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Abstract: Brain ageing is a complex physiological process that includes several mechanisms. It is 
characterized by neuronal/glial dysfunction, alterations in brain vasculature and barriers, and the 
decline in brain repair systems. These disorders are triggered by an increase in oxidative stress and 
a proinflammatory state, without adequate antioxidant and anti-inflammatory systems, as it occurs 
in young life stages. This state is known as inflammaging. Gut microbiota and the gut–brain axis 
(GBA) have been associated with brain function, in a bidirectional communication that can cause 
loss or gain of the brain’s functionality. There are also intrinsic and extrinsic factors with the ability 
to modulate this connection. Among the extrinsic factors, the components of diet, principally natural 
components such as polyphenols, are the most reported. The beneficial effects of polyphenols in 
brain ageing have been described, mainly due to their antioxidants and anti-inflammatory 
properties, including the modulation of gut microbiota and the GBA. The aim of this review was, 
by following the canonical methodology for a state-of-the-art review, to compose the existing 
evidenced picture of the impact of the gut microbiota on ageing and their modulation by 
polyphenols as beneficial molecules against brain ageing. 

Keywords: gut microbiota; gut–brain axis; brain; ageing; neurodegeneration; polyphenols;  
inflammation; nutrients; antioxidants; anti-ageing strategies 
 

1. Introduction 
Due to the globally existing demographic context characterized by the increase in life 

expectancy and the large proportion of elderly people worldwide, one of the current great 
challenges in science is the search for strategies to prevent ageing [1]. In this context, 
within ageing, brain ageing is one of the most studied phenomenon, due to its medical, 
social, and economic impacts [2]. Anti-ageing strategies can be multiple, ranging from the 
most interventionists with pharmacological or genetic techniques, to the less 
interventionists that use the modification of lifestyle [3]. In this sense, diet is being 
increasingly studied because its benefits have been known since ancient times, because it 
is an easily modifiable element with a direct effect on general physiology [4,5]. 

Brain ageing is a complex physiological process that includes different mechanisms, 
some clearly described but others under study, which makes the final integration of all of 
them a complex scientific challenge. Among the main known causes of brain ageing and 
neurodegeneration are the limited renewal capacity of neural cells, neuronal/glial 
dysfunction [6], alterations of the brain vasculature and the blood brain barrier (BBB) [7,8], 
and loss of plasticity [9–13], accompanied by an age-dependent decline in the brain repair 
systems, including adult neurogenesis [14]. The causes of this damage are related to an 

Citation: Sarubbo, F.; Moranta, D.; 

Tejada, S.; Jiménez, M.; Esteban, S. 

Impact of Gut Microbiota in Brain 

Ageing: Polyphenols as  

Beneficial Modulators. Antioxidants 

2023, 12, 812. https://doi.org/10.3390/ 

antiox12040812 

Academic Editors: María Jesús 

Rodríguez-Yoldi, Rui F. M. Silva and 

Alessandra Napolitano 

Received: 23 February 2023 

Revised: 10 March 2023 

Accepted: 24 March 2023  

Published: 26 March 2023 

 

Copyright: © 2023 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Antioxidants 2023, 12, 812 2 of 19 
 

increase in oxidative stress levels [15], together with a proinflammatory state [16,17], 
without the appropriate antioxidant and anti-inflammatory responses. In gerontology, 
this condition is defined as inflammaging [16]. The control of this state contributes to the 
prevention of ageing and to the repair of the brain after damage, playing a key role in 
complex brain functions, such as cognition (e.g., memory [18–22], learning [23]), mood 
[24,25], or sensorial ability (e.g., olfactory [26,27]). 

In order to address brain ageing, there are different therapeutic strategies, one of 
which is to consider the modifications of the gut–brain axis (GBA) as therapeutic 
mediators [28]. During the 1960s and 1970s, several peptides were found in both the 
gastrointestinal tract and the brain; subsequently, the concept of amine precursor uptake 
and decarboxylation hypothesis (APUD) was developed. Over time, this evolved into the 
concept of the GBA, based on the predominant concept of a bidirectional communication 
between the gut and the brain [29,30], in health and in disease conditions [31,32]. In this 
bidirectional communication of the GBA, four pathways of communication from the brain 
to the gut are involved: the peripheral autonomic nervous system (sympathetic and 
parasympathetic) (e.g., enteric nervous system or the vagus nerve [33]), the 
neuroendocrine outputs axis (e.g., hypothalamic–pituitary–adrenal axis (HPA)), the 
neuroimmune systems (immune cells and glia [34]), and the systemic circulation [34]. 
There are four main groups of messengers participating in this communication, with the 
ability to modify the cerebral function and behaviour, these being microbial factors (e.g., 
short-chain fatty acids (SCFAs), branched chain amino acids and peptidoglycans [35]), gut 
hormones, cytokines, and sensory neurons (Figure 1). Among the microbial factors, the 
gut microbiota composition is notably, and this comprises several species of 
microorganisms, including bacteria, yeast, and viruses [36], that live in a delicate 
symbiosis. The disruption of this relation, known as dysbiosis and common in ageing, can 
lead to aberrant neural and glial reactivity, accompanied by the loss of brain functionality, 
observed at a cognitive level [37]. Thus, a functional relationship links the gut microbiota 
and GBA with brain functions [34]. Therefore, alterations in this axis not only affect the 
neural regulation of the gastrointestinal tract, but also several brain functions with the 
onset of neurological symptomatology, for instance in mood (e.g., depression, anxiety), in 
neurodevelopment (e.g., autism) [38,39], and in cognition (e.g., Alzheimer’s disease) [40–
42]. It is important to note that imbalances affecting this complex ecosystem can impact 
the permeability of the body barriers, including the BBB and the enteric barrier [43]. 
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Figure 1. Main messengers and pathways of communication involved in the crosstalk between the 
gut and the brain. 

Many factors can influence the microbiota composition and their functionality, both 
intrinsic to the organism itself and to external ones. Among the intrinsic factors, genetics 
and the ageing process significantly affect the composition of the microbiome [44,45]. 
External factors include infectious processes, drug administration (including antibiotics), 
environmental stressors, or factors related to lifestyle, especially diet. In this context, 
dietary polyphenols are pointed out as ductile molecules with the capacity to counteract 
the impact of ageing in the brain, due to their natural antioxidant and anti-inflammatory 
properties [46,47], both directly in the brain due to its ability to cross the BBB, and 
indirectly through modulation of the microbiome and GBA [48–50]. 

The aim of this review is to assess the known data related to the connection between 
the gut microbiota and GBA and brain ageing, with special attention on the impact that 
polyphenols may have on it. To reach this aim, a canonical methodology for a state-of-the-
art review was followed [51]. A list of keywords (gut microbiota; gut–brain axis; brain; 
ageing; neurodegeneration; polyphenols; inflammation; nutrients; antioxidants; anti-
ageing strategies) was initially identified. Then, different keyword combinations, each 
containing the term “ageing”, were used to search the following sources: PubMed, 
Embase, Medline, Scopus, Web of Knowledge, and Google Scholar. Articles published in 
English and indexed as original articles, meta-analysis reviews, narrative reviews, clinical 
cases, and comment to editor, with qualitative and quantitative data, were included in the 
analysis. Although the time range was not limited, the most recent publications were 
prioritized. 

2. Evidence of the Impact of the Gut Microbiota in Brain Ageing 
In the last few decades, gut microbiota have emerged as one of the key regulators of 

brain function, gaining attention for their role in brain health, brain ageing, and 
neurodegenerative disorders [52]. It has also been demonstrated that a crosstalk exits 
between gut microbiota and the ageing process [53]. A large portion of the experimental 
data that have demonstrated the impact of gut microbiota on brain ageing and 
neurodegenerative disorders are based on animal studies: germ-free (GF) animal data, 
infection or antibiotic drug use data, and microbiota transfer studies, but less observations 
from human studies can be found. Altogether, these studies support the hypothesis of a 
key role of the gut microbiota in the ageing process [54], and in central nervous system 
(CNS) disorders [55]. One of the main gut changes that has an impact on ageing is the 
alteration of the gut microbiota composition, accompanied by alteration of the enteric 
barrier. In this case, the presence of harmful microorganisms or substances could also be 
observed, accompanied by a loss of the beneficial ones in the microbioma environment. 
The main interactions between the changes in the gut microbiota and brain ageing are 
summarized in Figure 2. 
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Figure 2. Changes in body systems with an impact on brain ageing. 

(a) Alterations of the gut microbiota composition with an impact on brain ageing: 
Throughout life, many factors can influence the composition of the gut microbiota [56], 
such as the type of delivery at birth [57], genetics [58], infectious processes, antibiotic drug 
use, lifestyle, diet, stress factors, and the development of the ageing process [44,59]. It has 
been demonstrated that certain age-related changes in the composition of the gut micro-
biota are associated with many health conditions, including increased frailty, cognitive 
impairment, or depression, both in humans [44,60–62] and in animals [62,63]. During age-
ing, the gut can be dominated by noxious microorganisms, producers of metabolites with 
adverse effects, a phenomenon known as dysbiosis. These changes, related to the micro-
biome, have been described in many studies and have been attributed to an acceleration 
of the ageing process, in turn, generating impairment in different organs of the human 
body [54], including the brain [64]. An example of these alterations can be seen in the fact 
that some specific microbial taxa, such as the Porphyromonadaceae family, have been related 
to the appearance of cognitive and affective disorders [65–67], despite large individual 
variations. On the contrary, others microorganisms are associated with a reduction of 
frailty in older populations, such as the Bacteroidetes family [68–70], or the species Clostrid-
ium cluster XIVa and Faecalibacterium prausnitzii [68,70,71]. Furthermore, it has been pro-
posed that age-associated characteristic inflammatory status can be, at least in part, pro-
moted by age-associated dysbiosis [72,73]. As age advances, a greater proinflammatory 
state and a lower adaptive immune response are progressively expressed [74–78], which 
contributes to accelerating the aging process and increasing susceptibility to developing 
age-associated chronic diseases, some of which compromise brain health and promote 
CNS functional decline [79]. In this sense, the relationship between the alterations of the 
gut microbiota pattern and some brain alterations has been demonstrated, such as anxiety 
and depression [62], cognitive dysfunction [66], and the development of neurodegenera-
tive diseases such as Alzheimer [80] and Parkinson [81]. Although inflammation may not 
normally represent a triggering factor in neurodegenerative diseases, the severity of the 
neuroinflammation is certainly a factor that accelerates the progression of cognitive de-
cline and the development of neurodegenerative diseases [81–83]. 
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(b) Alterations of the enteric barrier and BBB composition with an impact on brain 
ageing: The enteric/gut barrier and the BBB are two barriers that belong to the GBA, whose 
integrity is central for axis functionality. The enteric barrier is defined as a semipermeable 
tissue that allows the uptake of essential nutrients and the gut immune defence, while 
being restrictive against pathogenic molecules and bacteria from the intestinal tract. Both 
structural and molecular components of the barrier act together to fulfil this essential func-
tion of the gastrointestinal tract. Histologically, the apical layer from gut epithelium is the 
mucus layer, which is formed by a sieve-like structure overlying the intestinal epithelium. 
Antimicrobial peptides and secretory immunoglobulin A (IgA) molecules are secreted 
into the mucus layer as immune-detectors and regulatory proteins. Above this layer, the 
intestinal epithelial cells, which are tightly attached to each other by junctional complexes,  
make a continuous monolayer. The tight junctions are located at the apical side of the cells 
and regulate the transport of small molecules and ions. The adherens junctions and des-
mosomes provide strict cell-adhesion bonds and assist in the maintenance of the integrity 
of the intestinal barrier. The lamina propria contains immune cells from the adaptive and 
innate immune system (e.g., T cells, B cells, macrophages, and dendritic cells) that partic-
ipate in the immunological defence of the intestinal barrier [84]. The gut barrier is the first 
defence against potential harmful agents that could have been ingested with food. This 
barrier constantly deals with innocuous and non-innocuous food antigens, and with  
harmful microorganisms. The gut barrier is equipped to interact with and/or tolerate the 
gut microbiota, induce systemic tolerance to food antigens, and fight against possible 
pathogens. Deficiencies in these functions can lead to intestinal disorders such as inflam-
matory bowel disease and irritable bowel syndrome, food allergy or intolerance, and mi-
crobial infection, which could favour a general body inflammatory state that also impacts 
brain functionality and accelerates the brain aging process [85,86]. 

In turn, the BBB is a term used to describe the exclusive properties of the microvas-
culature of the CNS, characterized for being a semipermeable and extremely selective vas-
cular wall that separates blood from the brain’s extracellular fluid. This barrier is com-
posed mainly of capillary endothelial cells (sealed by special tight junctions), astrocytes, 
and pericytes, as well as some other elements, such as basement membrane and other cell 
types that contribute to the immunological function. These components, which are fre-
quently referred to as the neurovascular unit, preserve a healthy BBB to guarantee the 
appropriate CNS activity [87]. Although the enteric barrier and the BBB provide defence 
in very different environments, there are many similarities in their mechanisms of action. 
In both cases, there is a physical barrier formed by a cellular layer that tightly regulates 
the movement of ions, molecules, and cells between two tissue spaces. These barriers in-
teract with different cell types, which dynamically regulate their function, and with dif-
ferent immune cells that assess the physical barrier and provide innate and adaptive im-
munity [88]. The general postulated hypothesis is that characteristic imbalances of ageing 
that affect the complex ecosystem of the gut microbiota contribute to the decrease in the 
normal function of these barriers, impacting the permeability in such a way that it allows 
the flow of potentially harmful substances into the brain tissue through the GBA 
[34,43,89], which in turn leads to chronic inflammation. In fact, during ageing, it has been 
demonstrated that the integrity and function of the gastrointestinal barrier weakens 
[43,72], negatively affecting BBB permeability and accelerating neuroinflammation and 
functional decline in the CNS [89]. 

(c) Metabolism-derived substances and immune cells with an impact on brain ageing: 
The metabolites generated in the gut as a result of digestion become circulating metabo-
lites when they have passed the enteric barrier, and if they also cross the BBB they may 
enter into the CNS. These metabolites regulate the function of peripheral immune cells, 
which in turn may influence brain function directly or indirectly, for example via the cer-
ebral lymphatic network [90]. This is the case in butyrate, which is produced through mi-
crobial fermentation of dietary fibres in the lower intestinal tract. Butyrate exerts its func-
tions by acting as a histone deacetylase inhibitor or by signalling through several G 
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protein-coupled receptors. This molecule has received particular attention for its benefi-
cial effects on intestinal homeostasis and energy metabolism. Interestingly, butyrate en-
hances intestinal barrier function and mucosal immunity because of its anti-inflammatory 
properties [91]. Growing evidence has highlighted the impact of butyrate on the GBA, 
especially in the regulation of inflammation [92]. In this context, another important mole-
cule derived from digestion is the amino acid tryptophan, which is metabolized by gut 
commensals, yielding compounds that affect innate immune cell functions. Tryptophan 
also acts on receptors that regulate the maintenance of the immune response, including 
lymphoid cells, promoting T helper 17 cell differentiation, and interleukin-22 production. 
In addition, some microbiota-derived tryptophan metabolites (e.g., indole-3-propionic 
acid and indole-3-aldehyde) have endothelial direct protective effects maintaining the vas-
cular endothelium integrity and functionality, influencing the development of vascular 
inflammatory phenotypes [93]. Therefore, the immune system, formed by immune cells 
in the body and microglia cells in the brain, plays an essential role in maintaining tissue 
homeostasis, responding to these molecules, and also in infection and injury. In the brain, 
microglia are the main resident immune cell group; they constantly monitor the microen-
vironment and produce factors that influence surrounding neurons and astrocytes (an-
other glial cell type with important functions for neuron activity). In brief, metabolites 
generated in the gut microbiota can modulate not only the peripheral immune system [56] 
and the CNS microglia activation [94,95], but are also important for the prevention of brain 
inflammation. Interestingly, both systems have been highlighted as being impaired in age-
ing [96]. This can be explained because, in the brain, microglial cells play multiple roles in 
the regulation of inflammatory responses and neuronal function, being pivotal in the 
pathogenesis of neurodegenerative diseases [97]. In line with this, the restoration of gut 
microbiota balance and inflammation can have beneficial effects on brain function and 
age-related diseases [98]. This idea was already pointed out by Metchnikoff more than a 
century ago [99]. Currently, several sequencing studies, along with those modifying the 
gut microbiota composition in animal models by means of the administration of antibiot-
ics or probiotics or transferring the microbiota, not only supports the role of the microbiota 
in brain inflammation and diseases, but also offers new therapeutic perspectives aimed at 
a specific microbial modulation to attenuate ageing or brain pathologies, because the mod-
ifications of the gut microbiota have been reported to have protective effects not only on 
ageing [77], but also on learning, memory [100], and in the attenuation of neurodegener-
ative pathologies such as in Alzheimer’s disease [101]. 

3. Modulation of Brain Ageing by Polyphenols via the Gut Microbiota 
The onset and development of the ageing process can be modulated by lifestyle fac-

tors, such as it the case of diet components that interact with the gut microbiota before 
reaching the brain [102]. The great interest related to this interaction is because diet is an 
easily extrinsic modifiable factor. Polyphenols are one of the leading anti-ageing diet com-
ponents, natural compounds exclusively synthesized by plants with chemical features re-
lated to phenolic substances [103]. Polyphenols can be found in plant-derived food, and 
are promising anti-ageing molecules, especially for the brain, because they have the ability 
to cross the BBB; exert antioxidant and anti-inflammatory properties [104,105]; and gen-
erate positive effects on the preservation of monoaminergic neurotransmitters [106], cog-
nitive and motor functions [107,108], and neurogenesis [109]. All these parameters and 
functions can alter the brain homeostasis, and can thus promote or prevent ageing [110]. 
When polyphenols are obtained from food, their arrival to the brain takes place by passing 
through the enteric barrier, so that all the interactions of these molecules in the gut have 
an impact on the GBA, in the brain functionality and finally in the development of the 
ageing process [111]. In turn, all the age-related changes in the gut, including pathological 
conditions and inflammation, among others [112], have an impact on the absorption, me-
tabolism, and the arrival and effectiveness of the polyphenols in the brain [28]. The effects 
of polyphenols on gut microbiota have been shown in vitro, in vivo, and in human studies 
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(for a review, see [113]), but the mechanisms by which polyphenols modulate the gut mi-
crobiota and have an impact on brain ageing are still unknown. The main demonstrated 
interactions between polyphenols, the gut microbiota, and GBA, with a beneficial impact 
on healthy brain ageing, are described in Figure 3. 

 
Figure 3. Direct and indirect effects of polyphenols on gut microbiome and how these changes di-
rectly affect brain aging. 

(a) Direct effects of polyphenols on the gut microbiota: Gut dysbiosis is one of the 
most frequently found age-related gut disturbances [114]. In this condition, although the 
dietary intake would be rich in polyphenols, their absorption would be deficient. The con-
crete effect of polyphenols on the intestinal microbiota and the GBA is not yet know, but 
increased evidence suggests that these molecules exert selective effects on the gut micro-
bial biodiversity, thus preventing dysbiosis [115]. Specifically, polyphenols would have a 
direct effect on the gut microbioma composition by affecting the bacterial growth and me-
tabolism, favouring an increase in beneficial bacteria and inhibiting the proliferation of 
pathogenic bacteria [113,116,117]. This also occurs with other types of dietry components, 
for instance, the increases in carbohydrate consumption favours the presence of Prevotella, 
being the main bacteria in the gut microbial community, or protein and saturated fat con-
sumption increases the presence of Bacteroides [118,119]. In the case of polyphenols, at least 
in humans, it has been demonstrated that there are some microorganisms that especially 
participate in the metabolism of polyphenols and, in turn, these molecules can enhance 
their abundance, such as Flavonifractor plautii, Slackia equolifaciens, Slackia isoflavonicon-
vertens, Adlercreutzia equolifaciens, Eubacterium ramulus, Eggerthella lenta, Bifidobacterium 
spp., or Lactobacillus spp. (for a complete list of bacteria, see [113]). Interestingly, some of 
them, such as Bifidobacterium spp. and Lactobacillus spp., contribute to the gut barrier pro-
tection and to the decrease in factors related to the gut and general body inflammation 
and oxidative stress, for example, by blocking with their metabolites the activation of the 
nuclear factor-kappa B (NF-κB) or reactive oxygen species (ROS), generating an antioxi-
dative and anti-inflammatory status of the GBA, which would be an important factor for 
preventing ageing [120–122]. This is also the case of Faecalibacterium prausnitzii, which 
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presents anti-inflammatory action by blocking NF-κB activation. Lactobacillus spp. showed 
a neuroprotective role of the gut microbiota, due to its probiotic and high antioxidant ac-
tivity [123]. In addition, Faecalibacterium prausnitzii presents anti-inflammatory action by 
blocking NF-κB activation. Lactobacillus spp. showed a neuroprotective role of the gut mi-
crobiota, due to its probiotic and high antioxidant activity [118,124], while minimally af-
fecting—or even increasing—the population of beneficial bacteria. Altogether, they pre-
vent inflammatory processes, which is key in ageing. Interestingly, it has been demon-
strated that the effects of polyphenols on bacteria are due in part to the differences in the 
bacterial wall composition, Gram-positive bacteria being more sensitive to polyphenols 
than Gram-negative bacteria [125]. 

(b) Indirect effects of polyphenols on the gut microbiota: Depending on the concen-
tration and the chemical structure of the specific polyphenol, and whether it occurs in 
conjugated or free form, the digestion of polyphenols produces phenolic metabolites. 
These metabolites have an impact on the rest of the microbiota and on the GBA [117,126]. 
Using in vitro models, it has been described that polyphenol permeation through the BBB 
is dependent on the degree of lipophilicity of each polyphenol or its metabolites, the less 
polar (i.e., O-methylated derivatives) being capable of greater brain uptake than the more 
polar ones (i.e., sulphated and glucuronidated derivatives) [127]. The arrival of these me-
tabolites to the brain promotes neuro resilience [128]. This occurs in several ways, for ex-
ample, the use of resveratrol in humans, because the resveratrol-derived metabolites, 
named dihydroresveratrol and lunularin, present antibacterial activity on pathological 
bacteria, such as Salmonella enterica, Enterococcus faecalis, and Escherichia coli [129]. These 
metabolites are mainly absorbed in phase II of metabolism in the small intestine, although 
they can also reach the colon [130]. In other cases, polyphenols favour the growth of Rose-
buria sp., which produces, by fermentation of fibre butyrate in the colon [131,132], a SCFA 
with activity as histone deacetylase inhibitor, which has anti-inflammatory and memory 
positive effects in rodent models [133]. 

To a certain extent, the demonstrated worsening of cognition and motor coordination 
in ageing is due to the accumulation of molecules in the brain derived from oxidative 
stress (mainly ROS) and inflammatory status, which produces cytokines and interleukins 
(IL) [134]. This status, accompanied by a lack of sufficient physiological response to coun-
teract it, is a consequence of neural wear caused over the years [135]. Therefore, in this 
context, one important indirect effect of polyphenols is their action neutralizing ROS by 
inhibiting the major ROS-forming enzymes [136], such as monoamine oxidase or xanthine 
oxidase [137,138]. Furthermore, polyphenols and their in vivo metabolites do not act as 
conventional hydrogen-donating antioxidants, but they may exert modulatory actions in 
cells through actions in the protein kinase and lipid kinase signalling pathways [139] and 
may even involve hormetic effects to protect neurons against the oxidative and inflamma-
tory stressors [140]. A study evaluating 45 polyphenolic compounds indicated that whilst 
both the flavanols (+)-catechin and (−)-epicatechin failed to inhibit NADPH oxidase, their 
relevant methylated metabolites exhibited strong NADPH oxidase inhibition through an 
apocynin-like mechanism [141]. Interestingly, other apocynin-like phenolic compounds, 
such as ferulic acid, homovanillin alcohol, caffeic acid, tyrosol, and vanillic acid, were also 
observed to inhibit NADPH oxidase activity, therefore indicating that smaller polyphe-
nols, more structurally related to some colonic metabolites, may also serve as novel ther-
apeutic agents in neuroinflammation. 

Furthermore, polyphenols also act as a chelate of metal ions (mainly iron and copper) 
involved in ROS reactions [142], thus regulating the redox metal homeostasis and pre-
venting metal deposition and neurotoxicity, with important implications for age-related 
neurodegenerative diseases such as dementia, Alzheimer’s, or Parkinson’s disease [143]. 

Polyphenols and their in vivo metabolites activate cellular stress-response pathways, 
resulting in the upregulation of neuroprotective genes. For instance, the polyphenol quer-
cetin has been reported to inhibit neuroinflammation by attenuating nitric oxide produc-
tion and inducible nitric oxide synthase (iNOS) gene expression in microglia [144,145], 
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preventing inflammatory cytokine production and neuronal injury [146,147]. Polyphenols 
can also activate the transcription factor cAMP-response-element-binding protein (CREB), 
which induces the expression of brain-derived neurotrophic factor (BDNF), a mediator of 
neurohormesis. Finally, polyphenols can also regulate the transcription factor NF-κB, 
which can mediate adaptive cellular stress responses by reducing the expression of in-
flammatory cytokines. Activated SIRT1 may also inhibit NF-κB and so can reduce the cel-
lular stress response, altogether modulating genes that encode antioxidant enzymes and 
other stress-response proteins [148]. 

(c) Direct effect of the gut microbiota on the activity of polyphenols: The suitable ho-
meostasis of the gut microbiota has an impact on the activity of polyphenol, because their 
bioavailability depends on it [149]. If polyphenols are well digested and their metabolites 
arrive at the brain, they can exert brain anti-ageing effects. Gut microbiota contribute to 
polyphenol xenobiotic metabolisms and bioactive metabolite production, because gut mi-
crobiota-derived metabolites from polyphenols have been shown to contribute towards 
the metabolism of dietary polyphenols, leading to the generation of de novo and poten-
tially bioactive compounds [150]. More than 90% of dietary polyphenols are not absorbed 
in the small intestine and reach the large intestine; thus, gut microbiota is critically im-
portant in turning these polyphenols into bioavailable products [151]. In general, gut mi-
crobiota metabolizes glycosylated polyphenols into lower molecular weight phenolic 
compounds, such as small phenolic acids [130]. Indeed, these gut microbiota-derived pol-
yphenolic metabolites are also essential bioavailable polyphenolic acids. Polyphenols 
have been shown to undergo various enzymatic processes by gut microbiota, through 
which the polyphenol derivatives are in a form capable of being absorbed or are even 
more bioactive [152,153]. Interestingly, it was also demonstrated that gut bacteria can me-
tabolize polyphenols into neurotransmitters and bioactive metabolites with pro-survival 
and anti-inflammatory effects for the neurons [85]. Therefore, the protective effects of pol-
yphenols also depend on how gut microbiota metabolize these compounds. In fact, based 
on in vitro studies and in vivo studies focusing on the effect on immunometabolism of 
microbiota-derived polyphenolic metabolites, specific metabolizing-bacteria have been 
described, depending on the type of polyphenol that needs to be metabolized, each me-
tabolite having different immunomodulatory effects (for more information, see [150]). 

Once they have arrived at the brain, polyphenols and their metabolites can attenuate 
oxidative and inflammatory damage, preserving cognitive function in the ageing brain 
[154] by suppressing the expression of harmful molecules and senescence-related genes 
[155]. In this sense, the reduction of concentrations of antioxidants in both serum and brain 
cells is inherent to ageing [156], leading to a decline in neural survival and age-related 
functionality worsening, justifying the need for antioxidant and anti-inflammatory sup-
plementation [157]. As previously mentioned, polyphenols have the abilities of antioxi-
dants [136] and chelation of metal ions involved in ROS reactions [142], and are regulators 
of redox metal homeostasis, preventing neurodegenerative diseases such as dementia, 
Alzheimer, and Parkinson [143]. It should be noticed that the effects are accompanied by 
the modulation of polyphenols of signalling pathways and factors involve in cell survival 
preservation and neurogenesis, including SIRT1, NF-κB, Nrf2, and Wnt/β-catenin [46]. 
Both SIRT1 and NF-κB [158,159] are involved in the modulation of the neutralization of 
oxidative stress and inflammation. In response to a proinflammatory stimulus (e.g., tu-
mour necrosis factor-α (TNFα) or IL-1), via Toll-like receptor 2 (TLR2) or cytokine recep-
tors, NF-κB is translocated to the nucleus and activates the transcription of a cascade of 
proinflammatory cytokines and chemokines to induce inflammatory responses [160]. Re-
markably, the activation of NF-κB-regulated gene expression is modulated by post-tran-
scriptional modifications, such as methylation, phosphorylation, or acetylation, which can 
be altered upon stimulation [160,161]. The acetylation of p65/RelA, a subunit of the NF-
κB protein, is of particular interest because it can either potentiate or diminish NF-κB sig-
nalling, depending on the particular acetylated lysine residue [162]. Specifically, the acet-
ylation of lysine 310 is critical for the full activation of NF-κB transcription potential, and 
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this can be deacetylated by SIRT1, a deacetylase and pro-survival protein [163],that can 
prevent inflammation by the deacetylation of the NF-κB protein [164]. In hippocampus 
and during ageing, the acetylated form of NF-κB has been seen to be increased, suggesting 
a lack of the inhibitory effect of SIRT1 against the NF-κB signalling [165]. This contributes 
to an inflammatory response in the brain and ageing [166], which demonstrates a key role 
of SIRT1 as a mediator of cognitive decline in normal ageing [166]. In this sense, polyphe-
nols because of their antioxidant and anti-inflammatory capacity, are described as good 
candidates for the modulation of SIRT1 and NF-kB, which would help in preventing brain 
functionality decline. This is the case in polyphenols, resveratrol, silymarin, quercetin, 
naringenin [165], chatechin, and a diet enriched with polyphenols, which in aged rats have 
been described to modulate SIRT1 and activate the NF-κB signalling pathway, with a pos-
itive impact in the recovery of working memory, episodic-like memory [167], and motor 
coordination [168], always in ageing. Resveratrol also recovers the monoamine levels in 
the hippocampus and striatum [165]. It has been described that polyphenols exhibit their 
beneficial properties through a set of mechanisms, including the potential to modulate the 
triggering of neuroinflammation associated with ageing, by reducing the acetylation of 
NF-κB, which in turn could be due to the rise in SIRT1 levels, in key regions for cognitive 
processes, such as the hippocampus, as has been explained previously. The increase in 
SIRT1 implies not only a decrease in neuroinflammation but also a relation to the regula-
tion of the functionality of cognitive processes, because SIRT1 regulates the expression of 
the neurotrophins involved in the morphology and functionality of synapses, thus regu-
lating synaptic plasticity, adult hippocampal neurogenesis, and cognition [165]. This is 
accompanied by the antioxidant effects of polyphenols in the brain, because they prevent 
the oxidation of enzymes, such as the tryptophan hydroxylase enzyme (TPH) and the ty-
rosine hydroxylase enzyme (TH), and the inhibition of monoamine oxidase enzyme A 
(MAO-A), which together favours the increase in the synthesis and accumulation of mon-
oamines. Moreover, it has been demonstrated that resveratrol enhanced the cholinergic 
system and BDNF and CREB signalling pathways in the prefrontal cortex of an Alz-
heimer’s disease mouse model. This can also improve physical strength [169]. Although 
other effects described after chronic resveratrol treatments involving the contribution of 
the cognitive and motor improvement observed here cannot be proven, it can be postu-
lated that the modulation of SIRT1 and the NF-κB transcription factor would be part of 
this improvement. Therefore, alterations in the gut microbiota with an impact on these 
molecular pathways are essential for the observation of the beneficial effects previously 
mentioned. 

4. Future Research Lines 
Despite all the effects shown, more basic, clinical, and translational research regard-

ing the effect of polyphenos is needed, especially regarding its administration by oral in-
take [111]. The first basic factor to study would be the changes in the gut microbiota pro-
file, depending on the polyphenol diet composition, including the type of components 
and the doses. Relating to the previous idea, another question would be how polyphenols 
interact with the brain, depending on the human gut microbiome biodiversity, because it 
varies among individuals depending on genetical and environmental factors, such as diet 
habits [40]. In addition, the exact degree and the way that polyphenols act to prevent 
dysbiosis and ageing should also be addressed. All these interactions affect the metabo-
lome, and consequently significant differences in metabolite concentrations can be ob-
served, even if subjects consume the same diet. Furthermore, it also influences the arrival 
to the brain of potential beneficial metabolites from polyphenols. This could be studied in 
the serum/plasma of subjects recruited in clinical trials, with the aim to prove the effect of 
polyphenols on ageing. Great efforts should be made in order to design clinical trials to 
test the pharmacokinetics, safety, and efficacy of polyphenol oral intake in relation to the 
prevention of brain ageing. In this sense, there are many clinical trials related to young or 
adult populations [170], but in the aging population they are still scarce. Some clinical 
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trials in young and adult people have been performed in patients with Type 1 diabetes, in 
which cocoa flavanols improved cognition and hemodynamic responses [171]. In healthy 
adults (aged 40–60 years old, n = 101) with overweight and obesity, the long-term (24 
weeks) supplementation with anthocyanin-rich Aronia melanocarpa extract (90 mg and 150 
mg) improved psychomotor speed [172]. In a double-blind controlled trial in young sub-
jects (n = 90) with sickle cell disease, spearmint extract intake (900 mg/d) improved work-
ing memory compared to the placebo group [173]. Regarding the few trials focused on 
older people, it was found that patients with mild cognitive impairment saw an improve-
ment in age-related episodic memory impairment after the consumption of flavonoids (n 
= 215, age: 60–70 years old, 6 months, 258 mg/d) [174]. In a randomized controlled trial 
with older people (n = 37, 12-week), the consumption of cherry juice improved memory 
and performance during learning tasks [175]. Furthermore, cognitive performance and 
attention were improved (n = 100, 12-week, 800 mg/d) after Lactobacillus plantarum (C29-
fermented soybean) consumption [176]. The same effect was observed when Cosmos cau-
daus supplement (n = 23, 500 mg/d) was used [177]. Finally, another study showed that 
Persicaria minor extract supplement rich in polyphenols (n = 36, 6-month, 500 mg/d) im-
proved visual memory, negative mood, and bilateral dorsolateral prefrontal cortex acti-
vation in this type of patient. However, there is a lack of trials focusing on non-patholog-
ical ageing situations. Therefore, more clinical trials are needed, such as the MaPLE trial 
[178], which found changes in serum metabolome in healthy elderly people after the con-
sumption of a diet enriched with polyhpenols over 8 weeks. 

On the other hand, animal models could also be interesting to study the amount of 
metabolites of polyphenols in the brain after oral consumption of polyphenols, or how 
this affects monoamine concentration as they are brain activity modulators. They could 
also be used to investigate the molecular pathways involved in ageing, including the ex-
pression of the main proteins involved in inflammaging. Moreover, the study of the effects 
of polyphenols on metagenomics, anatomy gut diversity, and the relation with metabo-
lomics should also be addressed. For example, several studies have indicated a high in-
terindividual variability, at least in humans, regarding polyphenol metabolism, two pro-
files of people being recognized regarding their response to metabolizing polyphenols in 
the gut: “producers” and the “non-producers”. The first group would be people who pro-
duce metabolites (e.g., equol and O-desmethylangolensin from isoflavones), and the 
“non-producers” would be people who do not produce them [179,180]. Finally, it could 
be addressed if the described effects of polyphenols at the molecular level in brain cells 
are due to an indirect mechanism of action on SIRT1, or to an enzyme direct action, as 
occured in the in vitro experiments [181,182]. Thus, the knowledge of the mechanism of 
action of polyphenols would help in the design of new drugs and more specific and effec-
tive anti-ageing therapies. 

5. Conclusions 
The gut microbiota and the brain are bidirectionally communicated via the GBA. This 

implies that changes in this communication are the causes of the loss or the gain of brain 
homeostasis and, consequently, they have an impact on brain ageing. There are extrinsic 
factors, such as diet, which have the ability to affect this gut–brain connection. Natural 
components of diet, such as polyphenols, due to their antioxidants and anti-inflammatory 
properties, have been highlighted as modulators of brain ageing, one of the ways being 
the regulation of gut microbiota and the GBA. Numerous studies in animals and some in 
humans have shown these favourable effects of polyphenols on brain ageing via the gut 
microbiome and GBA, indicating the need for further research in order to develop thera-
peutical strategies against ageing based on the oral intake of polyphenols. This topic is an 
actual and prevailing research line, focusing on the prevention of brain ageing. 
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