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Abstract: Reduced glutathione (GSH) is the most abundant non-protein endogenous thiol. It is a
ubiquitous molecule produced in most organs, but its synthesis is predominantly in the liver, the
tissue in charge of storing and distributing it. GSH is involved in the detoxification of free radicals,
peroxides and xenobiotics (drugs, pollutants, carcinogens, etc.), protects biological membranes
from lipid peroxidation, and is an important regulator of cell homeostasis, since it participates
in signaling redox, regulation of the synthesis and degradation of proteins (S-glutathionylation),
signal transduction, various apoptotic processes, gene expression, cell proliferation, DNA and RNA
synthesis, etc. GSH transport is a vital step in cellular homeostasis supported by the liver through
providing extrahepatic organs (such as the kidney, lung, intestine, and brain, among others) with the
said antioxidant. The wide range of functions within the cell in which glutathione is involved shows
that glutathione’s role in cellular homeostasis goes beyond being a simple antioxidant agent; therefore,
the importance of this tripeptide needs to be reassessed from a broader metabolic perspective.
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1. Introduction

Oxidative stress is one of the main causes of the development of different types of
diseases, such as cancer [1,2], neurodegenerative pathologies [3,4], liver [5,6], cardiac [7,8],
pulmonary [9,10] and renal diseases [11,12]. Therefore, strategies have been developed to
reduce its effects, such as modifying the lifestyle of patients, that is, changes in diet and
physical activity; abolishing any habit that generates oxidizing molecules (such as smoking
or drinking alcohol) is also important. With such measures, it is sought to strengthen the
antioxidant systems of the patient, for prevention of disease or to decrease its effects [13–16].

Regarding oxidative stress, the enzymatic systems that contribute the most to the
generation of ROS include the proteins that are bound to the plasma membrane, such
as the family of NADPH oxidases [17,18], the enzymatic systems that participate in the
lipid metabolism within peroxisomes and the activity of various cytosolic enzymes such
as cyclooxygenases. Although all these sources contribute to the increase in the oxidative
state of the cell, the vast majority of cellular ROS (approximately 90%) originates from the
mitochondria [19,20].

To counteract the effect of ROS, the cell has a series of antioxidant compounds. One of
the most important antioxidant molecules in cellular systems is reduced glutathione (GSH).
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This tripeptide (glutamate, cysteine and glycine) [21,22] is the most abundant non-protein
thiol in cells, with concentration reaching up to 15 mM [20]. Most of this glutathione is in a
reduced state (about 99%), the remaining 1% being oxidized glutathione (GSSG) [23,24]. The
concentration of glutathione is regulated by different processes, such as its own synthesis,
its re-oxidation, its use for the detoxification of diverse substances (such as alcohol and
drugs), and its transport to the different intracellular and extracellular compartments.
(Figure 1) [25,26]. Glutathione, through the multiple activities and functions in which
it participates (neutralization of free radicals, donor of reducing equivalents, coenzyme,
elimination of xenobiotics and other endogenous metabolites, etc.), is important for cellular
homeostasis, since it is involved in the dynamic balance that the organism requires for its
proper functioning and morphological integrity [27–29].
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Figure 1. The Glutathione Cycle. Cellular glutathione homeostasis is directly related to its synthesis,
degradation, transport, and the availability of the amino acids that make up the non-protein thiol.
Different enzymes participate in this regulation process, such as γ-glutamylcysteine synthetase (GCS),
glutathione synthetase (GS), 5-oxoprolinase, glutathione transporters, γ-glutamyl transpeptidases
(GGT), membrane peptidases and amino acid transporters. 5-OP: 5 oxoproline. Modified from [30].

In this review, we describe the importance of glutathione, both inside and outside of the
cell, its transport, its cellular compartmentalization and some associated deficiency diseases.

2. Glutathione Intracellular Compartmentalization

The conservation of hepatic glutathione levels is a dynamic process resulting from
the balance between the synthesis rate, transport, use and removal of such thiols [26]. Its
synthesis takes place only in the cellular cytosol since all the necessary enzymes for its



Antioxidants 2023, 12, 834 3 of 24

synthesis are found there [31]. Nevertheless, within the cell, glutathione is compartmental-
ized into different cell organelles and ratios. A concentration of 1–15 mM is found in the
cell cytosol [20,29]. GSH is also present in the endoplasmic reticulum, nuclear matrix and
peroxisomes, but at concentrations that need to be determined [27,32].

Mitochondria lack the enzymes needed for GSH biosynthesis, therefore the mitochon-
drial GSH pool must be imported from the cytoplasm [26]. This tripeptide is mainly found
in mitochondria in its reduced form. It represents 10–15% of total cellular GSH, with a
concentration range of 5–10 mM [31]. Glutathione cannot freely cross a lipid bilayer because
it is negatively charged at physiological pH, so the outer mitochondrial membrane (OMM)
and inner mitochondrial membrane (IMM) must be equipped with transporters or channels
to facilitate the entry of GSH. The OMM is rich in porins that form aqueous channels
through the lipid bilayer and allow diffusion between the intermembrane space (IMS) and
the cytosol of molecules smaller than ~5 kDa, including glutathione [26]. Kojer demon-
strated that glutathione pools in the IMS and the cytosol are linked by porins [33]. The
inner membrane (IMM) is where, in mammalian cells, the dicarboxylate carrier (DIC) and
the oxoglutarate carrier (OGC) were described to carry most of the GSH [34]. On the other
hand, it has been reported that DIC and OGC together represent only 45–50% of the total
glutathione uptake in hepatic mitochondria, so it has been proposed that the glyoxalase
system contributes to mitochondrial GSH supply. This metabolic pathway is widespread
in all biological systems and is involved in the cellular detoxification of α-ketoldehydes
produced during glycolysis; it catalyzes the conversion of 2-oxaldehyde to 2-hydroxyacid,
through the intermediate S-2-hydroxyacylglutathione. The glyoxalase system consists of
two enzymes, glyoxalase I (Glo I) and glyoxalase II (Glo II) and GSH as a cofactor. In the
cytosol, Glo I catalyzes the formation of S-D-Lactoylglutathione (SLG) from hemithioacetal
(MeCOCH(OH)-SG) generated from methylglyoxal (MG) and GSH. The SLG can enter the
mitochondria and through Glo II is hydrolyzed into D-lactate and GSH; this represents a
complementary mechanism for the supply of GSH to the mitochondria [35].

The concentration of GSH present in the mitochondria is kept constant due to the trans-
port of GSH from the cytosol, through two GSH transportation systems, one of high-affinity,
stimulated by ATP, and one of low-affinity, stimulated by ATP and ADP [36]. In the case
of endoplasmic reticulum, evidence suggests the presence of a transportation system that
allows the selective passage of GSH onto GSSG [37]. In this organelle, GSH contributes to
the reduction of protein-disulfide isomerase (PDI), responsible for catalyzing the formation
of disulfide bonds in proteins [32,37]. The use of GSH to maintain oxidoreductases in their
reduced form leads to a constant production of GSSG in the lumen of the endoplasmic
reticulum. GSSG is transported to the cytosol with facilitation of diffusion through the
Sec61 protein-conducting channel [38], where it is reduced by the enzyme glutathione
reductase [31,37,38].

The mechanisms of nuclear glutathione transport and sequestration are under dis-
cussion [39]. Certainly, the synthesis of GSH does not take place in the nucleus because,
like mitochondria, it lacks the enzymes required for GSH biosynthesis [26]. Bcl-2 proteins
possess a BH-3 domain where GSH binds and since its presence seems to be correlated
to the increase of the GSH pool in the nucleus, it is possible that Bcl-2 proteins are in-
volved in GSH translocation into the nucleus through Bcl-2 associated athanogene pores
(BAG) [39–41]. Diaz Vivancos et al. (2010) proposed a model for the glutathione cycle in
the nucleus [27]. In this model, GSH is recruited and directed to the nucleus in the early
G1 phase of cellular division; thus, GSH increases in the nucleus while cytosolic GSH is
depleted. The altered cytosolic redox environment promotes the synthesis of new GSH,
whereby the overall glutathione pool significantly increases; the nuclear envelope dissolves
so that there is a rebalancing between cytosolic and nuclear GSH during G2 and M phase.
During telophase, the nuclear membrane reassembles, the cell divides and the total GSH
pool is allocated equally among the daughter cells (Figure 2) [27].
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Figure 2. Glutathione intracellular compartmentalization. Glutathione synthesis takes place only
in the cytosol (cyt), but it is distributed to many organelles due to the presence of transporters. In
mitochondria, the outer membrane contains a large amount of porins, which allow glutathione
transport, while dicarboxylate (DIG) and the oxoglutarate (OGC) transporters are present in the
inner membrane. In the nucleus, Bcl-2 proteins are believed to be involved in the GSH translocation
through Bcl2-associated athanogene pores (BAG). Glutathione is also found in the endoplasmic
reticulum (ER), where its facilitated diffusion occurs through the Sec61 protein-conducting channel.
Finally, the exchange between extracellular and intracellular glutathione in the plasma membrane
occurs through the functioning of three families of transporters: the organic-anion-transporting
polypeptide (OATR), the drug resistance-associated proteins (MRP) and cystic fibrosis transmembrane
conductance regulator (CTRF). IMS: Intermembrane space, MM: Mitochondrial matrix, NM: Nuclear
matrix, ES: Extracellular space.

The redox state of GSH/GSSG in plasma is controlled by multiple processes, including
the synthesis of GSH from its constitutive amino acids, cyclic oxidation and reduction
involving GSH peroxidase and GSSG reductase, protein S-glutathionylation, transport of
GSH into plasma, and degradation of GSH and GSSG by γ-glutamyltranspeptidase [31,42].

GSH is present in all mammalian cells in a constant state of metabolic recirculation
(synthesis, degradation, and irreversible loss of GSH). Its half-life is 4 days in human
erythrocytes, 2 to 4 h in the cytosol of rat hepatic cells and 30 h in the mitochondrial
lumen [43]. Many different conditions affect the intracellular GSH contents, some of them
being the presence of heavy metals, high glucose concentrations, heat shock, exposure to
reactive oxygen and nitrogen species including H2O2 and nitric oxide, ozone exposure,
ionizing radiation, cigarette smoke [25,44–46]. Differences between GSH content in some
mammalian cells are listed in Table 1.
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Table 1. Glutathione distribution and homeostasis in different cell types.

Cell Type GSH Cytosolic Concentration GSH Homeostasis References

Astrocytes 8–10 mM
Generate GSH conjugates exported from the
cells by MRPs. Protect brain cells from ROS

and xenobiotics
[47,48]

Neurons 0.2–2 mM
Lack of cystine transportation system,

synthesis depends on cystine uptake via the
cystine/glutamate exchange transporter

[49,50]

Hepatocytes 5–10 mM
Synthesis of GSH protects against oxidative
stress, about 10% of total cytosolic GSH is

transported to mitochondria
[51–54]

Erythrocytes 2.3–3 mM

Its levels are influenced by the environment. In
addition, erythrocytes have the enzymatic

machinery for the synthesis of GSH and the
release of its derivates

[55–57]

Pneumocyte 400 µM in epithelial lining fluid
GSH protects lungs against oxidative damage.
Type II pneumocytes contain more γ-glutamyl

transferase than type I
[58–60]

Cardiomyocyte 2 mM

The insulin-signaling cascade regulates GSH
concentration in ventricular myocytes by PI

3-kinase and MAP kinase pathways for
controlling redox state

[61,62]

3. S-Glutathionylation

Redox regulation of cell function often involves the conversion of reactive thiols on
specific cysteine residues from reduced to oxidized forms [63]. The main types of thiol
modification that have been shown to play an important redox-dependent role include
protein S-glutathionylation which is produced in the cell under physiological conditions
and oxidative stress, both spontaneous and enzymatic [64,65]. Under S-glutathionylation,
GSH may bind to cysteinyl residues in proteins by creating reversible disulfide bonds,
depending on the cysteine position and redox potential [66,67].

This post-translational modification of the protein is primarily catalyzed by glutare-
doxin (Grx), which leads to enhanced or suppressed activity; it can prevent protein degra-
dation by proteolysis or sulfhydryl overoxidation, plays a key role in cellular signaling
and participates in some pathological processes, including atherosclerosis, neurodegener-
ative disorders, cardiovascular diseases, and several types of cancer [65,68–71]. Reports
suggest that protein S-glutathionylation and Grx1 carry out a wide range of antioxidant,
anti-inflammatory, and anti-apoptotic functions in the body, participating in acute and
chronic inflammatory responses [65,72,73].

The glutaredoxin catalytic mechanism depends on the GSH/GSSG ratio. Under an
increase in GSH/GSSG, Grx can catalyze the deglutathionylation of proteins, but under
conditions of decreased GSH/GSSG ratio, Grx can catalyze S-glutathionylation of proteins.
It should also be noted that not only glutaredoxin can participate in these processes [64,65].

Protein S-glutathionylation regulates the structure and function of target proteins,
including actin, Ras, integrins, transcription factors (NF-κB and AKT) [74], and metabolic
enzymes (GAPDH, succinate dehydrogenase, and pyruvate kinase); therefore, it is required
for cellular homeostasis [71,75].

4. Glutathione Transporters and Associated Diseases

There are studies that relate mitochondrial redox state and glutathione content with
diseases and oxidative-induced cell death. Since GSH in mitochondria comes from the
cytoplasmic reserve, the role of transporters becomes important [76]. The participation
of three families of transporters in mammalian cells involved in the transportation and
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movement of glutathione has been demonstrated: a family of drug resistance-associated
proteins (MRP), cystic fibrosis transmembrane conductance regulator family (CFTR) and
organic-anion-transporting polypeptide family (OATP) (Figure 3) [77,78].
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Figure 3. Families of glutathione transport in the plasma membrane. Glutathione transporters belong
to the ABC superfamily, which requires ATP to carry out their functions. Multidrug resistance-
associated proteins (MRP) are involved in GSH export and homeostasis. In addition, they conduct
its derivates efflux. Moreover, the cystic fibrosis transmembrane conductance regulator family
(CFTR) is involved in the export of GSH in the kidney and lungs. Finally, organic-anion-transporting
polypeptide family (OATP) is widely expressed throughout the organs, acting bidirectionally and
regulating the uptake of metabolites in the exchange for reduced glutathione.

4.1. MRP Family

Multidrug resistance-associated proteins (MRP/ABC) are involved in GSH export
and homeostasis. MRP proteins not only regulate GSH efflux, but also transport oxidized
glutathione derivatives such as glutathione disulfide (GSSG), S-nitrosoglutathione (GS-NO)
and glutathione-metal complexes, as well as other glutathione S-conjugates [77,79]. MRP
proteins belong to the C family of the ABC transporter superfamily, which requires ATP
for transportation [80]. These transporters are responsible for the movement of a wide
variety of xenobiotics, including drugs, lipids and metabolic products across plasma and
intracellular membranes [81]. MRPs are located in the plasma membrane of mammalian
cells, while in yeast and plants they are widely located in the vacuole [76]. Moreover, the
MRP family of proteins is made up of 9 transporters (MRP1-MRP9), almost all of which
accept glutathione S conjugates as substrates. One of the first studies that indicated that
glutathione was transported by MRP proteins was with the use of a lung carcinoma cell
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line that overexpresses the MRP1 protein; as a result it was found that it had lower levels of
intracellular GSH and higher levels of extracellular GSH [82].

4.1.1. MRP1

The first human MRP identified as a GS-X and/or GSSG transporter was the ATP-
binding cassette (ABC) protein ABCC1, first known as GSH conjugate pump and later
identified as multidrug resistance protein MRP1 [83,84]. MRP1 is one of the most described
transporters; knowledge of its molecular mechanisms and physiological functions related to
GSH transport and GSH conjugates is the most advanced of all MRP-related proteins [79].

MRP1 carries a wide variety of anticancer drugs, including but not limited to vin-
cristine, etoposide, anthracycline, and methotrexate (MTX). MRP1 has also been shown
to transport other drugs used in the treatment of non-malignant diseases, such as opi-
oids, antidepressants, statins, and antibiotics [85]. In addition to its role in the cellular
extrusion of xenobiotics, MRP1 exports other physiologically important molecules. These
include proinflammatory molecules (e.g., leukotriene C4), hormones (e.g., estrogens and
prostaglandins), and antioxidants (e.g., oxidized and reduced glutathione) [86].

MRP1 is involved in inflammation, detoxification, and oxidative stress. A high level
of MRP1 expression was associated with poor clinical outcomes in children with neuroblas-
toma [87]. Overexpression of MRP1, which represents the strength of cancer cells, can be
targeted by substances such as verapamil, which specifically target this transporter and
trigger lethal oxidative stress in the cancer cell. MRP1, when overexpressed, has been
shown to regulate basal and apoptotic GSH release, suggesting that it plays a key role
in these processes [87,88]. Recently, it was also found to act as a player in ferroptosis
by regulating the abundance of intracellular glutathione. MRP1 is identified as a GSSG
transporter. Inhibition of MRP activity has been shown to promote the accumulation of
GSSG, which is cytotoxic to endothelial cell tumors. MRP inhibition could reduce drug
resistance in cancer cells, and MRP acts as a potential target in cancer therapy [89].

4.1.2. MRP2

Meanwhile, the MRP2 transporter can also transport organic anions, including sulfate,
glucuronide, and GSH conjugates. In addition, MRP2 is also responsible for the biliary elim-
ination of certain endogenous conjugates, such as leukotriene-C4 (LTC4) and conjugated
bilirubin [90].

Mutations in the MRP2 gene are associated with Dubin–Johnson syndrome, a condi-
tion due to the lack of hepatobiliary transport of organic anions without bile salts resulting
in conjugated hyperbilirubinemia [81,82]. Studies have demonstrated that this transporter
is one of the ABC pumps with the highest-level of expression in organs important for
endo- and xenobiotic metabolism, such as the liver, kidneys, and intestine [81]. The MRP2
transporter is known to be present in some malignant human tumors, as demonstrated by
immunostaining of hepatocellular, clear cell renal, colorectal, ovarian, leukemia, mesothe-
lioma, lung, breast, bladder, and gastric cancer samples [83].

4.1.3. MRP3

MRP3 is a relatively poor transporter of GSH-conjugated organic anions compared
to MRP1 and MRP2 [91]. In humans, MRP3 is primarily expressed in the adrenal glands,
kidney, small intestine, colon, pancreas, and gallbladder, with a lower magnitude of
expression in the lungs and spleen. MRP3 appears to play a compensatory role in the
loss of MRP2 in the liver. Elevated levels of MRP3 expression have been detected in
human hepatocellular carcinomas, primary ovarian cancer, and adult acute lymphoblastic
leukemia. Furthermore, MRP3 overexpression was predicted to be a prognostic factor in
childhood and adult acute lymphoblastic leukemia and adult acute myeloid leukemia [90].
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4.1.4. MRP4

MRP4 is a widely versatile transporter that exhibits high substrate specificity com-
posed of a wide variety of amphipathic anions, including steroid and eicosanoid conjugates,
as well as cyclic nucleotides and nucleotide analogs. MRP4 has been shown to play a role
in cyclic adenosine monophosphate (cAMP) homeostasis in vascular smooth cells and
cardiac myocytes [92]. Other tasks have been proposed for MRP4 in platelets, considering
that its location can shift from the granules to the plasma membrane when platelets are
activated and under certain pathophysiological conditions [93]. These include the release
of lipid mediators, as well as a role in aspirin resistance under certain conditions, such as in
patients after coronary artery bypass graft surgery [94].

In addition to its localization in the plasma membrane, MRP4 was shown to be found
in large amounts in the membrane of dense granules. An altered distribution of MRP4 was
observed in platelets from a patient with Hermansky–Pudlak syndrome, in which MRP4
was only detected in the plasma membrane due to the lack of dense granules [95].

4.1.5. MRP5

MRP5 was identified as transporting cAMP, cyclic guanosine monophosphate (cGMP),
and antiretroviral compound PMEA (9-(2-phosphonomethoxyethyl)adenine). It has also
been shown to transport nucleotide/nucleoside analogues and GSH conjugates [96]. MRP5
expression was widely detected in human tissues such as liver, placenta, and cornea, and
in carcinomas. MRP5 expression level was also associated with cisplatin exposure. Several
in vitro studies suggested that MRP5 would transport several anticancer drugs, including
MTX, purine and pyrimidine analogs [97].

4.1.6. MRP6

MRP6 is an organic anion transporter that is mainly distributed on the basolateral
side of hepatocytes and on the proximal tubules of the kidney [98]. Although MRP6 is not
involved in drug resistance, it may be a constitutive transporter in normal and abnormal
hepatocytes [90]. MRP6 can also mediate the transport of glutathione conjugates, LTC4 and
N-ethylmaleimide S-glutathione (NEM-GS) [99].

Mutations found in the MRP6 gene are associated with genetic abnormalities of the
autosomal inherited connective tissue disorder called pseudoxanthoma elasticum (PXE),
which is characterized by the presence of dystrophic elastic fibers in the skin, retina,
and large blood vessels, causing the appearance of bags in the skin, loss of vision and
calcification of blood vessels [100].

4.1.7. MRP7

MRP7 is a lipophilic anion transporter found primarily in the heart, liver, skeletal
muscle, and kidney. MRP7 has a similar substrate range to MRP1-MRP4 and is involved in
phase III (cell extrusion) of detoxification [101], but MRP7 does not engage in direct GSH
transportation [102].

4.1.8. MRP8

MRP8 is an amphipathic anion transporter that is functional for the efflux of purine
and pyrimidine nucleotide analogs including cAMP and cGMP, and may also transport
GSH conjugates [103]. MRP8 is widely expressed in the human body, with the highest levels
in the liver, brain, placenta, breasts, and testis [99]. Although there is a report showing a
decrease in MRP8 level in breast cancer, a high level of MRP8 was reported in breast cancer
and gastric cancer cell lines [96].

4.1.9. MRP9

MRP9 does not transport typical substrates such as drug conjugates and other sub-
stances as do other MRP members [104]. It is highly expressed in breast cancer, normal
breast, and testis; however, its functions are still unknown [105]. There is a study showing
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that in the joint absence of MRP5 and MRP9, some metabolites such as heme and some
others are poorly transported or distributed, causing mitochondrial damage [106].

The available information for this family of transporters is summarized in Table 2.

Table 2. Family of MRP transporters and the molecules they transport.

Transporter Endogenous Substrates References

MRP1
GSH conjugates, cysteinyl leukotrienes, glucuronic acid

conjugates, bilirubin, estradiol, sulfate conjugates, bile salts,
sulfated steroids, GSH, GSSG

[82,107,108]

MRP2
GSH conjugates, cysteinyl leukotrienes, glucuronic acid

conjugates, bilirubin, estradiol, sulfate conjugates, bile salts,
sulfated steroids, GSH, GSSG

[82,107,109,110]

MRP3 GSH conjugates, cysteinyl leukotrienes, glucuronic acid
conjugates, bilirubin, estradiol, sulfate conjugates, bile salts [82,107,111]

MRP4
GSH conjugates, cysteinyl leukotrienes, glucuronic acid

conjugates, estradiol, sulfate conjugates, sulfate conjugates,
cyclic nucleotides, bile salts

[82,111–113]

MRP5 GSH conjugates, glucuronic acid conjugates, cyclic
nucleotides, GSH [82,111,114]

MRP6 GSH conjugates, cysteinyl leukotrienes [82,115]

MRP7 GSH conjugates, cysteinyl leukotrienes, glucuronic acid
conjugates, estradiol [82,116]

MRP8
GSH conjugates, cysteinyl leukotrienes, glucuronic acid

conjugates, estradiol, sulfate conjugates, cyclic
nucleotides, GSH

[82,116]

MRP9 Unknown, but not drug conjugates or other organic anions [117]

4.2. Family CFTR

CFTR proteins belong to the C family of the ABC transporter superfamily [80]. CFTR
is best known as a chloride channel, but it has also been shown to facilitate GSH export in
kidney cell lines and lung tissue [118].

The absence of functional CFTR disrupts epithelial water and ion homeostasis, leading
to the accumulation of dehydrated mucus, recurrent bacterial infections, and ultimately
organ failure and other life-threatening consequences [78]. Cystic fibrosis primarily affects
the lungs, but also affects the pancreas, intestine, liver, kidneys, and sweat glands [119]. For
example, a study in 16-HBE bronchial epithelial cells showed that CFTR gene expression is
increased after 48 h of exposure to cigarette smoke, demonstrating that CFTR expression
can be induced. It is possible that CFTR expression decreases as an initial response, but
as exposure time increases, and as an adaptive antioxidant response, CFTR expression is
induced [120]. However, in a previous study carried out in Calu-3 cells, it was shown that
exposure to cigarette smoke causes a decrease in the synthesis of CFTR mRNA, which was
reflected in the expression of the protein [121].

Another study demonstrated that CFTR deficiency occurs in the nasal respiratory
epithelium of smokers [120]. One of the most likely causes of the decreased function would
be the increase in heavy metals found in cigarette smoke, particularly cadmium, which has
been shown to inactivate CFTR [122].

One report from 2005 indicates that human CFTR channels are reversibly inhibited
by several reactive forms of glutathione (i.e., glutathione disulfide S-oxide [GS(O)SG],
nitrosylated glutathione [GSNO] and GSSG), and glutathione treated with diamide, a
strong thiol oxidizer. The underlying mechanism appears to involve the glutathionylation
of cys-1344 near the signature sequence in the cytoplasmic nucleotide binding domains
(NBDs); this region is predicted to participate in ATP-dependent channel opening [123,124].
Channels could be protected from inhibition by pretreating with N-ethylmaleimide (NEM)
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a thiol alkylating agent, or by reducing agents such as dithiothreitol (DTT) or by the actions
of GSH and glutaredoxin [124]. This finding is important because the CFTR channel is
expressed in the lung and gut; these tissues are continuously exposed to thiol oxidants
under a variety of inflammatory conditions, allowing the reactive glutathione species that
are formed to have the potential for glutathionylation of these channels [125].

4.3. OATP Family

The family of organic-anion-transporting polypeptides (OATPs) consists of eleven
human OATPs, which are classified into six different OATP1–6 subfamilies. OATP1 is
mainly found in human hepatocytes [126]. However, its expression has been demonstrated
in different tissues such as the blood-brain barrier (BBB), choroid plexus, lung, heart,
intestine, kidney, placenta, and testis [127]. The three OATPs that are most abundantly
expressed in the liver are OATP1B1, OATP1B3 and OATP2B1. These transporters act
bidirectionally and regulate the uptake of amphipathic and anionic substances in exchange
for reduced glutathione or bicarbonate [128].

The OATP family of transporters functions independently of ATP and sodium gra-
dients, and instead, relies on the large GSH electrochemical gradient across the plasma
membrane. Two members of the OATP family, OATP1 and OATP2, have been shown to
mediate GSH export by exchanging GSH for solute uptake.

OATP1A1 has been found in cell types other than the proximal tubules, such as hepa-
tocytes, which use the GSH electrochemical gradient to drive organic anion uptake [129].

There have been no studies showing that lack of OATP function causes disease.
However, in several models of cholestatic liver diseases, such as endotoxin treatment,
ethinylestradiol treatment and bile duct ligation, the expression of hepatocellular OATPs
was down-regulated [130].

It is well known that malignant cell transformation alters the pattern of OATP expres-
sion in organs. In fact, the gonad specific OATP6A1 has been identified as a carcinogenic
antigen in lung tumors and lung tumor cell lines [131]. Human Rotor syndrome is an inher-
ited disorder associated with OATPs. It is an autosomal recessive disorder characterized
by conjugated hyperbilirubinemia, coproporphyrinuria and almost no hepatic uptake of
anionic diagnostic agents due to genetic variants in OATP1B1 and OATP1B3 [132].

5. Glutathione Deficiency Causes

The alteration of glutathione transport activity is related to the deficiency or low
activity of the transporters mentioned in the previous section, which is reflected in an
increase in intracellular glutathione concentrations. This condition is associated with some
pathologies [87,88,119].

In humans, a decrease in GSH has been associated with different conditions, such as
deficiency of the enzymes involved in glutathione synthesis [133]; in this case, individuals
show a limited or generalized deficiency of GSH and an accumulation of 5-oxoproline
(in blood and cerebrospinal fluid) leading to metabolic acidosis [43], mental retardation,
neuropsychiatric dysfunction, spinocerebellar degeneration, peripheral neuropathy, my-
opathy, hepato-splenomegaly, hemolytic anemia, aminoaciduria, and severe neurological
complications [134]. These individuals may also develop hypersensitivity to antibiotics
and are more prone to influenza virus infections [43].

For the aforementioned reasons, the maintenance of high concentrations of GSH is
vital for most types of cell, since it plays important roles in the control of biological process,
including metabolic detoxification, protein folding, vitamin regeneration, mitochondrial
health, immune defense against viruses, cellular proliferation regulation, apoptosis, and
redox balance, among others. Control of GSH levels is a proposed strategy for health
improvement and disease prevention [135,136].

Altered levels of GSH could be the result of defects in the enzymes involved in its
metabolism [133] and its excretion through the plasma membrane [137]. An example is
deficiency of CFRT, a protein involved in GSH transmembrane transportation, resulting in
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a decrease in the GSH efflux, reducing its extracellular availability [138] and inducing an
oxidative state, which ends in the apoptosis process [31,138,139].

Another cause is the deficiency of enzymes related to the reduction of GSSG to GSH.
For example, in erythrocytes, a deficiency of glucose-6-phosphate dehydrogenase (G6PDH)
generates a decrease in the concentration of NADPH, necessary for the regeneration of
GSH. This contributes to a decrease in the intracellular content of GSH and therefore,
less is exported to the outside of the cell [134]. Furthermore, stress-promoting exogenous
agents, for example, smoking [140], acetaminophen consumption [141] bacterial and viral
infections, alcoholism, excessive exercise, emotional stress, X-ray, or sun ultraviolet light
exposure [133,141] could alter GSH levels due to the amount of ROS generated. Moreover,
age also influences the loss of GSH, even in healthy individuals, yet antioxidant defenses
decrease [133].

Many other pathologies result in a decrease of GSH levels (Figure 4). The reasons are
diverse, but most coincide with defects in the synthesis or transportation of enzymes or a
shortage of precursors. The organism uses different pathways to successfully increase the
intracellular levels of glutathione and during exogenous regulation, the involved reactions
are summarized in Figure 5 [142–147].
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Figure 5. Pathways to increase intracellular levels of glutathione. Methionine, phenylalanine,
serine and S-adenosyl-L-methionine are cysteine precursors through the transsulfuration pathway.
N-acetylcysteine could be transformed into cysteine via hydrolysis. L-2-oxothiazolidine-4-carboxylate
is an analog of 5-oxoproline (glutamate cycle form), which increases cysteine and glutathione intra-
cellular levels. Dihydrolipoic acid comes from the α-lipoic acid reduction and can reduce glutathione
and cysteine. The latter enters the γ-glutamyl cycle, where it stimulates glutathione synthesis. Finally,
the GSH monoester and diester can be hydrolyzed to GSH.

6. Glutathione and Disease

Plasma glutathione GSH and GSSG levels vary, depending on the life span of a healthy
individual (see Table 3). However, these concentrations can vary significantly when a
disease generates and maintains oxidative stress for long periods, which would produce a
decrease in the concentration of GSH and an increase in GSSG. Below, we describe some
diseases that increase oxidative stress and thereby considerably affect the recovery time
of patients.

Table 3. GSH, GSSG concentrations, GSH:GSSG ratio and EhGSH/GSSG at different stages of an
individual’s life.

Life Period GSH GSSG GSH/GSSG Eh GSH/GSSG Refs.

Childhood 2.7 ± 0.17 mM 0.16 ± 0.02 mM 16.8 −200–220 mV [153,154]

Maturity 2.8 ± 0.9 mM 0.14 ± 0.4 mM 20 −200–240 mV [154,155]

Old age 2.2 ± 2.0 mM 0.15 ± 0.03 mM 14.7 −200–240 mV [154,155]

6.1. Cardiovascular Disease (CVD)

An imbalance in redox homeostasis could cause cardiovascular complications. Devel-
opment and progression of CVD have been characterized by changes in the concentration
of GSH or its oxidation state [20]. There are some mechanisms involved in GSH diminution:
increased oxidation by intracellular oxidizing agents, increased conjugation to molecules,
and increased exit across the cell membrane [137].

Many animal studies have demonstrated the role of GSH in CVD. For example, heat
shock proteins (HSPs) have shown protection against several stress stimuli in mammalian
cells. Human heat shock protein 27 (Hsp27) and murine heat shock protein 25 (Hsp25)
protect against H2O2 by increasing levels of reduced GSH in a G6PDH-dependent man-
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ner [156]. Furthermore, degradation of nuclear factor erythroid 2–related factor 2 (Nrf2) has
been found to contribute to the decreased expression of several antioxidant enzymes [157].
In addition, Nox4 facilitates cardiac-related adaptation to chronic stress by activating Nrf2,
which increases concentrations of GSH and, consequently, increases the GSH/GSSG ratio [158].
In serum from atherosclerotic mice or mouse models with apolipoprotein E deficiency, GSH,
transported in liposomes, reduced susceptibility to oxidation by 2,2′-azobis(2-amidinopropane)
dihydrochloride (AAPH). GSH levels in peritoneal macrophages increased in these mice,
but lipid peroxides and oxidized LDL levels decreased [159]. Another research study
found that N-acetyl cysteine (NAC) might boost GSH levels and reduce liver and plasma
cholesterol levels in mice fed a high-fat diet [160]. Moreover, in the process of atherogenesis,
the ability of macrophages to synthesize glutathione is inversely related to the initiation
and progression of atherosclerosis in apolipoprotein E deficient mice (Apo E-/-). Oxidative
stress is an important factor in atherogenesis. Under oxidative stress, lipid peroxidation is
observed in LDL and arterial wall cells, leading to the formation of atheromatous plaques.
Macrophage GSH decreases the cellular oxidative state, the ability of macrophages to
oxidize LDL, and the development of atherosclerotic lesions in Apo E-/- mice [161]. Again,
glutathione peroxidase 1 (GPx-1) is a critical enzyme in the protection of vessels against
atherogenesis. In the diabetic apolipoprotein E-deficient mouse model, decreased levels or
lack of GPx-1 accelerate diabetes-associated atherosclerosis [162,163].

Furthermore, several human studies demonstrate that GSH has a positive effect on
the cardiovascular system. According to several studies, patients with heart disease and
diabetes have reduced plasma GSH levels. Additionally, patients with CVD have lower
GSH levels than subjects without a CVD history [164]. Type 2 diabetes mellitus (T2DM)
patients showed decreased levels of GSH, and of enzymes involved in GSH synthesis.
In other studies, GSSG and transforming growth factor-beta (TGF-β) levels were higher
in diabetic patients. In this case, an increased level of proinflammatory cytokines and a
decreased expression of enzymes involved in GSH synthesis were observed [150]. The
increased level of GSH in plasma leads to reduced values of systolic and diastolic pressure
and a decreased incidence of diabetes [164]. In addition, the levels of GSH and GSSG
were measured in mononuclear cells in hypertensive patients with or without different
antihypertensive therapies. In hypertensive patients, the levels of GSH decreased while the
levels of GSSG increased. Three months of antihypertensive treatment reduced oxidative
stress and GSSG and increased the levels of GSH [165].

Plasma GSH, on the other hand, decreased by 21% and 40% in patients with asymp-
tomatic and symptomatic CVD, respectively. These results indicate that decreases in the
level of GSH are related to cardiac abnormalities in patients with CVD [166]. The blood test
to measure the level of GSH should be used as a new biomarker to detect CVD in asymp-
tomatic patients [166]. Additionally, increased oxidative stress could lead to myocardial
infarction (MI) in cardiac procedures. The glutathione S-transferase (GST) polymorphism
has been identified as a factor that could increase MI in cardiac surgery. Decreased GPx-1
activity increases risks of stroke and coronary heart disease. Thus, measuring erythrocyte
GPx-1 levels might be used as a predictive value, and increasing the level of GPx-1 could
have a beneficial effect on CVS. Furthermore, studies in patients with T2DM suggest that
GPx-1 is an essential enzyme that plays a protective role in the development of endothelial
dysfunction and atherosclerosis in diabetes [149]. The effect of antioxidants in patients
with atherosclerosis has also been studied in humans. The results demonstrated that ad-
ministrating NAC increased GSH levels and reduced endothelial adhesion molecule levels,
potentially preventing vascular damage in diabetic patients. These results showed how
glutathione has antioxidative and antiatherogenic properties and can lead to the remission
of atherosclerosis [167].

Accordingly, treatment with GSH could reduce oxidative stress and prevent related
diseases. However, the administration of GSH would not be the best solution because
intestinal and hepatic gamma-glutamyl transferase (GGT) metabolizes GSH and decreases
the level of administered GSH [168,169]. Therefore, the administration of pure GSH in the
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form of an orobuccal fast-slow-release tablet on healthy volunteers has been evaluated. In
this trial, it was observed that an increased level of GSH in the blood could result from
GSH absorption through mouth mucosa [170]. Other researchers compared the level of
GSH and other oxidative stress markers in the blood of subjects with metabolic syndrome
after administration of different forms of GSH (oral and sublingual) and NAC [171].

6.2. Neurodegenerative Diseases

Neurodegenerative diseases, such as Parkinson’s (PD), Alzheimer’s (AD), amyotrophic
lateral sclerosis (ALS), and Huntington’s, share several common features in pathogenesis,
such as (i) the accumulation of abnormally aggregated proteins (pathological inclusions),
(ii) oxidative damage and (iii) mitochondrial dysfunction [172]. Each condition causes
alterations in different pathways that enable oxidative damage to establish itself. Below is a
brief description of these changes in some of the most common neurodegenerative diseases.

6.2.1. Alzheimer’s Disease (AD)

AD is pathologically characterized by amyloid β (Aβ) deposition and neurofibrillary
tangles in the brain, and loss of synaptic connections in specific areas of the brain [173].
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial redox-regulated gene in
controlling ROS levels; as intranuclear Nrf2 is decreased in AD, this causes the accumulation
of ROS, senescent organelles, and misfolded proteins [174]. The regulation of the expression
of excitatory amino acid carrier 1 (EAAC1) is promoted by Nrf2. EACC1 is the regulatory
mechanism of neuronal GSH production; therefore, by decreasing the expression of Nrf2,
the expression of the EAAC1 protein is suppressed, which leads to a decrease in cysteine
uptake and consequently to decreased brain GSH levels, and vulnerability to oxidative
stress [174,175].

6.2.2. Parkinson’s Disease (PD)

Neuronal loss in the substantia nigra (SN) is a neuropathological characteristic of
PD, which leads to striatal dopaminergic insufficiency and an increase in the synthesis of
α-synuclein in neuronal inclusions [176]. The α-synuclein binds to ubiquitin and forms
cytoplasmic inclusions of proteins called Lewy bodies; α-synuclein could induce generation
of abundant ROS and inflammatory factors, causing lipid peroxidation and death of
neurons [177]. This causes a decrease in the level of GSH, which constitutes the main
antioxidant defense of dopaminergic neurons [178]. As with AD, the Nrf2 is the main
protein involved in the development of ROS-caused PD [177].

6.2.3. Amyotrophic Lateral Sclerosis (ALS)

ALS is a progressive, fatal neuromuscular disorder characterized by the degeneration
of upper and lower motor neurons leading to somatic muscle dysfunction in the body [179].
In 90% of hereditary cases of ALS, patients have mutations in the superoxide dismutase
1 (SOD1) enzyme which converts O2•− to H2O2 and O2 to protect cells from ROS, and is
directly associated with oxidative stress and inflammation [180]. Recent clinical studies
showed that GSH levels in the brains of ALS patients were decreased compared to those of
age-matched healthy volunteers [181], and the decrease of GSH levels was more prominent
in the motor cortex than in the white matter of ALS patients [182]. These results suggest
that the brains of patients with ALS have limited antioxidant capacity [180].

6.2.4. Huntington’s Disease (HD)

This disease is characterized by an increase in the number of repeats of the cytosine,
adenine, and guanine (CAG) triplet in the Huntington gene, located on the short arm of
chromosome 4, which codes for a protein rich in glutamine residues known as huntingtin
(HTT); therefore, this is considered a hereditary disease with an autosomal dominant
pattern [183]. Some of the indicators of oxidative damage that have been observed in the
striatum and cerebral cortex of patients with HD are an increase in the concentration of
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malondialdehyde (MDA) and 4-hydroxynonenal (lipid oxidation products), increase in
carbonylation and in protein nitration, as well as a decrease in GSH and an increase in the
activity of glutathione peroxidase, catalase, and superoxide dismutase [184].

6.3. Diabetes Mellitus Type 2

Oxidative stress contributes to the pathogenesis of diabetes mellitus type 2 (DM2) by
increasing insulin resistance or affecting insulin secretion [185]. Hyperglycemia increases
free radical production and impairs the antioxidant defense system [186]. In patients with
DM2, there is a decrease in antioxidant defenses, together with reduced levels of specific
antioxidants such as ascorbic acid and vitamin E, and decreased activity of antioxidant
enzymes such as catalase, superoxide dismutase and glutathione peroxidase [187]. In
addition, antioxidant vitamins such as ascorbic acid and tocopherols have been reported to
improve insulin sensitivity [188]. Patients with DM2 have a reduced level of GSH, high
levels of GSSG and TGF-β, increased levels of proinflammatory cytokines, and decreased
expression of enzymes involved in GSH synthesis. Oral GSH supplementation improves
insulin sensitivity, reduces oxidative stress levels, and prevents GSH depletion in individu-
als with DM2. GSH supplementation also increases the levels of Th1-associated cytokines,
IFN-γ, TNF-α, and IL-2, and decreases the levels of proinflammatory cytokines such as IL-6
and IL-10 in these individuals [189]. Reduced GSH concentration levels in DM2 patients’
red blood cells, plasma, and monocytes are accompanied by decreased expressions of glu-
tamate cysteine ligase (GCL), GSH synthetase (GS), and gamma-glutamyl transpeptidase
(GGT), and a decreased substrate, since cysteine and glycine supplementation partially
restore the GSH concentration in these patients [190]. Sodium tungstate is an alternative
to reduce hyperglycemia in the treatment of diabetes. The reduction of hyperglycemia
by sodium tungstate reduces lipid peroxidation and causes alterations in the antioxidant
system in the salivary glands of diabetic rats induced by streptozotocin (STZ) increasing
the GSH/GSSG ratio [191].

On the other hand, both in animal models and in patients, DM2 is frequently accom-
panied by islet fibrosis. Several in vivo and in vitro studies have shown that antioxidants
can successfully inhibit pancreatic fibrosis. GSH can inhibit the activation and proliferation
of pancreatic stellar cells (PSCs), thereby inhibiting pancreatic fibrosis and protecting islet
β cells from damage [192].

6.4. Cancer

ROS are important in the processes of growth, proliferation, metastasis, and survival
of tumor cells. These cells have higher levels of ROS and greater expression and activity
of antioxidant systems than non-cancerous cells. Upregulation of NRF2 (nuclear factor,
erythroid-derived 2-like factor 2) and elevated GSH levels have been observed in various
tumors, including breast, ovarian, prostate, skin, lung, and pancreatic tumors [193]. NRF2
regulates the expression of several enzymes responsible for glutathione synthesis [194].
High ROS production in cancer cells requires high activity of cellular antioxidant systems,
making cancer cells hypersensitive to agents that impair their antioxidant capacity. There-
fore, the reduction in the production or availability of GSH may be important for tumor
therapy [195]. Additionally, GSH acts as a detoxifying agent, so in cancer cells, this process
can be used for the removal of chemotherapeutic drugs. Thus, GSH plays an important
role in chemotherapy resistance, and its inhibition as part of combination therapies has
been shown to be an important approach to improve the efficacy of chemotherapies [196].
On the other hand, because of the high concentration of GSH in many tumors and its
high reactivity, GSH is used as an activator of prodrugs, such as romidepsin, which is
used to treat cutaneous T-cell lymphoma and other peripheral T-cell lymphomas [197]. In
addition, the development of ROS- and GSH-sensitive nanoparticle drug delivery systems
has been proposed to deliver a highly toxic load more specifically and safely to cancer cells.
The GSH-induced disintegration of nanoparticles was demonstrated as an example of this
system, allowing the release of active platinum metabolites, which covalently bound to
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the target DNA and induced apoptosis in cancer cells; however, this technology requires
further investigation for optimization before clinical use [198]. Moreover, cancer cells that
are resistant to radiation and chemotherapy have elevated GSH levels, probably due to
GSH’s ability to quench the ROS generated by these therapies [199].

Beyond its role in cancer cells, GSH synthesis has implications in the tumor surround-
ing microenvironment (TME) for non-malignant cells. For example, obesity is a risk factor
for numerous malignancies and may promote tumorigenesis. Lowering GSH levels, either
genetically or pharmacologically, prevents obesity induced by a high-fat diet. Therefore,
GSH could promote lipid accumulation or storage and support a TME that favors tumor
growth [200,201]. Another group of cells that have been implicated in GSH metabolism
are immune cells. T cells show similar dependence on GSH as cancer cells due to ROS in-
crease during periods of proliferation. Deletion of proteins important for GSH synthesis in
T cells leads to an altered immune response, suggesting that GSH is required for antitumor
immunity [202].

6.5. COVID-19

It has been reported that patients infected with COVID-19 disease have higher oxida-
tive/nitrosative stress and a substantial decrease in vitamin D, as well as alterations in
thiol levels, total antioxidant capacity, GSH and selenium. This appears to be a common
pathway related to the high mortality from COVID-19 [152,203]. It was also found that in
Covid patients, there was a decrease not only in GSH levels but also in vitamins such as A,
C and E, as well as enzymes that combat oxidative stress such as glutathione peroxidase,
superoxidodismutase and catalase [204].

GSH deficiencies have been found in people hospitalized with COVID-19, particularly
in younger humans. This is a significant finding because younger humans are not expected
to be GSH deficient [205]. Furthermore, it has been reported that even children with
COVID-19 showed this GSH deficiency when compared to control values [206]. Finally, it
is known that this deficiency depended on age and was more pronounced in older people.
In addition, in patients with COVID-19, increased lipid peroxidation and damage due to ox-
idative stress were observed. Compared to control samples, significantly reduced levels of
GSH were observed in postmortem cortical samples from COVID-19 patients. SARS-CoV-2
also induced oxidative stress-mediated changes in the testes and epididymis, as seen from
COVID-19 postmortem autopsies compared with controls. GSH levels decreased with
increasing severity of COVID-19 [207].

7. Conclusions

Glutathione plays an important role in antioxidant defense and in the regulation of
the pathways necessary for cellular homeostasis, not only as a detoxifier of endogenous
and exogenous compounds, but also through its participation in processes related to
the modulation of the synthesis of DNA, gene expression, cell proliferation, apoptosis,
S-glutathionylation of proteins, signal transduction, regulation of the immune system and
metabolism of cellular compounds, among others.

Furthermore, glutathione is important for the proper functioning of the metabolism,
considering its cellular distribution and transport. Glutathione transporters are particularly
essential because they minimize fluctuations in its concentration, as well as regulating
the redox state of glutathione in different cellular compartments, while their synthesis,
degradation, and recycling functions act in a coordinated manner.

Finally, glutathione deficiency is known to contribute to oxidative stress, and has
an important role in aging, as well as in the pathogenesis of different diseases, such as
neurodegenerative diseases, liver and kidney disorders, cystic fibrosis, diabetes, and car-
diovascular illness. In any case, it is desirable to maintain an optimal state (concentrations
and redox state) of this cellular tripeptide. As described in this review article, different
glutathione forms are present in the cell, all of which have specific and important functions.
All this makes the study of this small tripeptide even more interesting. Although a wealth
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of information exists about glutathione, more remains to be discovered about its role in
cellular regulation. Therefore, the study of glutathione is an important and extensive field
of research that demands further examination to develop new prevention strategies and
even therapies for many age-related diseases.
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