billion Mexican
pesos [31]. Rancidity constitutes one of the causes that lead to food loss and waste, as it can
occur during all stages of food production (handling, processing, and storage) (Figure 1) [4];
however, its real impact has not been quantified. To fully understand the impact of rancidity
on food loss and waste, specific statistics need to be generated, including the amount of
food lost and wasted by rancidity during harvest, processing, and storage [28]. During the
production, handling, storage, processing, distribution and market, and home preparation
stages of food, various conditions exist that can contribute to lipid oxidation and the
development of rancidity [4]. In the early stages of production, high temperatures and
exposure to light, air, and trace metals can initiate and accelerate lipid oxidation. During
handling and storage, temperature fluctuations and exposure to light, air, and moisture can
also contribute to lipid oxidation, while, in processing, high heat and pressure treatment,
exposure to oxygen, and the addition of prooxidants such as iron and copper can also
lead to lipid oxidation. During distribution and market, improper storage, light exposure,
and high temperatures can also contribute to rancidity. Finally, during home preparation,
excessive heating and inappropriate cookware can also lead to this problem [4,32].
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Foods highly susceptible to lipid oxidation include oils and fats, fatty fish, nuts and
seeds, dairy products, and meat [4,25,33,34]. Additionally, it would be useful to analyze
the number of consumers that reject food products specifically due to rancidity and the
reasons behind the rejection. The monetary loss due to rancidity can also be determined
by considering the production cost, disposal expenses, and potential sale loss. Finally, a
data comparison of lost and wasted food due to rancidity in different regions can provide
specific knowledge and support the search for tailored solutions [28,35,36].

The rancidity process causes negative changes in foods at a nutritional level. Free
radicals, lipid oxidation products involved in rancidity, cause vitamin degradation and
changes in protein functionality [4,37]. Other compounds resulting from oxidation, such
as lipid peroxides, can decompose fat-soluble vitamins, such as vitamins E, A, and their
provitamins. These vitamins act as natural antioxidants, when they react with free radicals,
they protect food from oxidation and decrease their antioxidant activity [38]. Similarly,
during this process, the loss of long-chain n-3 polyunsaturated fatty acids (PUFA n-3) also
occurs, directly affecting the nutritional properties of the food since they are essential for
humans [5,39]. Future research in this area could focus on quantifying the content of specific
vitamin and nutrient degradation in specific food products due to rancidity. Additionally,
it would be valuable to study the extent of the loss of essential fatty acids (PUFA n-3) in
food products and how this affects their nutritional quality. Furthermore, research could
aim to develop preservation techniques to reduce the negative impact of rancidity on the
nutritional quality of food products, as well as alternative methods to replace lost nutrients.
Additionally, studies on the long-term effects of consuming food products with decreased
nutritional quality due to rancidity could provide important information for public health.
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The consumption of rancid products can be dangerous due to their health risks.
Some compounds produced by lipid oxidation, such as malondialdehyde, acrolein, 4-
hydroxy-trans-nonenal, 4-hydroxy-trans-hexanal, and crotonaldehyde-like compounds,
are implicated in the pathogenesis of many diseases such as inflammatory processes,
aging, cancer, arteriosclerosis, and Alzheimer’s disease [1,3,6]. Lipid hydroperoxides
contribute to cell cytotoxicity, while aldehydes and oxysterols have proinflammatory,
cytotoxic, and mutagenic effects [4]. ALEs have been considered to cause inflammation,
fibrosis, and atypical cell proliferation [6]. However, more research is needed to establish
the relationship between the consumption of rancid food, the level of toxic by-products,
and the development of diseases. Additionally, research could be conducted to determine
the most effective methods to reduce or eliminate these health risks, such as better food
storage techniques or adding natural antioxidants to prevent rancidity.

In the case of oils oxidized by heating, their consumption could increase the risk of
cardiovascular disease, endothelial malfunction, lipid peroxidation, oxidative stress, geno-
toxicity, carcinogenicity, and reduced glucose uptake. In addition, the excessive generation
of free radicals is known to cause liver damage, resulting in diseases such as hepatitis,
cirrhosis, and liver tumors [40]. Moreover, the formation of trans fatty acids in reused oils is
harmful because it decreases good cholesterol (HDL) and increases bad cholesterol (LDL),
as well as increases triglyceride concentrations and the risk of suffering a heart attack and
developing cancer [41]. In fact, the toxicological and pathogenic properties that could result
from the ingestion of lipid oxidation products, such as aldehydes contained in cooking
oils heated according to standard frying practices, influence the potential development
of cardiovascular diseases, carcinogenic properties, contribution to neurodegenerative
disorders, hypertensive effects, development of diabetes, and respiratory and pulmonary
complications, especially in the case of acrolein [42]. Future research could be suggested
to investigate the health effects of oils oxidized by heating, such as the link between the
consumption of these oils and cardiovascular disease, liver damage, and various diseases
such as diabetes and cancer. Further research could also examine the role of trans fatty acids
in heart disease and the potential for developing new frying practices that can reduce the
formation of harmful compounds. Additionally, research could be done to understand the
mechanisms behind the toxicological and pathogenic properties of lipid oxidation products
and how to mitigate them in cooking oils.

Several studies have been able to prove the consequences of the consumption of
compounds from lipid oxidation. Chen et al. [43] showed in a rat model that exposure
to acrolein affects muscle regeneration. In addition, muscle mass loss was promoted
at a concentration of 2.5 and 5 mg/kg for 4 weeks, and weight decreased significantly.
Meanwhile, Chung and collaborators [44] found that administering crotonaldehyde to F344
rats at low concentrations (0.60 mmol/L) for 113 weeks resulted in an 87% incidence of liver
tumors. High doses (6.00 mmol/L) caused severe liver damage in 43% of the treated rats,
while the remaining 57% developed abnormal cell foci. Other studies have indicated that
other factors, such as inhalation of volatile aldehydes and other carbonyl compounds from
cooking oil fumes by workers in poorly ventilated fast food/restaurant establishments,
are also considered to be a major threat to human health, especially since it is associated
with a high incidence of lung cancer [42]. Given the effects on health caused by consuming
these compounds, it is important to know the mechanism that leads to the appearance of
rancidity in foods to reduce it and avoid affecting the consumer’s health.

2.2. Rancidity Process: Lipid Oxidation and Hydrolysis

Lipid oxidation has been described through several mechanisms, such as autocat-
alyzed, thermocatalyzed, enzymatic, and photo-oxidation (Figure 2) [3]. Autoxidation is
the most significant process in lipid oxidation and causes oxidative rancidity. The process
involves the interaction of unsaturated fatty acids with oxygen, leading to a continuous
chain reaction of free radicals [1,3]. The process has three phases: initiation, propagation,
and termination. During the initiation phase, hydrogen is extracted from an unsaturated
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fatty acid, forming an alkyl radical. The propagation phase involves the magnification
of radical production, while the termination phase involves the reaction of the radicals
with each other or with antioxidants, becoming relatively stable [4]. Autoxidation is influ-
enced by internal and external factors such as fatty acid profile, temperature, light, and
prooxidants such as transition metals [3].
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Foods rich in unsaturated fatty acids, especially polyunsaturated fatty acids (PUFAs),
are more susceptible to lipid autooxidation [3,4,37]. This is because unsaturated fatty acids
are more reactive to oxygen, leading to oxidative rancidity [45]. Examples of foods rich in
unsaturated fatty acids and susceptible to lipid autooxidation include oils, nuts, seeds, and
fatty fish [25]. Additionally, foods with high-fat content exposed to air, light, and heat are
more susceptible to lipid autoxidation [1,4].

Thermocatalyzed lipid oxidation refers to the process triggered by the application
of heat. This type significantly contributes to food spoilage and rancidity [3,46]. During
this process, the interaction of unsaturated fatty acids with heat can activate transition
metals such as iron and copper, causing the initiation of oxidative reactions [47]. The
thermocatalyzed oxidation mechanism also includes the three phases of initiation, propa-
gation, and termination, where free radicals are generated and multiplied and then become
non-reactive compounds [46]. Other factors that can influence the rate of thermocatalyzed
oxidation include pro-oxidants, trace metals, and the fatty acid profile of the lipid in ques-
tion [46,47]. Foods more susceptible to suffering from thermocatalyzed lipid oxidation
contain high levels of unsaturated fatty acids and are exposed to high temperatures, such
as fried and grilled foods, processed foods, baked goods, and snacks [48]. Additionally, the
presence of metals such as iron and copper and pro-oxidants can contribute to the oxidation
process and increase the risk of lipid oxidation in these foods [46].

Enzymatic lipid oxidation is another process that occurs due to the activity of lipoxy-
genases (LOXs) and dioxygenases, acting mainly on polyunsaturated fatty acids [49]. The
oxidation of fatty acids by these enzymes generates hydroperoxides via free radical mecha-
nisms, which, in turn, are converted into secondary oxidation products such as aliphatic
aldehydes, alcohols, ketones, and esters by a series of complex reactions [50,51]. These
reactions contribute to the lipid oxidation of food, mainly meat products, seeds, and oils,
causing it to become rancid [49,51,52]. Factors that affect enzymatic oxidation are the
content of lipoxygenases in the food, the form in which iron is found in the active site of
the enzyme (ferrous form), and external factors such as singlet oxygen, light, metal ions,
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and radiation [4,50,52]. It is important to control the enzymatic oxidation process to ensure
the quality and safety of food products.

Another process that leads to lipid oxidation and results in rancidity is
photo-oxidation [3]. During this process, hydroperoxides are formed thanks to the presence
of sensitizers and exposure to light [4]. The reactions carried out during photo-oxidation
are divided into three pathways. First, singlet oxygen is formed through the reaction of an
excited triplet sensitizer with molecular oxygen; when it reacts with unsaturated fatty acids,
it forms hydroperoxides without forming alkyl radicals. In the second case, a reaction
between the excited sensitizer and triplet oxygen produces a superoxide radical anion that
can react with unsaturated fatty acids and initiate lipid oxidation. This reaction is carried
out in the presence of metals. As for the third path, the excited triplet sensitizer reacts with
an unsaturated fatty acid, producing an alkyl radical that can subsequently initiate the free
radical chain reaction mechanism, producing lipid oxidation [4].

The lipid photo-oxidation process is considered to be faster than auto-oxidation [3].
Among the factors that affect photo-oxidation are the light exposure time of food, the pres-
ence of photosensitizers, the most common being chlorophyll, hemeproteins, porphyrins,
and riboflavin, and the presence of metal prooxidants [4,53]. The molecules degraded
by photo-oxidation are proteins, fats and oils, pigments, and vitamins, with milk, meat
products, vegetable oils, and wines being the most affected food products [54]. Additionally,
foods stored in transparent containers or exposed to light during processing and storage
are more susceptible to lipid photo-oxidation [53].

In addition to the different mechanisms of lipid oxidation, there is another chemical
reaction that causes rancidity in food: hydrolysis (Figure 3). Hydrolytic rancidity occurs
when lipids are broken down into free fatty acids, glycerol, and other compounds through
the action of lipase enzymes, heat, or moisture [25]. This process can lead to off-flavors
and odors in food products, negatively impacting their quality. Factors such as high
temperatures and extreme pH accelerate hydrolysis; lipases act on acylglycerol at different
degrees of specificity [55]. Hydrolytic rancidity is particularly relevant in high-fat food
products where lipase activity is present or where moisture content and temperature
conditions favor the hydrolysis of lipids, including in fried foods, vegetable oils (e.g.,
soybean, corn, and sunflower oil), milk, butter, and meat [25,55,56]. Although this review
focuses on oxidative rancidity, it is important to acknowledge hydrolytic rancidity as
another significant cause of food spoilage.
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Further research on lipid oxidation and hydrolytic rancidity could deepen under-
standing and improve food quality and safety. This can involve studying the initiation
of autoxidation, the impact of internal and external factors, pro-oxidants, antioxidants,
and the effects of different forms of lipid oxidation such as thermocatalyzed, enzymatic,
and photo-oxidation in specific food systems. Areas of interest include understanding the
reaction between polyunsaturated fatty acids and oxygen and the role of pro-oxidants and
evaluating the impact of thermocatalyzed, enzymatic, photo-oxidation, and hydrolysis on
food quality and safety, especially new products.

2.3. The Impact of Rancidity on Food Frying Oils: Associated Health Risks and Food Waste

Frying is a cooking method that many cultures worldwide have used for centuries.
Some cultures have a deep history of using frying for food preparation, with different
regional variations and techniques. For example, in Europe, fried dishes such as French



Antioxidants 2023, 12, 861 7 of 21

fries and fish and chips are stapled foods, while, in Asian countries such as Japan and
China, tempura and stir-fry are popular dishes. In the Middle East, falafel and baklava
are examples of fried foods enjoyed for generations. In Mexico, frying is a traditional
cooking method for preparing various dishes, such as tacos, sopes, corn tortilla chips, and
churros. Mexican cuisine has a rich tradition of using frying for food preparation, and it
continues to be a popular cooking method in Mexican homes and restaurants [57–60]. The
relevance of frying in Mexican cuisine highlights the importance of this cooking method in
preserving culinary traditions. There are several methods, including deep-frying, where
food is immersed in a bath of hot fat or oil; sautéing, in which a small amount of fat or oil
is used in a frying pan; and roasting, in which protein-rich food is prepared in an oven or
griddle using minimal addition of fat or oil [61,62]. This cooking method imparts desirable
characteristics to the food, increasing its palatability due to fat absorption, crust formation,
and pleasant flavors and odors [63]. However, food frying oils are highly susceptible to
lipid oxidation due to different factors.

During frying, the fats or oils reach temperatures between 160 and 180 ◦C, even up to
more, depending on the type of frying [61]. In addition, it is common for oils to be reused at
the household and commercial levels to minimize costs and maximize profits [40]. Frying
oils, such as soybean, canola, and corn, contain high levels of polyunsaturated fatty acids.
Continued use of oil in these conditions brings negative consequences to the oil, starting
with changes in its physical appearance, such as increased viscosity and darkening. Simi-
larly, chemical changes occur, including oxidation, hydrolysis, and polymerization, where
the fried food absorbs many of the resulting oxidative products, such as hydroperoxides
and aldehydes, affecting its flavor and color. Other by-products produced by this cooking
method include alcohols, cyclic compounds, polymers, dimers, and free fatty acids [63,64].
Additionally, the presence of light, air, and pro-oxidants such as iron and copper in fried
food can accelerate the oxidation rate. Furthermore, storing used frying oils for a long
period, even in cool and dark conditions, can increase the likelihood of oxidation, affecting
the quality and safety of the fried food.

The deterioration of oils starts from processing and storage, where autoxidation
and photo-oxidation processes can occur [65]. Then, during frying, hydrolysis of the oil
occurs, where fatty acids are released due to high temperatures and moisture from the
food. This process leads to the appearance of “soapy” flavors and a decrease in the oil’s
smoke point, referring to the temperature at which it starts to burn and degrade [25,37,62].
Similarly, lipid oxidation continues generating volatile and non-volatile compounds such
as esters, aldehydes, ketones, and peroxides, one of the significant deteriorating reactions
in oils [62,63].

Preventing rancidity in food frying oils is of utmost importance to the food industry
and consumers’ health. For the food industry, maintaining the quality and shelf life of their
products are crucial to the business success. Rancid oils not only negatively impact the
taste and aroma of the food, but also reduce its nutritional value and potentially introduce
harmful compounds into the food. On the other hand, for consumers, consuming rancid
oils can have adverse health effects, such as an increased risk of oxidative stress and chronic
diseases. By preventing rancidity in food frying oils, the food industry can provide high-
quality and safe products while preserving the flavors associated with traditional cuisine.

3. The Advantages of Natural Antioxidants for Reducing Lipid Rancidity

Natural antioxidants have been widely used in food preservation due to their unique
properties that offer many advantages over synthetic molecules. Unlike synthetic agents,
natural options derived from plants, fruits, and spices have been proven to be safe and
effective in reducing lipid rancidity [66]. These antioxidants possess a combination of
beneficial compounds that act synergistically to delay oxidative processes, improving the
shelf life and quality of food products [67]. Additionally, natural antioxidants are typically
recognized as safe by regulatory agencies and are favored by consumers who prefer natural
food additives [7]. By incorporating natural antioxidants, the food industry can not only
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improve food quality and safety, but also appeal to the growing demand for natural and
organic food products [67].

3.1. Balancing Quality and Safety: The Debate Between Natural and Synthetic Antioxidants

Natural antioxidants, such as vitamins, minerals, and plant extracts, are derived from
natural sources and are commonly used in food applications [66]. On the other hand,
synthetic antioxidants are chemically synthesized and generally considered more potent
than natural antioxidants, but they also come with potential health concerns [68]. Both
antioxidants protect food from oxidative rancidity, which can cause off-flavors, reduce
nutrient content, and increase the risk of harmful oxidation by-products [26].

Food antioxidants can be added during all production steps, and their use is strictly
controlled [7,11,68]. The two main regulatory organizations for these substances are the
European Food Safety Authority (EFSA) in the European Union and the Food and Drug
Administration (FDA) in the United States. Other regulatory bodies are the Food and
Agriculture Organization (FAO), World Health Organization (WHO), Expert Committee on
Food Additives, and Codex Alimentarius [7]. In Mexico, the agency in charge of regulating
the use of additives is the Federal Commission for the Protection against Health Risks
(COFEPRIS) [69].

According to its functions, the Codex Alimentarius has classified food additives into
27 families, while EFSA has organized them into 9 “E numbers.” Within these classifications,
antioxidant agents constitute one of the most important families because oxidation is one
of the main causes of food degradation [11]. Antioxidants, classified within the E300–E399
number block, are used to extend the shelf life of foods by preventing rancidity, loss of color,
development of odors, and loss of texture, among other undesirable effects [7]. Table 1
lists some antioxidants approved by the EFSA, their maximum dosage range, and reported
adverse reactions.

In the particular case of antioxidant additives, there are several ways to classify
them. According to their origin, they can be classified as natural, natural-identical, which
correspond to compounds chemically synthesized to mimic natural ones, and synthetic,
equivalent to molecules that do not exist in nature [8]. Generally, natural antioxidants are
added to meat, fish, nuts, vegetables, fruits, beverages, and canned food, while synthetic
ones are added to oils, cheeses, and chips [9]. It should be noted that there is still no
consensus on this classification, so, officially, all antioxidants are still considered in a
single group [7]. Primary antioxidants and secondary or synergistic molecules represent
another distinction. Primary antioxidants act by oxidizing themselves, which allows food
components to remain unchanged, while synergistic antioxidants reinforce the action of
the primary ones [8,11].

Table 1. E number, maximum dosage range, and reported adverse reactions of some antioxidants
used in the food industry.

Classification Antioxidant
Substance

Maximum Dosage
Range (g/kg) Treated Food Reported Adverse Reactions Reference

Natural

Ascorbic acid and its
salts (E300–302) 0.2~5.0

Fresh peeled fruits and
vegetables, wheat flour, fruit
and vegetable products, fresh
minced meat, charcuterie and
salted products, fish, shellfish

and mollusk unprocessed.

Not reported [9,11]

Tocopherols (E306)
and their geometric
isomers (E307–309 *)

Not reported

Meat, fish, nuts, vegetables,
fruits, beverages and canned
food, oils and emulsified fats,
foods for infants and children.

Not reported [11]
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Table 1. Cont.

Classification Antioxidant
Substance

Maximum Dosage
Range (g/kg) Treated Food Reported Adverse Reactions Reference

Synthetic

Propyl gallate (E310) 0.1~0.4
Canned nuts and seeds,

gum-based candy, grilled
meat, and noodles.

-Risk of methemoglobinemia.
-Allergic reactions (eczema,
hives, and stomach upset).

[9,11]

Octyl gallate (E311) 0~0.0002

Lard, oils, fats for frying, fish
oils and fat, sheep, poultry
and beef, sauces, soups and

broths dehydrated,
pre-cooked cereals, spices and

condiments, dehydrated
granulated potatoes, chewing

gum and snacks.

-Risk of methemoglobinemia.
-Allergic reactions (eczema,

hives, stomach upset, lichenoid
lesions, cheilitis, and contact

dermatitis).

[9,11,69,70]

Tert-
butylhydroquinone

(TBHQ) (E319)
0.2 Moon cake, instant noodles,

cookies, baked goods fillings. -Carcinogenic at high doses. [9,11]

Butylhydroxyanisole
(BHA) (E320) 0.2

Fats, oils, emulsified fat
products, coarse grains, and

instant noodles.

-Carcinogenic properties.
-Risk of allergies (rash, chronic
urticaria, angioedema, eczema,

and contact dermatitis).
-Increased levels of cholesterol

and lipids in the blood.
-Suspected hyperkinesis.

[9,11,69]

Butylated
hydroxytoluene

(BHT) (E321)
0.2~0.4

Noodles, chewing gum-based
candies, and air-dried aquatic

products, among others.

-Carcinogenic properties.
-Risk of allergies (rash, chronic
urticaria, angioedema, eczema,

and contact dermatitis).
-Increased levels of cholesterol

and lipids in the blood.
-Suspected hyperkinesis.

[9,11,69]

* E307–E309 correspond to tocopherols of synthetic origin.

Antioxidants play a crucial role in preventing oxidative rancidity in food, thus extend-
ing its shelf life and preserving its quality. The classification of antioxidants into natural
and synthetic, primary and secondary, and natural-identical and synthetic highlights the
diversity and complexity of these compounds. While various international and national
agencies strictly regulate their use, further research is still needed to fully understand the
different modes of action of antioxidants and their effects on food quality and human health
and identify the most effective and safe combinations of antioxidants for specific food ap-
plications. Additionally, it is important to consider the environmental impact of synthetic
antioxidants and to explore the potential of natural and natural-identical molecules as
sustainable alternatives. By addressing these gaps in knowledge, the food industry can
ensure the safe and effective use of antioxidants in preserving food quality while protecting
consumer health and the environment.

3.2. Health Problems Associated with Synthetic Antioxidants

The use of antioxidants in agri-food and food products has become common due
to the economic benefits it brings by reducing losses due to rancidity. Wsowicz and
collaborators [38] mentioned that some state governments have a financial and public
health interest in the widespread use of these compounds since adding antioxidants in
high-fat foods could influence consumer health. This action would lower the incidence
of certain diseases related to oxidative stress and the public expenditure they represent.
However, synthetic antioxidants have also been shown to have adverse health effects [68],
leading to some consumers’ fear and rejection and promoting the search for natural options.

The synthetic compounds BHA and BHT (Figure 4) have been identified to possess
carcinogenic properties at high doses; furthermore, prolonged exposure to BHT can cause
chronic poisoning and metabolic disorders [9,11]. Similarly, manifestation and exacerbation
of allergic reactions such as chronic urticaria, rash, angioedema, and atopic dermatitis
have been reported (Table 1), as well as increased blood cholesterol and lipid levels. These
undesired side effects have led to these compounds not being used in foods for infants
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and children [11,69,71]. The antioxidant TBHQ (Figure 2) has also been considered as
carcinogenic and genotoxic, so its maximum permitted use limit does not exceed 200 mg/kg,
while the use of antioxidants from gallates is also prohibited in foods for infants and
children due to the risk of developing methemoglobinemia [11]. Other effects caused
by this group of antioxidants are allergic reactions in asthmatic people and those who
cannot tolerate acetylsalicylic acid [11]; propyl gallate can also cause apoptosis and DNA
cleavage [9].
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Whether to use synthetic or natural additives is still a hotly debated topic. It is
considered that these antioxidants are better than synthetic ones because they come from
a natural source; however, this statement is not always supported by scientific data [72].
This does not mean that the negative effects caused by synthetic antioxidants should be
left aside. Hence, it is necessary to closely monitor the doses used in food and continue
searching for new compounds that present less risk to human health. The potential public
health benefits and financial savings of using antioxidants in high-fat foods make it an
important area for future research. The challenge is finding a balance between the benefits
of using antioxidants to extend the shelf life of food products and the potential health risks
these compounds pose. It is also important to consider the varying conditions of use and
the specific type of antioxidant when evaluating its effectiveness and safety.

4. Oak Extract as a Source of Natural Antioxidant Additives against Rancidity
4.1. Antioxidant Compounds Found in the Oak Tree

For centuries, oak extracts have been used as a natural antioxidant in food and bev-
erage preservation. The tannins and other compounds in oak extracts have long been
recognized for preventing oxidation [22]. The ancient Greeks and Romans used oak ex-
tracts in winemaking and food preservation, and the practice of aging wine in oak barrels
has continued to this day [73]. The use of oak extracts as a natural antioxidant has been
expanded beyond the wine industry, currently being proposed as an ingredient in a wide
variety of foods and beverages, including meat, cheese, and tea [21]. The resurgence of
interest in natural and healthy food additives has led to increased use of oak extracts as an
alternative to synthetic antioxidants.

Quercus is a genus of evergreen or deciduous trees belonging to the Fagaceae family,
composed of more than 500 species distributed throughout Europe, Asia, North Africa,
and America [20,21]. They are very valuable due to their wood, fruits, and charcoal
obtained from them and the medicinal properties in their bark, fruits, and leaves. For this
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reason, they have long been used in traditional medicine to treat conditions such as burns,
hemorrhages, gastrointestinal diseases, dermatitis, and throat infections [21,23]. In the
cooperage industry, they are also widely used to manufacture barrels to store wines, an
important part of the wine maturation. Because they are economical, they have become one
of the most profitable woods for this industry [13,21]. In Mexico, around 150 species have
been reported, representing the second most important forest resource and used mainly for
manufacturing handicrafts, firewood, and charcoal [74,75].

Recently, Quercus species have attracted researchers’ attention due to the bioactive
compounds they might contain; hence, studies have been conducted to describe their chem-
ical constituents, functional properties, and beneficial effects [23]. Extracts of oak leaves,
branches, acorns, and bark have been evaluated in search of compounds with antioxidant,
antitumor, anti-inflammatory, antidiabetic, hypocholesterolemia, antihypertensive, and
antimicrobial activity, with promising results [13,20]. The main bioactive phytochemicals in
Quercus are phenolic compounds, volatile organic compounds, vitamin E, sterols, aliphatic
alcohols, and fatty acids [21].

Specifically, phenolic compounds have been identified in all oak organs. Most flavonoid
and non-flavonoid constituents are involved in phenylpropanoid intermediate metabolism
via the shikimate pathway. The best-known are gallic acid, vanillic acid, syringic acid,
ferulic acid, quercetin, kaempferol, catechin, and epicatechin [21]. Figure 5 lists some of the
phenolic compounds found in each oak organ. External factors such as seasonal changes
and the level of maturity of the evaluated parts of the oak influence its phytochemical
composition, presenting variations in phenolic compounds and flavonoids [23]. It is worth
mentioning that, among species, there are also complex variations in their chemical com-
position [21], which opens more possibilities to find new compounds with high bioactive
potential.
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As mentioned above, phenolic compounds are known for their high antioxidant
capacity. Their structural arrangement confers a strong acidic characteristic to the phenol
ring, responsible for its antioxidant power. For this reason, there is a strong correlation
between the total polyphenol content and the extract's antioxidant activity [76]. In Quercus,
gallic acid, ellagic acid, and ellagitannins such as castalagin, vescalagin, and roburin have
been identified as potent antioxidant compounds, also presenting antimutagenic and
anticarcinogenic activities derived from their antioxidant power [21]. Different in vivo and
in vitro studies of the oak extract demonstrated a high antioxidant capacity linked to its high
content of polyphenolic compounds (Table 2) [20]. Tuyen and collaborators [77] studied leaf
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and bark extracts of three oak species (Q. crispula, Q. salicina, and Q. serrata), analyzing them
by DPPH and ABTS assays. The results showed high amounts of total phenolic compounds,
being higher in leaf extracts. As for the antioxidant activity, a higher activity was found in
the free phenol fraction of the leaf extracts. Among the predominant compounds found
were ellagic, chlorogenic, and benzoic acids. The revised studies highlighted that most
Quercus species have high antioxidant activity; however, they pointed out that leaf extract
of Q. salicina had the highest potential, with stronger activity.

Table 2. Phenolic content, identified compounds, and antioxidant activity of various reported
Quercus species.

Species Raw Material/Extract Type Phenolic Content Phenolic Profile Antioxidant Activity References

TPC TFC

Quercus salicina

Leaves/Ethanol 46.30 mg GAE/g 24.72 mg RE/g

Gallic acid, benzoic acid, ellagic acid,
protocatechuic acid, chlorogenic acid,
p-hydroxybenzoic acid, vanillic acid,

ferulic acid, p-coumaric acid.

DPPH (IC50 mg/mL):
Free: 0.067

Bound: 0.079

ABTS (IC50 mg/mL):
Free: 0.523

Bound: 0.559

[77]

Bark/Ethanol 35.89 mg GAE/g 1.41 mg RE/g

Protocatechuic acid, chlorogenic acid,
syringic acid, vanillin, ellagic acid,
cinnamic acid, ferulic acid, benzoic

acid

DPPH (IC50 mg/mL):
Free: 0.026

Bound: 0.565

ABTS (IC50 mg/mL):
Free: 0.296

Bound: 2.796

Quercus crispula

Leaves/Ethanol 12.25 mg GAE/g 4.18 mg RE/g
Chlorogenic acid, sinapic acid,

p-coumaric acid, benzoic acid, ellagic
acid

DPPH (IC50 mg/mL):
Free: 0.100

Bound: 0.333

ABTS (IC50 mg/mL):
Free: 1.008

Bound: 1.803

Bark/Ethanol 16.45 mg GAE/g 2.33 mg RE/g Vanillin, ferulic acid, ellagic acid

DPPH (IC50 mg/mL):
Free: 0.158

Bound: 0.446

ABTS (IC50 mg/mL):
Free: 1.047

Bound: 2.074

Quercus serrata

Leaves/Ethanol 25.97 mg GAE/g 28.18 mg RE/g
Chlorogenic acid, p-hydroxybenzoic

acid, sinapic acid, benzoic acid, ellagic
acid

DPPH (IC50 mg/mL):
Free: 0.158

Bound: 0.446

ABTS (IC50 mg/mL):
Free: 1.047

Bound: 2.074

Bark/Ethanol 16.15 mg GAE/g 2.49 mg RE/g

Protocatechuic acid, chlorogenic acid,
syringic acid, vanillin, ferulic acid,
benzoic acid, ellagic acid, cinnamic

acid

DPPH (IC50 mg/mL):
Free: 0.158

Bound: 0.446

ABTS (IC50 mg/mL):
Free: 1.047

Bound: 2.074

Quercus coccifera

Shell acorn/Ethanol 98.08 mg GAE/g 178.96 mg QE/g Not reported

DPPH (Inhibition %):
82.35

FRAP (Absorbance at 700 nm):
1.86

[78]Acorn Cup/Ethanol 98.71 mg GAE/g 72.97 mg QE/g Not reported

DPPH (Inhibition %):
91.09

FRAP (Absorbance at 700 nm):
2.04

Shelled Acorn/Ethanol 100.14 mg GAE/g 73.24 mg QE/g Not reported

DPPH (Inhibition %):
88.58

FRAP (Absorbance at 700 nm):
1.52

Quercus cerris Seed/Water 2070.21 mg GAE/L 285.27 mg CAE/L Ellagic acid, gallotannin, or
ellagitannin derivatives

DPPH (IC50 µg mL−1):
271.61

FRAP (µg mL−1):
203.11

Scavenging capacities IC50
(µg mL−1):

O2•
− : 17.24

H2O2: 275.70

•NO: 0.65

[79]
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Table 2. Cont.

Species Raw Material/Extract Type Phenolic Content Phenolic Profile Antioxidant Activity References

TPC TFC

Quercus crassifolia

Bark/Hot Water 860 mg GAE/g 43.6 mg QE/g Not reported

Free radical scavenging
(EC50 µg/mL)

OH•: 467

O2•
− : 58.1

H2O2: 22

[13]

Bark/Ethanol 695 mg GAE/g 14.0 mg QE/g Not reported

OH•: 2024

O2•
− : 40.9

H2O2: 653

Quercus laurina

Bark/Hot Water 474 mg GAE/g 24.1 mg QE/g Not reported

Free radical scavenging
(EC50 µg/mL)

OH•: 1257

O2•
− : 629

H2O2: 727

Bark/Ethanol 756 mg GAE/g 15.7 mg QE/g Not reported

OH•: >4000

O2•
− : 3213

H2O2: 519

Quercus scytophylla

Bark/Hot Water 329 mg GAE/g 24.1 mg QE/g Not reported

Free radical scavenging
(EC50 µg/mL)

OH•: 1865

O2•
− : >4000

H2O2: 1102

Bark/Ethanol 521 mg GAE/g 12.9 mg QE/g Not reported

OH•: >4000

O2•
− : 406

H2O2: 1050

Quercus suber Leaves/Ethanol:Water (7:3) 10.6 mg GAE/g 8.2 mg C/g
Gallic acid, ellagic acid, chatechin,

epicatechin, rutin, myricetin,
quercetin

DPPH (Inhibition %):
22.7

ABTS (mg Trolox/g):
46.9

FRAP (mg Trolox/g):
54.5

[14]

Quercus ilex Acorn/Food-Grade Acetone 928 mg GAE/100 g Not reported Not reported DPPH (microM Trolox/g):
51.87 [15]

Quercus alba Wood Chips/Aqueous
Extract 2180.8 mg GAE/L Not reported Volatile compounds

DPPH (microM Trolox/L):
31.20

ABTS (microM Trolox/L):
32.00

[16]

Quercus branti Acorn/Methanol 22.64 mg GAE/100 g Not reported Not Reported DPPH (Inhibition %):
~77% [18]

Quercus robur Wood/Methanol 72.63 µg GAE/g Not reported

Gallic acid, ellagic acid,
protocatechuic acid, vanillic acid,

4-hydroxybenzoic acid, p-coumaric
acid, sinapic acid, syringic acid,

caffeic acid, ferulic acid, vanillin,
protocatechuic aldehyde,

syringaldehyde, coniferaldehyde,
sinapaldehyde, scopoletin

FRAP (microM Trolox/mg):
0.82

ORAC (microM Trolox/mg):
0.92

ABTS (microM Trolox/mg):
1.59

[80]Quercus petraea Wood/Methanol 48.87 µg GAE/g Not reported

Gallic acid, ellagic acid,
protocatechuic acid, vanillic acid,

p-coumaric acid, sinapic acid, syringic
acid, caffeic acid, ferulic acid, vanillin,

protocatechuic aldehyde,
syringaldehyde, coniferaldehyde,

sinapaldehyde, scopoletin

FRAP (microM Trolox/mg):
0.59

ORAC (microM Trolox/mg):
0.62

ABTS (microM Trolox/mg):
1.35

Quercus pyrenaica Wood/Methanol 41.48 µg GAE/g Not reported

Gallic acid, ellagic acid,
protocatechuic acid, vanillic acid,

p-coumaric acid, sinapic acid, syringic
acid, caffeic acid, ferulic acid, vanillin,

protocatechuic aldehyde,
syringaldehyde, coniferaldehyde,

sinapaldehyde, scopoletin

FRAP (microM Trolox/mg):
0.54

ORAC (microM Trolox/mg):
0.65

ABTS (microM Trolox/mg):
1.19

Free: free phenolics. Bound: bound phenolics. ~ indicates an approximate value. GAE: gallic acid equivalents.
QE: quercetin equivalents. RE: rutin equivalents. CAE: catechin equivalents.

In another study, Gezici and Sekeroglu [78] studied the extracts of Q. coccifera acorns,
whose parts are used for coffee brewing. The shelled acorn extract showed a higher total
phenol content, while the shell extract had the highest flavonoid content. Regarding
antioxidant activity, DPPH and Ferric Reducing Antioxidant Power (FRAP) assays showed
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remarkable activity in all extracts, highlighting the acorn cup extract at a concentration
of 1000 µg/mL, with 91% radical scavenging over DPPH. Pinto and collaborators [79]
analyzed extracts from Q. cerris, resulting in a total phenol content of 2070 mg GAE/L,
while the total flavonoids were 285.3 mg CE (Catechin Equivalent)/L. In addition, the
extract presented high efficiency in terms of reactive oxygen species (ROS) and nitrogen
(RNS) scavenging activity associated with ellagic acid and derivatives of gallotannins and
ellagitannins. In Mexico, Valencia-Avilés and collaborators [13] studied the bark extracts
of Q. laurina, Q. crassifolia, and Q. scytophylla with two extraction methods, finding that
Q. crassifolia hot water extract possessed the highest concentration of polyphenols and the
best ROS scavenging capacity.

Alañón and collaborators [80] studied the methanolic extracts of the wood of the
oaks most used in cooperage (Q. robur, Q. petraea, and Q. pyrenaica). The results showed
that Q. robur had the highest phenolic content and therefore a higher antioxidant activity.
Among the phenolic compounds identified in the three species were gallic acid, protocat-
echuic acid, p-coumaric acid, ellagic acid, and ellagitannins. On the other hand, Soriano
et al. [16] analyzed the aqueous extracts of the wood of Q. alba, another important oak
within the cooperage industry. The extract showed a high phenolic content and remarkable
antioxidant activity against DPPH and ABTS radicals. Volatile compounds were analyzed,
finding benzenic compounds, lactones, and furanic compounds. Likewise, other oak
species studied that have shown good results in terms of phenolic content and antioxidant
activity are Q. suber [14], Q. ilex [15], and Q. branti [18], whose extracts have been proposed
as antioxidant additives in foods given their antioxidant potential.

In summary, the study of extracts from various Quercus species has yielded promising
results as a potential source of antioxidant compounds varying in chemical composition
among species. Despite the numerous studies that have been carried out, there are still
many species to be covered, as well as giving more importance to the antimicrobial, antitu-
mor, and anti-inflammatory potential, among others, that these compounds present. The
research on oak extracts and Quercus species has shown promising results for their potential
as natural antioxidants, anti-inflammatory, and antimicrobial agents [13,20,77]. The main
bioactive phytochemicals in the Quercus species include phenolic compounds, volatile
organic compounds, vitamin E, sterols, aliphatic alcohols, and fatty acids. Phenolic com-
pounds are the most abundant and have been found to have high antioxidant capacity, with
gallic acid, ellagic acid, and ellagitannins identified as potent antioxidant compounds [21].
In vitro and in vivo studies of oak extracts have demonstrated high antioxidant capacity,
with variations in their potency depending on the species, part of the oak used, and external
factors such as seasonal changes and level of maturity [13,43,75,77]. Further research can
be conducted to explore the chemical composition of different Quercus species to determine
the best oak parts for extraction and to investigate the functional properties and potential
health benefits of these extracts when applied in food systems.

4.2. Food Application of Oak Extracts

Given the high antioxidant potential of Quercus species extracts, some researchers
have shown interest in using their compounds as antioxidant additives in processed foods.
The ability of different oak species extracts to inhibit lipid oxidation that causes oxidative
rancidity in various foods, mainly meat products, has been studied (Table 3). Lavado and
collaborators [14] studied the ability of Q. suber leaf extracts to control oxidation in cooked
chicken breasts stored under refrigeration. It was found that after 10 days of storage, the
extract prevented lipid oxidation by up to 97.7%, reducing thiobarbituric acid reactive
substances with a capacity equivalent to the synthetic additive BHT. In another study,
Q. alba wood extract [16] was tested as a natural preservative of refrigerated pork patties
for 12 days. The results showed that the patties treated with the extract presented higher
antioxidant capacity, a 97.1% reduction in lipid oxidation, and a decrease in generating
volatile compound products of oxidation reactions compared to sodium ascorbate as
synthetic control.
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Table 3. Potential of oak extract to inhibit lipid oxidation (TBARS/Peroxide value) in different foods.

Species Extracted
Tissues Added Food Type of Extract

(Solvent)
Lipid Oxidation

(%/TBARS/mEQ/MDA) Reference

Extract Control

Quercus
suber Leaves Chicken breast

Water
Ethanol

Water:Ethanol
(1:1 v/v)

Water:Ethanol
(3:7 v/v)

95.3%
92.4%
97.2%
97.7%

95.9% [14]

Quercus ilex Acorn Chicken patty Food-grade
acetone (60%)

~0.2 mg
TBARS/kg

~0.8 mg
TBARS/kg [15]

Quercus alba Wood chips Pork patties Aqueous
extract

0.30 mg
TBARS/kg

(97.1%)

10.63 mg
TBARS/kg [16]

Quercus branti Acorn Soybean oil Ethanol (95%) ~10 mEq/kg ~12.5 mEq/kg [18]

Quercus ilex
subsp. Ballota Acorn Sunflower oil Liquid nitrogen ~3.5 mmol g−1

(46.4%) 6.53 mmol g−1 [19]

~ indicates an approximate value.

Ferreira and collaborators [15] studied Q. ilex acorn extract on cooked, stored, and
reheated chicken patties. Samples containing the extract maintained a low number of
thiobarbituric acid-reactive substances and lipid-derived volatiles throughout processing
(0.2 mg TBARS/kg). In addition to meat foods, other food products have been evaluated
with oak extracts. For example, the antioxidant capacity of Q. branti acorn extract on
soybean oil was measured [18], and the total phenols content found was 22.64 g GA/100 g
sample, with antioxidant activity of 65 to 80% on DPPH. Regarding the antioxidant activity
of soybean oil, the extract maintained a Peroxide Value close to 10 mEq/kg during the first
10 days of storage at 60◦C, below the control, which was 12.5 mEq/kg.

In another case, Romojaro and collaborators [19] studied the extract of Q. ilex subsp.
ballota added to sunflower oil and orange juice. The extract presented a total phenol content
of around 350 g acid gallic/100 g fw (fresh weight) and a total antioxidant activity (TEAC)
of 2000 µmoles Trolox/100 g fw. The addition of the extract in the sunflower oil significantly
decreased the lipid oxidation by 46.4% after heating it, while, in the orange juice, the extract
positively impacted the sensory evaluation, presenting a general acceptance of 100.87%
concerning the control. Likewise, Başyiğit and collaborators [17] evaluated the protective
capacity of Q. infectoria gill extract in pasteurized milk, whose dominant compounds were
ellagic acid (28,156.85 mg/kg dry) and catechins (716.21 mg/kg dry). The antioxidant
activity of the extract was 2.29 and 1.65 mmol TEAC/g of DPPH and ABTS, respectively,
also presenting a high antimicrobial activity against Escherichia coli. Lipid oxidation was
not measured in this study.

Another important application of oak is the use of its wood to make barrels where
different alcoholic beverages are aged. Phenolic compounds present in oak wood used for
aging wines, rum, and other alcoholic beverages significantly impacted the flavor, aroma,
and color of these beverages. Volatile phenols and benzoic aldehydes play an important
role in contributing to the sensory characteristics of wines. Hydrolyzable tannins, such as
ellagitannins, are particularly significant because they confer astringency and are involved
in stabilizing pigment structures. Compounds like ellagic acid and ellagitannin impart
complex flavors, spicy notes, and a characteristic brown color to wines and spirits aged in
oak barrels [81]. Among the main compounds are hydroxybenzoic acids derived directly
from benzoic acid, including gallic, gentisic, p-hydroxybenzoic, protocatechuic, syringic,
salicylic, and vanillic acids and hydroxybenzoic aldehydes, such as syringaldehyde and
vanillin, which are modified as aldehydes with carboxyl groups [82]. In addition, the
antioxidant properties of these phenolic compounds and their free radical scavenging
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capacity help preserve alcoholic beverages during aging and improve their quality. In short,
the phenolic compounds in oak wood are essential for producing high-quality alcoholic
beverages with a unique and incomparable flavor [81]. Therefore, this evidence indicates
the antioxidant potential of oak antioxidants when searching for anti-rancidity agents.

Despite the interest in using Quercus phenolic compounds as an antioxidant additive,
very few foods have been tested. Most of them are focused on meat products, and the
studies are carried out in combination with other preservation techniques (modified atmo-
spheres). Therefore, it would be interesting to analyze its behavior in other food matrices
highly susceptible to oxidation, such as oils and fried foods. Similarly, another area that
has received less attention is the sensorial and toxicological profile of oak, which is critical
if it is to be utilized extensively in food for human consumption.

The addition of oak extracts to food systems can have a significant impact on the
odor and flavor of the food. In the case of extracts derived from oak wood, these contain
compounds such as ellagitannins and volatile organic compounds, presenting aromas and
flavors described as coconut, vanilla, nutty, and toasty [16,21]. In the case of extracts from
oak leaves, it has been described that the high content of polyphenols can give astringent
flavors [75]. When added to food systems, these compounds interact with food components
such as fats and proteins, leading to changes in the food’s aroma and taste [83]. Research
has shown that adding oak extracts can significantly alter the sensory profile of food.
Soriano and collaborators [16] reported that when adding extract of Q. alba wood chips
to pork patties, they acquired “woody” and “sweet spices” (clove and vanilla) odors, in
addition to presenting a more intense coloration and positive acceptance. Meanwhile, when
adding Q. ilex acorn extract to chicken patties, Ferreira and collaborators [15] reported a
change in the color of the food, with greater consumer acceptance of both color and flavor.
In the case of wines, Sindt and collaborators [84] reported that 3 compounds obtained from
Q. petraea extract could be responsible for the bitter taste of wine, due to their prevalence
during oak aging; meanwhile, by adding Q. robur extracts to wine, Jiménez-Moreno and
collaborators [85] found that the wine exhibited more intense wood and spicy aromas after
18 months of bottle aging. These studies support Quercus as a promising ingredient in the
food industry; however, special attention has to be paid to optimize the use of oak extracts
to enhance the odor and flavor of food while ensuring food safety.

In the case of oils, further research can be conducted to explore the potential uses and
advantages of incorporating oak extracts into frying oils for fried foods. This can include
controlled studies to determine the optimal amounts and combinations of oak extract for
specific types of fried foods, as well as sensory analysis to evaluate the impact on flavor
and odor. Additionally, research could focus on the stability and shelf life of the frying oils
and the impact on the quality and taste of the fried foods over time. By conducting more
research in this area, a deeper understanding of the benefits and limitations of using oak
extracts in frying oils can be gained, providing valuable information for food manufacturers
and industry professionals.

4.3. Toxicity of Oak Extracts

One of the issues faced by using oak extracts in food is their possible toxicity. Some
studies have suggested that certain parts of the oak, mainly immature leaves, could present
toxicity to terrestrial animals due to hydrolysable tannins and gallotannins [23]. Because of
this, studies have been carried out to address this problem. The toxicity of Q. crassifolia,
Q. infectoria, and Q. sideroxyla have been tested in rats, administered by subacute oral [74],
acute via enema [86], and acute via gavage [87], respectively. The Q. crassifolia extract
showed toxic effects at a repeatedly administered dose of 33 mg/kg bw/day and with an
NOAEL (No Observed Adverse Effect Level) of 11 mg/kg bw/day, while the Q. infectoria
extract dose of 10 g/kg showed no adverse effects on animal behavior, proposing that the
maximum tolerated dose is above this value. In the case of Q. sideroxyla, the LD50 was
determined at a dose greater than 5000 mg/kg, with no noticeable signs of adverse effects.
Regarding in vitro studies, Pinto and collaborators [79] studied the cell viability and toxic
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effects of Q. cerris seeds used to prepare coffee-like beverages, finding the optimal range
of non-cytotoxic concentrations in Caco-2 and HT29-MTX cell lines was between 0.1 and
1.0 µg/mL. Meanwhile, Hazwani and collaborators [88] tested the toxicity of a vaginal
cream based on Q. infectoria in HeLa cells and female rats, finding moderate toxicity in the
cells with IC50 values of 20.80 µg/mL, while the rats showed no adverse effects on their
reproductive tract.

Toxicological studies on foods added with oak extracts have not been carried out;
however, in many places, infusions and fermented beverages of the leaves are consumed
for medicinal purposes without apparent adverse effects [13,14,75]. The current knowledge
on the toxicity of oak extracts is limited to studies performed on a cellular level and in
rats. These studies’ results suggest that the toxicity of oak extract varies depending on
the species and the method of administration. The few published studies show that oak
extracts can have toxic effects in rats at high doses, while in vitro studies have found
that oak extract has moderate toxicity in cells. Therefore, further toxicological studies on
oak extract in food systems must be performed to determine its safety as an antioxidant
ingredient. In addition, further studies are needed to determine if different extraction
methods can generate safer extracts.

5. Conclusions

Oak extract has the potential to be used as a food antioxidant to reduce rancidity and
improve the odor and flavor of food products. The use of oak extract has been studied
in different forms, including infusions and fermented beverages, and its potential to be
used as a frying oil additive have been shown. The results of these studies suggest that oak
extract has antimicrobial, antiradical, and antioxidant properties that can help to prevent
food rancidity and improve the overall quality of food products. However, there is a need
for further research to fully understand the impact of oak extract on food systems and
determine its safety for human consumption. Potential experiments that can be conducted
to generate more knowledge include determining the efficacy of oak extracts to avoid
rancidity in more food systems susceptible to this problem. It will also be important
to evaluate the consumer acceptability of odor and flavor added by oak extract in food
products, as well as its effectiveness as a frying oil additive in different food products. In
addition, further studies could also focus on the optimal concentration and processing
methods to maximize the beneficial effects of oak extract as a food antioxidant.
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