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Abstract: Transition metals such as iron, copper and zinc are required for the normal functioning of
biological tissues, whereas others, such as cadmium, are potentially highly toxic. Any disturbances
in homeostasis caused by lack of micronutrients in the diet, pollution or genetic heredity result in
malfunction and/or diseases. Here, we used synchrotron X-ray fluorescence, SXRF, microscopy
and mice with altered functions of major antioxidant enzymes to show that SXRF may become a
powerful tool to study biologically relevant metal balance in the pancreas and liver of mice models
with disturbed glucose homeostasis.
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1. Introduction

About one third of the human proteome contains metal cations in forms of enzymes,
cofactors or structural support elements, hence it is not surprising that metal imbalance
in cells and tissues strongly correlates with the development of multiple diseases [1]. The
essential role of microelements for the normal functional activity of biological organisms
is well established [2]. At the same time, prebiotics and probiotics are a very important
source of micronutrients [3] and possess neuroprotective effects [4]. The metabolic activities
of the body can be impacted by the presence or absence of trace or macro elements [5],
and an imbalances in metal homeostasis due to micronutrient deficiencies, environmental
pollution, and genetic predispositions strongly correlate with the development of multiple
disorders including Wilson and Menkes diseases [6], anemia [7], and neurodegenerative
conditions [8,9].

Glucose-stimulated insulin secretion, GSIS, represents one of the central processes in the
regulation of the body’s glucose metabolism and homeostasis [10], and its deregulation leads
to the development of type 2 diabetes mellitus, T2DM, and metabolic syndrome [11]. Insulin
is the major factor in the maintenance of normal blood glucose [11], while insulin signaling
and sensitivity in glucose-responsive tissues depends on the physiologically balanced level
of Reactive oxygen species (ROS) [12], and thus on the level of the oxidative stress.

Superoxide dismutases, SODs, are group of metalloenzymes that are essential for
protection from oxidative stress. These enzymes require zinc and copper ions for their
activity [13]. Glutathione peroxidases, GPXs, are selenium-containing enzymes that de-
grade hydrogen and lipid peroxides, and act as antioxidants as well [14,15]. Remarkably,
the mouse models with knockout or overexpression of selenium-dependent glutathione
peroxidase 1 (Gpx1) or copper–zinc-dependent superoxide dismutase 1 (Sod1) experience
disturbed glucose homeostasis [16–18].

Previously we showed that GPX1 transgenic-overexpressing (OE) mice develop hy-
perglycemia, hyperinsulinemia, insulin resistance and obesity [17]. The primary reason
for this phenotype is attributed to the unexplainable Gpx1 overexpression in the pancreas
(about 20 times), as compared to other tissues, and is associated with the increased function
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of insulin synthesis and secretion machineries consequently resulting in hyperinsuline-
mia [19]. Taking into the consideration that each GPX1 molecule contains one atom of
Se per subunit [20], a distinct correlation between an islet’s Se level and T2DM-like phe-
notype becomes evident. A single knockout of Cu, Zn-superoxide dismutase, Sod1−/−,
Se-dependent, Gpx1−/−, and their double-knockout mouse models have elevated endoge-
nously derived superoxide and hydroperoxide levels, which exert distinct impacts on the
body’s glucose homeostasis [16]. Whereas the three knockouts displayed decreased plasma
insulin concentrations and islet β-cells’ mass, only Sod1−/− showed reduced body weight,
increased blood glucose, and blocked GSIS. Given that SODs and GPXs are metalloenzymes,
we hypothesize that the observed phenotypes are also associated with altered distribution
of Cu, Zn and Se, which, in turn, have an impact on the distribution of other cellular
elements in pancreas and liver, thus putatively influencing insulin and glucose homeostasis.
Selenium is an important Gpx1 cofactor, and its deficiency results in a decrease in the Gpx1
protein level as well as its activity [21]. Diet supplementation of selenium causes a 20-fold
increase in Gpx1 translational efficiency [22], while selenium deficiency reduces Gpx1
mRNA abundance by 20 times [23]. Despite dietary selenium deficiency partially rescuing
the OE phenotype, hyperinsulinemia was not eliminated by diet restriction in younger
(1–3 months) mice [24], but was partially eliminated in older (5 months old) mice [25].
Moreover, selenium may be involved in complex regulation of upstream targets of insulin
homeostasis; the OE phenotype was associated with the increased acetylation of H3 and H4
histones at the proximal Pdx1 promoter [19], suggesting an indirect role of Se in epigenetic
regulation of gene expression in pancreatic islets. Thus, disturbed glucose metabolism-
related Sod1−/−, Gpx1−/− and OE phenotypes link antioxidant defense mechanisms with
glucose homeostasis, and eventually with micronutrients.

Investigations into trace metal concentrations, their spatial distribution and the effect
of metal imbalance on the metallome (a “total” metal composition and spatial distribution)
in insulin-producing and insulin-responsive tissues will significantly advance our under-
standing of the role of these metals in insulin homeostasis. Trace metal’s concentration
in insulin-producing and insulin-responsive tissues would be very significant in under-
standing their role in normal homeostasis, and the visualization of trace metal’s spatial
distribution in pancreas and liver will expand our understanding of the role of these metals
in insulin homeostasis, and unveil the still largely unexplored area of the interrelationships
between glucose metabolism and metal homeostasis.

2. Materials and Methods
2.1. Mouse Genotypes and Diet

Gpx1-overexpressing and knockout mice were originally provided by Y.S. Ho [26],
and shared on the same genetic background (129/SVJ × C57BL/6). All experimental mice
(males 3–4 months of age) were bred in a Cornell animal facility (Ithaca, NY, USA), fed
on a Teklad LM-485 mouse/rat diet, and allowed free access to food and distilled water.
Mice were housed in shoebox cages in a constant temperature (22 ◦C) animal room with a
12 h light/dark cycle. Mice were euthanized with CO2, and then the liver and pancreas
were collected and placed on ice before cryofixation. Freshly isolated pancreases were
briefly stored on ice before being placed in a Synchrotron X-ray fluorescence (SXRF) frame
for scanning. All experiments were approved by the Animal Care and Use Committee
at Cornell University (protocol 2007–0008, version 19, approved on 22 May 2020), and
conducted in accordance with National Institute of Health guidelines for animal care.
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2.2. Sample Preparation

In order to find out and to compare spatial distribution of metals in the pancreases and
livers of mice without major antioxidant enzymes, we used the following approaches: first,
we tested the paraffin-embedded tissue samples, largely used for immunohistochemical
visualizations, for SXRF experiments. The possibility of using paraffin-embedded tissues
for the detection and spatial distribution of trace elements in different samples opens broad
perspectives for any fixed sample, including human biopsy samples; secondly, we prepared
samples by cryofixation, using a plunge freezing of samples in liquid propane surrounded
by liquid nitrogen [27]. This technique is widespread in electron microscopy, and enables
us to preserve an intact internal architecture due to the formation of amorphous ice and
the prevention of water crystal formation. These samples with preserved tissue structures
are ideal for the intended 3D scanning with advanced resolution. Lastly, we used a special
setup which enabled us to scan freshly isolated tissues. Freshly isolated tissue was placed
in the wet chamber made between two layers of metal-free Kapton™ film and mounted
onto 35 mm slide mounts.

2.3. Synchrotron X-ray Fluorescence (SXRF) Microscopy

Samples were placed on a sticky side of Kapton tape. Freshly prepared hydrated
tissues were placed in a wet chamber between two layers of Kapton tape. The spatial
distribution of micronutrients in all samples was imaged via SXRF at the F3 station at
Cornell High Energy Synchrotron Source (CHESS, Ithaca, NY, USA). The 2D microelements’
raster maps were acquired at a 20-µm resolution, a 0.25 s/pixel dwell time using a focused,
monochromatic incident X-ray beam at 12.2 keV, and a photon flux of approximately
1 × 109 photons/s. These settings did not cause damage to pancreas within the 2 h scans
required for analysis of the full set of genotypes. Element-specific X-ray fluorescence
was detected using a Vortex ME-4 Silicon Drift detector (Hitachi, Chiyoda, Tokyo, Japan).
Quantifications were carried out using thin film standard data, collected during each
experiment, and expressed as µg/cm−2. Data were processed with the software Praxes,
which was developed at CHESS (Ithaca, NY, USA) and uses PyMCA libraries in batch
mode [28].

3. Results

3.1. Selenium in Pancreas and Liver of Gpx1−/− and Gpx1-Overexpressing Mouse Models

We detected and compared the level of Se in pancreas and liver of wild-type, Gpx1−/−

and OE mice (Figure 1) in paraffin-embedded tissue samples, samples prepared by cryofix-
ation, and freshly isolated tissues. Despite different sample preparation procedures, the
data were comparable, pointing on the various Se distributions in different genotypes.

3.2. Micronutrients Visualization in Pancreases of Antioxidant Enzyme-Altered Mice Models

Additionally, we distinguished the distribution of seven biologically relevant trace
elements in tissue samples of wild-type and genetically modified mice (Figure 2). We
detected the distribution of Zn, Se, Cu, Fe, Mn, Cr, and Cd in pancreatic and liver samples of
mice models with deleted or overexpressed antioxidant enzymes. Our data show that SXRF
is a powerful tool for visualizing differences and analyses of the role of mineral elements in
disorders of glucose metabolism. Furthermore, the ability to image the spatial distribution
of low abundance elements such as Cu suggests, that the sample preparation procedures
can be used for studies of metal homeostasis including metal-promoted/related diseases.
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Figure 1. Synchrotron X-ray fluorescence (SXRF) Se imaging in pancreases and livers of wild-type, 
Sod1−/− Gpx1−/− and OE mice. The first two rows represent paraffin-embedded samples; the third row 
represents samples from freshly isolated pancreases. The fourth row represents Se distribution in 
liver of wild-type and Sod1+/− (1st and 2nd images from the left, respectively), Sod1−/− and Gpx1−/− 
samples (2nd and 1st image from the right, respectively). The Se map was acquired at 20 µm reso-
lution, with a 0.25 s/pixel dwell time using a focused, monochromatic incident X-ray beam of 12.2 
keV. SXRF data were processed with Praxes, a CHESS-developed software for image analysis. 
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elements in tissue samples of wild-type and genetically modified mice (Figure 2). We de-
tected the distribution of Zn, Se, Cu, Fe, Mn, Cr, and Cd in pancreatic and liver samples 
of mice models with deleted or overexpressed antioxidant enzymes. Our data show that 
SXRF is a powerful tool for visualizing differences and analyses of the role of mineral 
elements in disorders of glucose metabolism. Furthermore, the ability to image the spatial 
distribution of low abundance elements such as Cu suggests, that the sample preparation 
procedures can be used for studies of metal homeostasis including metal-promoted/re-
lated diseases. 

Figure 1. Synchrotron X-ray fluorescence (SXRF) Se imaging in pancreases and livers of wild-type,
Sod1−/− Gpx1−/− and OE mice. The first two rows represent paraffin-embedded samples; the third
row represents samples from freshly isolated pancreases. The fourth row represents Se distribution
in liver of wild-type and Sod1+/− (1st and 2nd images from the left, respectively), Sod1−/− and
Gpx1−/− samples (2nd and 1st image from the right, respectively). The Se map was acquired at 20 µm
resolution, with a 0.25 s/pixel dwell time using a focused, monochromatic incident X-ray beam of
12.2 keV. SXRF data were processed with Praxes, a CHESS-developed software for image analysis.
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Figure 2. SXRF visualization of seven micronutrients in pancreatic tissue related to the mechanisms 
of insulin secretion. The redistribution of metals in freshly isolated pancreatic tissue in mouse mod-
els overexpressing or lacking major antioxidant enzymes Gpx1 and Sod1. Metal maps was acquired 
at a 20 µm resolution, and a 0.25 s/pixel dwell time using a focused, monochromatic incident X-ray 
beam of 12.2 keV. XRF data were processed with Praxes, a CHESS-developed software for image 
analysis. 

4. Discussion 
The majority of data of the involvement of trace elements in T2DM were obtained by 

estimating their concentration in plasma, urine and scalp hair [29,30] using different ana-
lytical procedures: atomic absorption spectrophotometry, AAS, anodic stripping voltam-
metry, ASV [31] inductively coupled plasma mass spectrometry, ICP-MS [32], as well as 
in situ detection by histochemical techniques, autometallography, radioisotopes and their 
derivative techniques, magnetic resonance imaging (MRI), X-ray fluorescence [1], and flu-
orescent sensors [33]. We note that while other methods exist for imaging subcellular de-
tails (e.g., electron-probe X-ray microanalysis, electron energy loss spectroscopy, proton-
induced X-ray emission), synchrotron X-ray fluorescence, or SXRF-based techniques have 
the unique advantage of combining great elemental sensitivity due to the absence of a 
bremsstrahlung background with the ability to image comparatively thick tissue sections 
at very high spatial resolution [34–37], and allows visualization of the distribution of 
many essential cellular metals at the same time point, with high sensitivity in situ. Re-
cently, De Samber and colleagues performed the first SXRF measurements on single, cry-
ofrozen whole islets of Langerhans [38], and the possibility of exploring distribution and 
content of elements in mouse pancreatic beta-cells was demonstrated as well [39]. 

In addition to the demonstration of the applicability of sample preparation proce-
dures for SXRF-based studies of metal homeostasis, our data show an important link be-
tween the selenium status of the organism and glucose metabolism. Selenium is involved 
in insulin biosynthesis and secretion by the Gpx1 cofactor, while over-increased Gpx1 ac-
tivity plays a negative role in the regulation of insulin secretion [19]. In addition, insulin 
secretion and signaling depend on a cellular redox state [40–42], thus linking selenium 
and Gpx1 with glucose and insulin homeostasis. Interestingly, in humans, high serum 
selenium and selenoprotein P levels are associated with diabetes biomarkers [43], which 

Figure 2. SXRF visualization of seven micronutrients in pancreatic tissue related to the mechanisms
of insulin secretion. The redistribution of metals in freshly isolated pancreatic tissue in mouse models
overexpressing or lacking major antioxidant enzymes Gpx1 and Sod1. Metal maps was acquired at a
20 µm resolution, and a 0.25 s/pixel dwell time using a focused, monochromatic incident X-ray beam
of 12.2 keV. XRF data were processed with Praxes, a CHESS-developed software for image analysis.

4. Discussion

The majority of data of the involvement of trace elements in T2DM were obtained
by estimating their concentration in plasma, urine and scalp hair [29,30] using different
analytical procedures: atomic absorption spectrophotometry, AAS, anodic stripping voltam-
metry, ASV [31] inductively coupled plasma mass spectrometry, ICP-MS [32], as well as
in situ detection by histochemical techniques, autometallography, radioisotopes and their
derivative techniques, magnetic resonance imaging (MRI), X-ray fluorescence [1], and
fluorescent sensors [33]. We note that while other methods exist for imaging subcellular
details (e.g., electron-probe X-ray microanalysis, electron energy loss spectroscopy, proton-
induced X-ray emission), synchrotron X-ray fluorescence, or SXRF-based techniques have
the unique advantage of combining great elemental sensitivity due to the absence of a
bremsstrahlung background with the ability to image comparatively thick tissue sections
at very high spatial resolution [34–37], and allows visualization of the distribution of many
essential cellular metals at the same time point, with high sensitivity in situ. Recently,
De Samber and colleagues performed the first SXRF measurements on single, cryofrozen
whole islets of Langerhans [38], and the possibility of exploring distribution and content of
elements in mouse pancreatic beta-cells was demonstrated as well [39].

In addition to the demonstration of the applicability of sample preparation procedures
for SXRF-based studies of metal homeostasis, our data show an important link between the
selenium status of the organism and glucose metabolism. Selenium is involved in insulin
biosynthesis and secretion by the Gpx1 cofactor, while over-increased Gpx1 activity plays
a negative role in the regulation of insulin secretion [19]. In addition, insulin secretion
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and signaling depend on a cellular redox state [40–42], thus linking selenium and Gpx1
with glucose and insulin homeostasis. Interestingly, in humans, high serum selenium and
selenoprotein P levels are associated with diabetes biomarkers [43], which is in concordance
with animal data [24,44]. We also were able to detect seven micronutrients in freshly
isolated pancreases of our mouse models with disturbed antioxidants status, which might
be implemented in the development of these phenotypes [16,17,19].

Zinc is involved in normal insulin synthesis and secretion, and thus in maintaining
a normal blood glucose level, and its homeostasis is altered in diabetes [45]. Zn is an
essential micronutrient that is required for growth and development of all organisms, but
is also toxic when it accumulates in cells in excess due to its ability to promote oxidative
stress. Interestingly, Zn depletion [46,47], as well as Zn overload [48], may induce and
promote oxidative stress-induced apoptosis in islets’ β-cells, pointing to the necessity of
balanced concentration of this ion for normal cell function. Thus, Zn also links antioxidant
and pancreatic islets biology fields. Manganese is another trace element important for
antioxidant defense, and Mn-Sod is the key mitochondrial enzyme of antioxidant defense
in a cell. Elevated mitochondrial ROS are involved in muscle insulin resistance [49], while
inadequate Mn intake may favor insulin resistance as well [50].

The role of cadmium, iron and chromium in the regulation of insulin homeostasis is
not that notable and/or still needs to be explored. Recent reports showed that cadmium
exposure decreases fasting blood glucose levels and exacerbates type 2 diabetes in mice [51],
while cadmium selectively accumulates in pancreatic islets, thus altering islet function,
and, likely contributing to dysglycemia [52]. Iron overload is a risk factor for diabetes.
The link between iron and diabetes was first recognized in the pathologic conditions,
hereditary hemochromatosis and thalassemia, but high levels of dietary iron also impart
diabetes risk [53]. Chromium is an important factor for enhancing insulin activity. Studies
show that people with type 2 diabetes have lower blood levels of chromium than those
without the disease [54], though newer human studies have reported no effect of chromium
supplementation on the attenuation of the risk of diabetes [55].

The understanding of ion distribution and redistribution in normal and in glucose
metabolism-disturbed phenotypes will significantly improve our insights about the role
of metals in the insulin synthesis and/or release pathways, which are still not completely
understood. The mouse models lacking major antioxidant enzymes Gpx1 and Sod1, their
double knockout, and Gpx1-transgenic mice will be within our scope to understand the
potential involvement of different metals in pancreatic malfunction, and their link with
glucose metabolism.

In order to solidify these findings and to find out the underlying mechanisms of
deep transcriptome sequencing, RNA-seq of mRNA for genome-wide comparison of
gene expression profiles and identification of transcriptional targets of already known
transporters will be the next goals to achieve. Through the analysis of RNA-seq data
from different glucose metabolism-disturbed phenotypes, the identification of specific
gene networks involved in the interrelations between glucose metabolisms and trace metal
homeostasis seems a feasible aim.

5. Conclusions

Analysis of trace metal’s distribution in the pancreas, its comparison with the expres-
sions of genes involved in trace metal’s homeostasis, and its correlation with the functional
abilities of pancreatic islets isolated from different glucose homeostasis-disturbed pheno-
types will give answers to many previously unaddressed questions, such as the role of
micronutrients in insulin synthesis, secretion, and sensitivity, and will highlight pathways
involved in these processes. This novel approach will provide information about the inter-
relations between trace metal homeostasis, native antioxidant defense, and its importance
to glucose metabolism-related diseases and complications. Thus, we hope that these studies
will spawn research on transition metal homeostasis related to islets’ β-cell biology, obesity
and diabetes.
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