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Abstract: Metabolic stress and the increased production of reactive oxygen species (ROS) are two
main contributors to neuronal damage and synaptic plasticity in acute ischemic stroke. The su-
peroxide scavenger MnTMPyP has been previously reported to have a neuroprotective effect in
organotypic hippocampal slices and to modulate synaptic transmission after in vitro hypoxia and
oxygen–glucose deprivation (OGD). However, the mechanisms involved in the effect of this scavenger
remain elusive. In this study, two concentrations of MnTMPyP were evaluated on synaptic trans-
mission during ischemia and post-ischemic synaptic potentiation. The complex molecular changes
supporting cellular adaptation to metabolic stress, and how these are modulated by MnTMPyP, were
also investigated. Electrophysiological data showed that MnTMPyP causes a decrease in baseline
synaptic transmission and impairment of synaptic potentiation. Proteomic analysis performed on
MnTMPyP and hypoxia-treated tissue indicated an impairment in vesicular trafficking mechanisms,
including reduced expression of Hsp90 and actin signalling. Alterations of vesicular trafficking
may lead to reduced probability of neurotransmitter release and AMPA receptor activity, resulting
in the observed modulatory effect of MnTMPyP. In OGD, protein enrichment analysis highlighted
impairments in cell proliferation and differentiation, such as TGFβ1 and CDKN1B signalling, in
addition to downregulation of mitochondrial dysfunction and an increased expression of CAMKII.
Taken together, our results may indicate modulation of neuronal sensitivity to the ischemic insult, and
a complex role for MnTMPyP in synaptic transmission and plasticity, potentially providing molecular
insights into the mechanisms mediating the effects of MnTMPyP during ischemia.

Keywords: hypoxia; oxygen–glucose deprivation; hippocampus; EPSP; superoxide dismutase;
ischemia-reperfusion injury; oxidative stress; synaptic transmission; synaptic plasticity; proteomics;
MnTMPyP

1. Introduction

Stroke is a leading cause of morbidity and mortality worldwide, with ischemic stroke
being the most common type of stroke [1]. One of the most devastating consequences of
ischemic stroke is the impairment of synaptic plasticity which contributes to the cognitive
deficits that occur after an insult [1,2]. While the recanalization of the blood flow remains the
main therapeutic approach, reperfusion after ischemia can lead to further damage, termed
ischemia-reperfusion injury (I-RI) [3]. One of the key mechanisms by which IRI causes
injury is through the effects of oxidative stress [3,4]. During ischemia, the release of the
excitatory neurotransmitter glutamate overstimulates the ionotropic glutamate receptors,
causing a sustained increase in intracellular calcium. The main pathway is triggered by
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N-methyl-D-aspartate (NMDA) receptors, leading to a number of downstream deleterious
effects, including alteration in mitochondrial electron transport and an increase in reactive
oxygen species (ROS) production [5,6].

ROS, such as superoxide (O2), hydrogen peroxide (H2O2) and hydroxyl, are highly
reactive molecules that can directly damage proteins, lipids, nucleic acid and other cellular
components [7]. Subcellular organelles display complex proteomic responses to impaired
energy metabolism and oxidative stress, with these responses ultimately determining the
death or survival of the cell. Proteomic analysis by other researchers has demonstrated
the activation of neuronal pathways following ischemia and reperfusion, including mito-
chondrial energy production, endoplasmic reticulum stress and ribosomal dysfunction [8].
This metabolic stress also induces microglial release of remodelling factors and cytokines,
such as VEGF and TGF-β1. A plethora of cellular activities, including cell proliferation,
differentiation, apoptosis, adhesion and migration, are controlled by TGF-β. It also plays an
important role in the regulation of glucose metabolism, modulating glucose transport type
1 (Glut1) mRNA levels and increasing glucose uptake [9]. Bae et al. outlined a role for this
cytokine in hippocampal synaptic transmission and plasticity. They reported that TGF-β1
regulates the expression and localization of key subunits of α-amino-3-hydroxy-5-methyl-
4-isoxazoleproprionic acid (AMPA) and NMDA receptors, influencing glutamate-evoked
currents and facilitation of neurite outgrowth [10]. The TGF-β signalling pathways are
regulated by the plasticity and dynamicity of the actin cytoskeleton, which alters the
distribution and activity of ligands and receptors [11].

Recent reports have implicated changes to the dynamics of the actin cytoskeleton upon
the release of ROS from mitochondria and subsequent cell death. The actin cytoskeleton is
involved in the generation and maintenance of cell morphology, in endocytosis, intracellular
trafficking and in cell division [12]. In neurons, about 80% of actin is in a dynamic state, and
its turnover can account for 50% of ATP utilization [13]. Therefore, the actin cytoskeleton is
impacted by ATP depletion conditions, such as ischemia. The alteration of the structure of
the actin cytoskeleton causes a redistribution of NMDA receptors from dendritic spines
and reduces the activity of the receptors at the synapse [14]. A pro-oxidant state is also
involved in vesicular trafficking, modulating the synaptic distribution of NMDA and
AMPA receptors, crucial mediators of synaptic transmission and potentiation [15,16].

Modulation of the cellular oxidant state using scavengers has been reported to affect
ROS-mediated receptor trafficking and dysfunctions. In a model of ischemia/reperfusion
injury, the superoxide dismutase mimetic MnTMPyP prevented the internalization and
subsequent endocytic trafficking of synaptic receptors [17]. In an in vivo study in mice
exposed to brief and repetitive episodes of I-RI, the administration of MnTMPyP rescued
synaptic plasticity, ameliorating the deleterious effect of the hypoxic insult on synaptogene-
sis [18,19]. We have previously shown that the superoxide dismutase mimetic MnTMPyP
has a neuroprotective effect in hippocampal slices exposed to hypoxia and oxygen–glucose
deprivation (OGD) [20].

To further explore its biological effects on synaptic transmission and plasticity, we
tested whether MnTMPyP affects LTP post-hypoxia and OGD in the CA1 area of the
hippocampus. Additionally, we performed mass-spectrometry-based proteomic analysis in
the hippocampus (followed by protein enrichment analyses) to assess the cellular adaptive
responses to metabolic stress and how these are modulated by MnTMPyP.

2. Materials and Methods

All animal experiments were approved by the Animal Research Ethics Committee of
the Biomedical Facility at University College Dublin (protocol code AREC-20-30-Oconnor,
5 January 2021) in accordance with the European legislation.

2.1. Preparation of Acute Hippocampal Slices

Three-to-four-week-old male and female Wistar rats (p21–p28) were used in these
experiments. The rats were sourced from Charles River and bred in the Biomedical Facility
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in UCD. Animal diet was a Global Diet 2918. Animals were anesthetized with 5% isoflurane
and euthanized by decapitation using a guillotine. The brain was rapidly removed and
mounted for vibratome sectioning in ice-cold dissection artificial cerebrospinal fluid (aCSF)
consisting of 125 mM NaCl, 25 mM NaHCO3, 1.25 mM NaH2PO4, 2.5 mM KCl, 10 mM
glucose, 5 mM MgSO4 and 1 mM CaCl2 and perfused with 95% O2/5% CO2. The 400 µm
transverse hippocampal slices were cut using a Leica VT 1000 S Vibroslice. Slices were
immediately transferred into a holding chamber containing recording aCSF, consisting of
125 mM NaCl, 25 mM NaHCO3, 1.25 mM NaH2PO4, 2.5 mM KCl, 10 mM glucose, 1.3 mM
MgSO4 and 2.5 mM CaCl2 perfused with 95% O2 and 5% CO2 for 1 h at room temperature.
Hippocampal slices were then transferred to a submerged recording bath continuously
perfused with recording aCSF from a 50 mL reservoir (30–31 ◦C) at a flow rate of 4 mL/min
and bubbled with 95% O2/5% CO2. Slices were allowed to adjust to the environment of
the recording bath for at least 30 min before recording.

2.2. Electrophysiology

Field excitatory postsynaptic potentials (fEPSPs) were elicited by stimulation of the
Schaffer collateral pathway of the CA1 region in the hippocampus using aCSF-filled
monopolar glass electrodes (1B150F-4, World Precision Instruments). fEPSPs were recorded
from the CA1 pyramidal neurons. The stimulating electrode was connected to a S48 Stim-
ulator (Grass Instruments; A-M Systems, Sequim, WA, USA) via a Grass SIU5 stimulus
isolation unit. The recording electrode was connected to a P55 AC-coupled amplifier
(Grass Instruments; AstroNova, West Warwick, RI, USA) and fEPSPs were acquired at
20 kHz. Stimulus strength was adjusted in order to give 40% of the maximal response,
determined by input/output curves. Paired fEPSPs were stimulated every 30 s, separated
by 50 ms intervals. Hippocampal slices were stimulated for a minimum of 20 min at 40%
of maximal fEPSP slope in order to obtain a stable baseline before drug application or
exposure to hypoxic condition. In order to evaluate the effects of the drug on baseline
synaptic transmission, the compound was applied after 20 min baseline and incubated for
1 h. In long-term potentiation (LTP) experiments, synaptic potentiation was induced by
high-frequency stimulation (HFS) consisting of 3 trains of 1 s duration every 30 s at 100 Hz.
In post-ischemic LTP experiments, control and treated hippocampal slices were exposed to
20 min hypoxia or 10 min OGD. After 40 min of recovery, LTP was evoked using the same
HFS protocol as previously described. Slices were incubated with MnTMPyP (25 µM and
2.5 µM) for 20 min before switching to ischemic conditions and LTP induction. Recordings
were acquired and analysed using the software package WCP (J. Dempster, Strathclyde).

2.3. Ischemia-Reperfusion Injury

Hypoxic slices were exposed to hypoxia by switching the gas that passed over the
slice chamber from 95% O2/5% CO2 to 95% N2/5% CO2 for 20 min. Re-oxygenation
was obtained by switching the gas from 95% N2/5% CO2 back to 95% O2/5% CO2. Pre-
vious reports in our laboratory have reported O2 brain slice levels that occur from this
procedure [21,22]. OGD slices were perfused with glucose-free aCSF supplemented with
equimolar sucrose and gassed with nitrogen for 10 min (95% N2/5% CO2). At the end of
the OGD episode, slices were reperfused with oxygenated-glucose-containing aCSF. Slices
were incubated with MnTMPyP (25 µM and 2.5 µM) for 20 min before performing hypoxia
or OGD.

2.4. Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS)
2.4.1. Sample Treatment for LC-MS/MS

Three-to-four-week-old male and female Wistar rats (p21–p28) were used in these
experiments. Animals were anesthetized and euthanised, and hippocampal slices (400 µM)
were extracted as previously described (Section 2.1). Slices were treated for LC-MS/MS on
the electrophysiology rig where one n represents four hippocampal slices from the same
animal. Treatment groups included: 1. normoxia; 2. hypoxia, 3. OGD, 4. MnTMPyP
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alone; 5. MnTMPyP and hypoxia; and 6. MnTMPyP and OGD, where each treatment
group contained n = 4 (each n is from a different animal). For controls (normoxia), slices
were perfused for 2 h with 95% O2/5% CO2. For the hypoxia group, slices were perfused
with (95% N2/5% CO2) for 20 min followed by 40 min reperfusion (95% O2/5% CO2).
For the OGD group, slices were perfused with 95% N2/5% CO2 and glucose-free aCSF
followed by 40 min reperfusion (95% O2/5% CO2). For MnTMPyP-treated groups, slices
were perfused with 95% O2/5% CO2 and MnTMPyP only for 2 h. For MnTMPyP and
hypoxia/OGD-treated groups, slices were perfused with MnTMPyP for 1 h followed by
20 min hypoxia (95% N2/5% CO2) or 20 min OGD (95% N2/5% CO2 and glucose-free
aCSF), followed by reoxygenation (95% O2/5% CO2) for 40 min. Samples were stored at
−80 ◦C (in aCSF) before being prepared for LC-MS/MS.

2.4.2. Digestion and Mass Spectrometry of Proteomic Samples

Each n sample of 4 hippocampal tissue slices (as described above) was first lysed in
200 µL Urea buffer (8 M Urea, 50 mM triethylammonium bicarbonate) containing protease
inhibitors (Roche, cOmplete Mini, Cat Nr 11836153001) sonicated in 3 × 10 s bursts with
a handheld probe (Microson Ultra Sonic Cell Disruptor XL, Misonix Inc. New York, NY,
USA) while ensuring samples remained on ice between bursts, and then spun (15,000× g
for 10 min at 4 ◦C) to remove cell debris. Supernatants were collected and protein content
was determined using a modified Bradford assay (Ramagli and Rodriguez, Electrophoresis
1985, 6, 559–563). For-digestion samples were diluted to 50 µg in 50 µL with 50 mM TEAB,
reduced with dithiothreitol for 1 h (27 ◦C, final concentration 10 mM) and alkylated for
30 min. with iodoacetamide (RT, final concentration 20 mM). Prior to addition of trypsin
(1 µg, Pierce Trypsin Protease MS grade, Cat Nr 90057), samples were diluted with 50 mM
TEAB (pH 8.0) to ensure the correct pH and to reduce the Urea content to <2 M. Digestion
was carried out at 37 ◦C with agitation on a Thermomixer (16 h) and subsequently halted
with the addition of TFA (trifluoroacetic acid) to a final concentration of 1%.

The tryptic peptides were desalted using ZipTips (C18, Millipore ZTC18S096) as per
the manufacturer’s instructions and resuspended in 0.1% formic acid for mass spectrometry.
Peptide content was measured on a DeNovix spectrometer to ensure equal loadings of
samples for mass spectrometry. Desalted peptides were loaded onto EvoTips and run on
a timsTOF Pro mass spectrometer (Bruker Daltonics, Bremen, Germany) coupled to the
EvoSep One system (EvoSep BioSystems, Odense, Denmark). The peptides were separated
on a reversed-phase C18 Endurance column (15 cm × 150 µm ID, C18, 1.9 µm) using the
preset 30 SPD method. Mobile phases were 0.1% (v/v) formic acid in water (phase A)
and 0.1% (v/v) formic acid in acetonitrile (phase B). The peptides were separated by an
increasing gradient of mobile phase B for 44 min using a flow rate of 0.5 µL/min.

The timsTOF Pro mass spectrometer was operated in positive ion polarity with TIMS
(Trapped Ion Mobility Spectrometry) and PASEF (Parallel Accumulation Serial Fragmen-
tation) modes enabled. The accumulation and ramp times for the TIMS were both set to
100 ms with an ion mobility (1/k0) range from 0.6 to 1.6 Vs/cm. Spectra were recorded in
the mass range from 100 to 1700 m/z. The precursor (MS) Intensity Threshold was set to
1000 and the precursor Target Intensity set to 20,000. Each PASEF cycle consisted of 1 MS
ramp for precursor detection followed by 5 PASEF MS/MS ramps, with a total cycle time
of 1.17 s.

2.4.3. Data Analysis for Mass Spectrometry

Raw data from the timsTOF mass spectrometer were analysed with MaxQuant
(v 2.0.3.0). The Uniprot Rat reference proteome (downloaded 17 June 2021) was searched
against using the following parameters: Trypsin was selected as the digesting enzyme.
Variable modifications were set at oxidation on methionine and N-terminal acetylation,
while carbamidomethylation of cysteine was set as a fixed modification. Two missed
cleavages were allowed. The LFQ (Label-Free Quantitation) option was selected, as was
the ‘Match between runs’ option. A FASTA file containing common contaminants was
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also selected to be searched. Subsequent statistical analysis was carried out with Perseus
software (v 2.0.6.0) using the LFQ Intensity values in the proteinGroups.txt MaxQuant
output file. Data were first filtered to remove contaminants and reverse hits. The data were
then log2 transformed and filtered such that proteins listed appeared in a minimum of 70%
of all samples. Absent values were then replaced by imputation of values from the normal
distribution. Samples were grouped according to treatment category. Two-way ANOVA
tests, followed by post hoc two-sample unpaired two-tailed Student’s t-tests were then
performed to determine proteins that were statistically differentially expressed between
the treatment groups (p < 0.05). The mass spectrometry proteomics data were deposited in
the ProteomeXchange Consortium via the PRIDE [1] partner repository with the dataset
identifier PXD040890.

2.4.4. Functional Enrichment Analysis

Ingenuity Pathway Analysis software (Qiagen, Hilden, Germany) was used to iden-
tify significantly enriched canonical pathways and networks in the above treatments,
based on significantly differentially expressed proteins based on two-sample two-tailed
unpaired Student’s t-tests. The significance of association between the given dataset and
predicted canonical pathway was calculated using the right-tailed Fischer’s exact test with
the Benjamini–Hochberg correction applied for multiple comparisons. For prediction of
associated canonical pathways and enriched networks, Ingenuity Pathway Analysis soft-
ware used the Ingenuity Knowledge Base, which is a repository of data based on extensive
information from published literature. For canonical pathways, apart from the p-value of
overlap, a ratio indicating the strength of the association was also provided (the number of
genes from the dataset that map to the pathway divided by the total number of genes that
map to the canonical pathway). Pathways with high ratios and low p-values may be the
most likely candidates for an explanation of the observed phenotype. For each network,
the Ingenuity software generates an enrichment score that takes into account the number
of eligible molecules/proteins in the network and its size, as well as the total number of
network-eligible molecules analysed and the total number of molecules in the Ingenuity
Knowledge Base that could potentially be included in networks.

2.5. Drugs

Cell-permeant SOD mimetic manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin
(MnTMPyP) was purchased from Enzo Life Sciences and dissolved in dimethyl sulfoxide
(DMSO) obtained from Sigma. MnTMPyP was dissolved in DMSO with a final concen-
tration equal or less than 0.1% when diluted in aCSF. DMSO control experiments were
carried out at the same dilution. For LC-MS/MS, treatments with MnTMPyP were at a
final concentration of 25 µM. For electrophysiology, treatments with MnTMPyP were at a
final concentration of both 2.5 µM and 25 µM.

2.6. Statistical Analysis of Electrophysiological Studies

Electrophysiological recordings were acquired and analysed using the software pack-
age WinWCP (Ver 5.2.7, J. Dempster, Strathclyde, UK). All fEPSP slope measurements
are represented as a percentage of their initial mean baseline slope. Baseline recordings
were determined by the average of fEPSP slope over a 20 min period prior to drug ap-
plication or hypoxia/OGD induction. All data are presented as mean ± SEM. Statistical
analysis between controls and drug-treated slices was tested with an unpaired Student’s
t-test using Prism Software (Ver 9.0 GraphPad). A minimum of p < 0.05 was considered to
be statistically significant. The n values correspond to the number of slices used in each
experimental group.
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3. Results
3.1. The Effects of MnTMPyP on Synaptic Transmission and Plasticity

In the CA1 region, there was no change in fEPSP slope over a 1 h time-course
(20 min: 103 ± 2.5%; 1 h: 98 ± 3.3%; p > 0.05; n = 19). To determine the precondition-
ing effect of the SOD mimetic, MnTMPyP (2.5 µM and 25 µM), slices were perfused with
MnTMPyP for 1 h once a stable baseline had been established for 20 min. Pre-treatment with
2.5 µM MnTMPyP did not significantly alter baseline transmission (20 min: 105.3 ± 3.35%;
1 h: 81.9 ± 14.1%; p > 0.05; n = 11). However, in the presence of 25 µM MnTMPyP there
was a significant decrease in fEPSP slope over 1 h (baseline 20 min: 105.9 ± 5.2%; baseline
1 h: 76.3 ± 7.5%; n = 11; p < 0.05) (Figure 1A,B). To determine the preconditioning effects
of MnTMPyP (2.5 µM and 25 µM) on synaptic plasticity, slices were stimulated with HFS.
Control slices gave rise to a robust synaptic potentiation (135.0 ± 6.1%, n = 27) after 60 min.
Application of MnTMPyP (2.5 µM) did not impair synaptic plasticity (121.0 ± 9.2, n = 9).
However, higher concentrations of MnTMPyP (25 µM) impaired synaptic potentiation and
significantly reduced baseline synaptic transmission 60 min after the HFS (74.3 ± 9.3%,
n = 11) (Figure 1C,D).

3.2. MnTMPyP Does Not Affect Synaptic Transmission during OGD and Post-Ischemic LTP

It has previously been reported that application of MnTMPyP (25 µM) modulates
synaptic transmission recovery after an insult of 20 min OGD in the CA1 area of the hip-
pocampus [20]. In order to evaluate the effect of the superoxide scavenger on post-ischemic
synaptic plasticity, a 10 min model of oxygen–glucose deprivation was used. This model
allows a full recovery of fEPSP after the ischemic episode and synaptic potentiation follow-
ing HFS. In control slices, a 10 min OGD episode gave rise to a maximum depression of
fEPSP to 48.0 ± 10.0% and a recovery to 99.5 ± 10.1%, (n = 5) (Figure 2A,B). Application of
MnTMPyP (25 µM) did not affect the fEPSP depression (16.4 ± 4.2%) but had an inhibitory
effect during the recovery (35.0 ± 11.4%), similar to what was reported previously. To
investigate whether the effect was reversible, a lower concentration of the superoxide
scavenger was tested. MnTMPyP (2.5 µM) did not modulate the OGD-induced depression
or recovery of the fEPSP (17.0 ± 3.4% and 113.0 ± 3.0%, respectively) (Figure 2A,B). In
order to test the effect of the compound on synaptic potentiation, LTP was induced in slices
previously exposed to 10 min OGD. Ischemic slices gave rise to a stable LTP over 60 min
(131.0 ± 6.1%; n = 7). The magnitude of the post-ischemic synaptic strengthening was
not different from LTP induced in normoxic slices (135.0 ± 6.1%, n = 27) (Figure 2C,D).
To evaluate the effect of 2.5 µM MnTMPyP on LTP post-OGD, slices were pretreated for
20 min with the scavenger and exposed to OGD. At the end of the 40 min recovery, HFS
was induced to evoke LTP. The stimulation gave rise to a synaptic potentiation which
was not different in magnitude compared to control LTP post-OGD (129.5 ± 7.5%, n = 5)
(Figure 2E,F).

3.3. Application of MnTMPyP Modulates Synaptic Transmission and Plasticity Post-Hypoxia

In the CA1 region, 20 min hypoxia gave rise to a maximum depression of fEPSP slope
to 32.45 ± 6.8% and full recovery (135.41 ± 12%) upon reoxygenation (n = 9). To determine
the preconditioning effect of MnTMPyP (2.5 µM), slices were perfused with MnTMPyP
20 min prior to the hypoxic episode. Pre-treatment with MnTMPyP significantly decreased
the fEPSP slope recovery 40 min post-hypoxia (66.24 ± 8%; n = 8, p < 0.05; Figure 3A,B).
To determine whether hypoxia had a preconditioning effect on LTP, slices were exposed
to 20 min hypoxia and allowed to recover for 40 min prior to HFS. HFS induced a stable
LTP in control slices lasting 60 min (135.0 ± 6.1%, n = 27) with no difference compared
to LTP induced in slices pre-exposed to hypoxia (144.87 ± 5.67%; n = 4), suggesting
a 20 min hypoxic episode does not modulate LTP (Figure 3C,D). To examine whether
2.5 µM MnTMPyP application had an effect on LTP post-hypoxia, slices were pre-treated
with 20 min hypoxia and HFS was induced 40 min after the hypoxic episode. Here, the
stimulation gave rise to a stable synaptic potentiation lasting for 60 min (144.87 ± 5.67%;
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n = 4). However, application of 2.5 µM MnTMPyP significantly impaired LTP post-hypoxia
(113.4 ± 11.9%; n = 4, p < 0.05) (Figure 3E,F).
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(135.0 ± 6.1%, n = 27) after 60 min. MnTMPyP (2.5 µM, green circles) did not impair synaptic plasticity
(121.0 ± 9.2, n = 9). However, high concentrations of the superoxide dismutase mimetic (25 µM,
black circles) impaired synaptic potentiation and significantly reduced baseline synaptic transmission
60 min after the HFS (74.3 ± 9.3%, n = 11). (D) Bar charts summarising the data in C. Control LTP
(white bars), 25 µM MnTMPyP (black bars) and 2.5 µM MnTMPyP (green bars). Baseline values
were taken 5 min before HFS induction. Average fEPSP slope was taken at 60 min after HFS. Arrow
indicates timing of HFS. All data are expressed as mean ± SEM. * p < 0.05, **** p < 0.0001.
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determine whether hypoxia had a preconditioning effect on LTP, slices were exposed to 
20 min hypoxia and allowed to recover for 40 min prior to HFS. HFS induced a stable LTP 
in control slices lasting 60 min (135.0 ± 6.1%, n = 27) with no difference compared to LTP 
induced in slices pre-exposed to hypoxia (144.87 ± 5.67%; n = 4), suggesting a 20 min hy-
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Figure 2. MnTMPyP does not affect synaptic transmission during OGD and post-ischemic LTP.
(A) Timeline showing changes in CA1 fEPSP slope following a 10 min OGD episode for control
(grey circles), MnTMPyP (25 µM, black circles) and MnTMPyP (2.5 µM, green circles). In the CA1,
OGD gave rise to a maximum depression of fEPSP to 48.0 ± 10.0% of control and a recovery to
99.5 ± 10.1% (n = 5). In slices pretreated with 25 µM MnTMPyP, the OGD-induced depression
of fEPSP was 16.4 ± 4.2%, with a recovery of 35.0 ± 11.4, n = 7 at 40 min post-OGD. OGD slices
pretreated with 2.5 µM MnTMPyP had similar depression of fEPSP but modulated the recovery
after the ischemic insult (17.0 ± 3.4% and 113.0 ± 3.0%, respectively, n = 5, at 40 min post-OGD).
(B) Bar charts summarising the data in A. Grey bars represent controls, black bars represent 25µM
MnTMPyP and green bars represent 2.5 µM MnTMPyP-treated group. (C) Time-course showing
control LTP (white circles) and LTP post-10 min OGD (grey circles). HFS induced a stable LTP in
control slices lasting 60 min (135.0 ± 6.1%, n = 27) with no difference compared to LTP induced in
slices pre-exposed to OGD (131.0 ± 6.0%, n = 7). (D) Bar charts summarising the data in C. White bars
control and grey bars post-OGD. (E) Time-course of fEPSP slope before and after HFS from control
slices (grey circles) and 2.5 µM MnTMPyP-pretreated slices (green circles). HFS was induced 40 min
after the ischemic event. In control slices, the stimulation gave rise to a stable synaptic potentiation
after 60 min (131.0 ± 6.0%, n = 7). In slices pretreated with 2.5 µM MnTMPyP, the HFS induced
a robust LTP with no significant difference compared to post-ischemia control LTP (129.5 ± 7.5%,
n = 4). (F) Bar charts summarising the data in E. Grey bars represent controls and green bars represent
post-2.5 µM MnTMPyP. In LTP experiments, baseline values were taken 5 min before HFS induction,
LTP values were taken at 55 min after HFS. Arrow indicates timing of HFS. All data are expressed as
mean ± SEM. * p < 0.05, ** p < 0.01, **** p < 0.0001.

3.4. Post-Hypoxia Recovery Yields Upregulation of Synaptogenesis, Phagocytosis and Cell
Stress Response

Proteomic analysis of CA1 regions following a hypoxic episode showed that the
greatest fold change compared to control normoxia-treated slices concerned the down-
regulation of Adgrl1, responsible for functional synapse formation and maturation [23],
in addition to the downregulation of Kctd4, responsible for potassium channel tetramer-
ization, with the literature recently implicating the Kctd family of proteins in autism and
schizophrenia via its role in the regulation of actin cytoskeleton dynamics [24]. The most sig-
nificant change concerns the upregulation of Hgs, a regulator of endosomal trafficking and
lysosomal-mediated protein degradation, followed by the upregulation of Uqcrh, a subunit
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of the mitochondrial electron transport chain (Figure 4A). Network enrichment analy-
sis of significantly differentially expressed targets generated the most enriched network
(p = 1.00 × 10−52) with dramatic upregulation of actin at its centre, suggesting marked up-
regulation of synaptogenesis and dendrite growth (Figure 4B). Actin is a major cytoskeletal
component responsible for both the establishment and maintenance of neuronal structure
and plays essential roles in appropriate dendritogenesis [25]. Other central nodes of this
network include upregulation of ACTB (Beta-actin), upregulation of the BCR complex
(antigen presentation signalling) and upregulation of Hsp90 (cell stress). Phagocytosis
is hypothesised to increase following hypoxia as a compensatory mechanism against
elevated vulnerability to bacterial invasion [26]. Ingenuity canonical pathway analysis
based on highlighted targets confirms this network, with the most significant signalling
pathways implicating actin (p = 5.3 × 10−5) cytoskeletal dynamics (including Integrin
(p = 2.2 × 10−5), which interacts with actin for cytoskeletal stabilisation) and phagocytosis
(p = 5.2 × 10−7) (Table 1).
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Figure 3. Application of MnTMPyP modulates synaptic transmission and plasticity post-hypoxia.
(A) Time-course showing changes in CA1 fEPSP slope following a 20 min hypoxic episode for control
(white circles) and MnTMPyP (2.5 µM, green circles). In the CA1, hypoxia gave rise to a maximum
depression of fEPSP slope to 32.45 ± 6.8% and full recovery (135.41 ± 12%) upon reoxygenation
(n = 9). In slices pretreated with 2.5 µM MnTMPyP, the hypoxia-induced fEPSP slope depression was
45.8 ± 7.4% (n = 8), with partial recovery upon reoxygenation (66.24 ± 8%; n = 8). (B) Bar chart sum-
marising the time-course data in A. White bars represent controls, green bars represent MnTMPyP-
treated group. (C) Time-course of fEPSP slope before and after HFS from control hippocampal slices
(white circles) and from hippocampal slices exposed to 20 min hypoxia (grey circles). Time-course
showing control LTP (white circles; n = 27) and LTP post-20 min hypoxia (grey circles; n = 4). HFS in-
duced a stable LTP in control slices lasting 60 min (135.0 ± 6.1%, n = 27) with no difference compared
to LTP induced in slices pre-exposed to hypoxia (144.87 ± 5.67%; n = 4). (D) Bar charts summarising
the data in C. Control (white bars), post-hypoxia (grey bars). Baseline values were taken 5 min before
the induction of LTP. LTP fEPSP slope was taken at 60 min post-HFS (white and grey bars). (E) In
LTP slices pre-treated with hypoxia, HFS was induced 40 min after the 20 min hypoxic episode.
Here, the stimulation gave rise to a stable synaptic potentiation lasting for 60 min (144.87 ± 5.67%;
n = 4). Application of 2.5 µM MnTMPyP (green circles) significantly impaired LTP post-hypoxia
(113.4 ± 11.9%; n = 4). (F) Bar chart summarising the data in E. Control (grey bars), post-hypoxia
(green bars). Arrow in C,E indicates timing of HFS. All data are expressed as mean ± SEM. * p < 0.05,
** p < 0.01, ** p < 0.001 **** p < 0.0001.
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Figure 4. Actin signalling and phagocytosis are upregulated in post-hypoxia recovery. (A) A volcano
plot visualisation of proteomic changes shows dramatically altered expression of targets impli-
cated in synapse formation (Adgrl1) and potassium channel tetramerization (Kctd4), with endo-
somal trafficking (Hgs) and mitochondrial respiration (Uqcrh) amongst the most significant hits.
(B) Ingenuity network enrichment analysis (p = 1.00 × 10−52) highlights actin as a highly upregulated
central node (Actin, ACTB), in addition to upregulation of the BCR complex in antigen presentation
and phagocytosis.

Table 1. Ingenuity canonical pathways post-hypoxia. Ingenuity pathway analysis, ranked by -log
(p-value) highlights actin upregulation amongst the most significant changes (p = 5.3 × 10−5, z = 0.4),
in addition to phagocytosis signalling (p = 5.2 × 10−7, z = 1.3), compared to normoxia-treated slices.

Ingenuity Canonical Pathways −Log (p-Value) z-Score Ratio Molecules

Fcγ Receptor-mediated Phagocytosis in Macrophages and Monocytes 6.28 1.34 0.053 ACTB, ARPC3, DGKB, MAPK3, TLN2

Integrin Signalling 4.55 0.45 0.024 ACTB, ARPC3, MAPK3, PFN1, TLN2

Actin Cytoskeleton Signalling 4.26 0.45 0.021 ACTB, ARPC3, MAPK3, PFN1, TLN2

Inhibition of ARE-Mediated mRNA Degradation Pathway 3.79 0.025 MAPK3, PPP2R1A, PSMB1, PSMD2

Remodelling of Epithelial Adherens Junctions 3.68 0.044 ACTB, ARPC3, HGS

BAG2 Signalling Pathway 3.41 0.036 MAPK3, PSMB1, PSMD2

Clathrin-mediated Endocytosis Signalling 3.38 0.019 ACTB, ARPC3, HGS, PCYOX1

Ceramide Signalling 3.31 0.033 CTSD, MAPK3, PPP2R1A

Salvage Pathways of Pyrimidine Ribonucleotides 3.23 0.031 AK1, MAPK3, NME2

Pyrimidine Deoxyribonucleotides De Novo Biosynthesis I 3.16 0.087 AK1, NME2

Regulation of Actin-based Motility by Rho 3.01 0.026 ACTB, ARPC3, PFN1

RHOA Signalling 2.92 0.024 ACTB, ARPC3, PFN1

Huntington’s Disease Signalling 2.88 0.014 CTSD, MAPK3, PSMB1, PSMD2

Reelin Signalling in Neurons 2.78 0.022 ARPC3, MAPK3, PDK3

D-mannose Degradation 2.77 1 MPI

Pyrimidine Ribonucleotides Interconversion 2.72 0.053 AK1, NME2

Pyrimidine Ribonucleotides De Novo Biosynthesis 2.66 0.049 AK1, NME2

Aryl Hydrocarbon Receptor Signalling 2.61 0.019 CTSD, MAPK3, NEDD8

Thyroid Hormone Biosynthesis 2.47 0.5 CTSD

FAT10 Signalling Pathway 2.39 0.036 PSMB1, PSMD2

Production of Nitric Oxide and Reactive Oxygen Species in Macrophages 2.38 0.016 MAPK3, PCYOX1, PPP2R1A

ILK Signalling 2.32 0.015 ACTB, MAPK3, PPP2R1A

ERK/MAPK Signalling 2.24 0.014 MAPK3, PPP2R1A, TLN2

Agrin Interactions at Neuromuscular Junction 2.21 0.029 ACTB, MAPK3

Caveolar-mediated Endocytosis Signalling 2.14 0.027 ACTB, COPB2

AMPK Signalling 2.1 0.012 ACTB, AK1, PPP2R1A
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3.5. Post-OGD Recovery Promotes Synaptogenesis, Microtubule Function and Mitochondrial Function

A volcano plot (of protein expression changes plotted against their respective
p values) generated following OGD recovery in CA1 regions shows Ensa as the target
with greatest fold change (downregulated), which regulates ATP-governed K+ channels
(Figure 5A). Neurogranin (Nrgn) is also downregulated, and is typically a positive regulator
of LTP [27]. The most significantly changed target is the downregulation of Ctsb, responsi-
ble for appropriate lysosomal-mediated proteolysis and autophagy. Akap5 (downregulated)
anchors protein kinase A (PKA) to the postsynaptic membrane and thus regulates AMPA-
mediated synaptic plasticity [28]. Amongst the most significant upregulated targets are
ribosomal proteins (Rpl32, Rps9), and the regulator of endosome trafficking Rab5c, with re-
ported roles in promoting dendritic branching [29]. Ingenuity network enrichment analysis
shows the top enriched network (p = 1.00 × 10−48) with actin as a central node; how-
ever, directionality is undetermined (Figure 5B). Other central nodes include the dramatic
upregulation of CAMKII, with roles in modulating glutamatergic synaptic plasticity and
LTP [30], in addition to mitochondrial maintenance [31]. Beta-tubulin, a component of
microtubules, necessary for the transport of organelles and vesicles throughout the neuron,
is also heavily upregulated. This indicates increased synaptic plasticity signalling, particu-
larly in glutamatergic neurons, in addition to elevated intra-neuronal vesicular transport
in OGD recovery. The top predicted pathways according to ingenuity pathway analysis
concern PKA signalling (p = 5.3 × 10−5), necessary for synaptic plasticity, in addition
to ARE-mediated mRNA turnover (p = 5.8 × 10−5), with reported roles in the degrada-
tion of transcripts produced during environmental insult [32] and mitochondrial function
(p = 9.5 × 10−5) (Table 2).
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Figure 5. Post-OGD recovery reveals upregulation of actin signalling and mitochondrial dysfunction.
(A) A volcano plot of proteomic changes shows dramatically changed expression of targets involved
in potassium channel regulation (Ensa) and LTP (Nrgn), while the most significantly associated
targets are implicated in lysosome function (Ctsb) and dendritic endosomal trafficking (AKAP5).
(B) Ingenuity network enrichment analysis (p = 1.00 × 10−48) reveals actin to be a central node of the
network analysis, in addition to targets regulating synaptic plasticity (CAMKII) and microtubule-
mediated transport (beta-tubulin).
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Table 2. Ingenuity canonical pathway analysis post-OGD. Significant ingenuity pathway analysis,
ranked by −log (p-value), shows synaptic plasticity (PKA; p = 5.3 × 10−5) and OGD-associated
transcript degradation (p = 5.8 × 10−5), in addition to mitochondrial dysfunction (p = 9.5 × 10−5)
amongst the top pathways, compared to normoxia-treated slices.

Ingenuity Canonical Pathways −Log (p-Value) z-Score Ratio Molecules

Protein Kinase A Signalling 4.27 0 0.022 AKAP5, CAMK2A, GNA13, GNB1, PRKAR2B, PTK2B,
PTPN23, YWHAG, YWHAH

Inhibition of ARE-Mediated mRNA
Degradation Pathway 4.23 0.037 LOC100360846/Psmb6, PRKAR2B, PSMA4, PSMA7,

YWHAG, YWHAH

Mitochondrial Dysfunction 4.02 0.71 0.023 CAMK2A, CAPN2, MAOA, MCU, PARK7, PRKAR2B,
SOD2, UQCRQ

Calcium Signalling 3.5 0.027 AKAP5, CAMK2A, MCU, PRKAR2B, Tpm1, Tpm3

BAG2 Signalling Pathway 3.38 0.048 CTSB, LOC100360846/Psmb6, PSMA4, PSMA7

Glycine Betaine Degradation 3.12 0.2 SHMT2, SRR

FAT10 Signalling Pathway 2.79 0.054 LOC100360846/Psmb6, PSMA4, PSMA7

Clathrin-mediated Endocytosis Signalling 2.75 0.024 ALB, CLU, PIP5K1C, RAB5C, SH3GL1

RHOA Signalling 2.75 0 0.032 GNA13, PIP5K1C, Ppp1r12a, PTK2B

ERK/MAPK Signalling 2.69 0.023 PRKAR2B, PTK2B, TLN1, YWHAG, YWHAH

Ephrin B Signalling 2.47 0.042 GNA13, GNB1, NCK2

ERK5 Signalling 2.44 0.041 GNA13, YWHAG, YWHAH

Chemokine Signalling 2.33 0.037 CAMK2A, Ppp1r12a, PTK2B

Signalling by Rho Family GTPases 2.29 0.019 GNA13, GNB1, PIP5K1C, PTK2B, STMN1

Crosstalk between Dendritic Cells and
Natural Killer Cells 2.19 0.033 CAMK2A, FSCN1, TLN1

Huntington’s Disease Signalling 2.18 0.018 CAPN2, GNB1, LOC100360846/Psmb6, PSMA4, PSMA7

Cardiac β-adrenergic Signalling 2.17 0.022 AKAP5, GNA13, GNB1, PRKAR2B

Fcγ Receptor-mediated Phagocytosis in
Macrophages and Monocytes 2.15 0.032 NCK2, PTK2B, TLN1

Oestrogen Receptor Signalling 2.14 0.82 0.015 GNA13, GNB1, MCU, Ppp1r12a, PRKAR2B, SOD2

IL-1 Signalling 2.12 0.031 GNA13, GNB1, PRKAR2B

Glycine Biosynthesis I 2.08 0.5 SHMT2

GNRH Signalling 2.08 0 0.021 CAMK2A, GNB1, PRKAR2B, PTK2B

Xenobiotic Metabolism PXR Signalling
Pathway 2.07 −1 0.021 CAMK2A, GSTM5, MAOA, PRKAR2B

IGF-1 Signalling 2.02 0.029 PRKAR2B, YWHAG, YWHAH

Paxillin Signalling 2 0.028 NCK2, PTK2B, TLN1

3.6. MnTMPyP in Baseline Normoxia Protects against Mitochondrial-Mediated Apoptosis, but
Impairs Synaptogenesis

Volcano plot visualisation of important targets shows the dramatic downregulation
of three proteins: Scamp3 is responsible for endocytosis and membrane trafficking, typ-
ically concentrated in synaptic vesicles. Nit1 is responsible for the hydrolysis of the an-
tioxidant glutathione. Downregulation of the postsynaptic protein kinase Neurogranin
(Nrgn) may mediate impaired synaptic development and remodelling [27] (Figure 6A).
Network analysis of significantly differentially expressed proteins yielded two networks
of equal enrichment score (p = 1.00 × 10−48) (Figure 6B). The first of these networks has
VDAC1 (downregulated) and RAB7A (downregulated) at its centre. VDAC1 functions as a
gatekeeper of mitochondria–cell metabolites, and interacts with mitochondria-mediated
apoptosis components, namely Bcl-2, to promote apoptosis [33]. RAB7A mediates the
transport of endosomes within the axon and within mitochondria. Another important
node is the downregulation of Tomm40, a mitochondrial translocase that mediates protein
import through the outer mitochondrial membrane and contributes to the assembly of
the mitochondrial membrane respiratory chain. The second network has MAPT (tau)
downregulated at its centre. Tau functions to regulate neuronal structure and polarity
via promoting microtubule assembly. Interestingly, RAB7A may promote tau secretion,
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indicating connectivity between the top two networks [34]. Combining these results into
ingenuity canonical pathway analysis (Table 3) shows synaptogenesis signalling to be the
most significant (p = 6.3 × 10−8), followed by the cell-stress-associated chaperone family
BAG2 (p = 1.6 × 10−7) and mitochondrial dysfunction (p = 1.2 × 10−6).
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Figure 6. MnTMPyP applied in normoxia conditions modulates aspects of synaptogenesis, cellular
stress and mitochondrial respiration. (A) Volcano plot showing significantly changed (p < 0.05)
proteins across the two groups. The most dramatically altered proteins (log2(Fold Change) > 2)
are implicated in endocytosis (Scamp3), antioxidant activity (Nit1), synaptic development and
plasticity (Nrgn). (B,C) Network enrichment analysis shows two networks of equal significance
(p = 1.00 × 10−48), one with downregulation of proteins implicated in apoptosis, endosomal trafficking
and mitochondrial function (B), and the second centred on the downregulation of the protein tau,
essential for maintaining neuronal polarity (C).

Table 3. Ingenuity pathway analysis of normoxia-treated CA1 slices following MnTMPyP admin-
istration, compared to vehicle-treated normoxia. Ingenuity-generated associated canonical path-
ways, ranked by −log (p-value), with the top three pathways centred on synaptogenesis signalling
(p = 6.3 × 10−8), cellular stress (BAG2) (p = 1.5 × 10−7) and mitochondrial function (p = 1.2 × 10−6).

Ingenuity Canonical Pathways −Log (p-Value) z-Score Ratio Molecules

Synaptogenesis Signalling Pathway 7.2 0.53 0.044 ARHGEF7, ARPC3, ARPC4, GRIA1, GRM2, MAPK1, MAPK3,
MAPT, NAPB, NLGN2, NRXN1, NSF, PRKCE, STXBP5

BAG2 Signalling Pathway 6.81 0 0.095 CTSB, MAPK1, MAPK3, MAPT, PSMA3, PSMB4, PSMC5, PSMD5

Mitochondrial Dysfunction 5.91 −1.39 0.038 ATP1A2, ATP1B3, Cox7a2/Cox7a2l2, COX7A2L, CYB5A, IDH2,
MAOA, MAOB, MAPT, NDUFS7, TOMM22, TOMM40, VDAC1

Integrin Signalling 5.52 −0.33 0.047 ACTB, ARF6, ARHGEF7, ARPC3, ARPC4, GIT1, MAPK1, MAPK3,
PFN1, RHOG

Fcγ Receptor-mediated Phagocytosis in
Macrophages and Monocytes 5.3 1.13 0.075 ACTB, ARF6, ARPC3, ARPC4, MAPK1, MAPK3, PRKCE

Huntington’s Disease Signalling 5.21 0.039 CTSD, DCTN1, MAPK1, MAPK3, NAPB, NSF, PRKCE, PSMA3,
PSMB4, PSMC5, PSMD5

Remodelling of Epithelial Adherens Junctions 5.04 0.45 0.088 ACTB, ARF6, ARPC3, ARPC4, HGS, RAB7A

Clathrin-mediated Endocytosis Signalling 4.72 0.043 ACTB, ALB, AP3D1, ARF6, ARPC3, ARPC4, CLU, HGS, RAB7A

Sirtuin Signalling Pathway 4.3 0.38 0.034 H4C11, IDH2, MAP1LC3A, MAPK1, MAPK3, NDUFS7, PGAM1,
TOMM22, TOMM40, VDAC1

Actin Cytoskeleton Signalling 4.18 0.71 0.037 ACTB, ARHGEF7, ARPC3, ARPC4, CYFIP1, GIT1, MAPK1,
MAPK3, PFN1

3.7. MnTMPyP May Decrease Synaptogenesis While Also Reducing Mitochondrial-Mediated
Apoptosis and Cell Stress following Hypoxia

A volcano plot to visualise data shows Kctd4 as the protein with the most upregulation
in treatment groups, implicated in potassium channel tetramerization, converse to findings
in hypoxia recovery without MnTMPyP above (Figure 7A). The literature has implicated
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the Kctd family of proteins in autism and schizophrenia via its role in the regulation of
actin cytoskeleton dynamics [18]. LOC100910056, also known as Bltp3b, is dramatically
downregulated, and enables GARP complex binding, necessary in the appropriate traffick-
ing of vesicles from endosomes [35]. The most significantly upregulated protein, Histidyl
tRNA Synthetase (Hars), plays a role in axonal guidance. Network analysis of significantly
changed protein expression following MnTMPyP treatment of the hypoxic CA1 region
revealed the most enriched network (p = 1.00 × 10−52) with actin at its centre, interacting
with eight other proteins, indicating signalling for appropriate dendritogenesis (Figure 7B).
Directionality was no longer highly upregulated, as in hypoxia recovery in the absence of
the drug. Another central node, ROCK, is a regulator of actin organisation [36]. Other cen-
tral nodes indicate a neuroprotective role of MnTMPyp, with downregulation of heat shock
proteins HSP90 (and its regulator HDAC6) and HSP90AA1, an opposing result to hypoxia
recovery without the drug. This may suggest that ROS depletion by the drug abolishes
the need for upregulation of heat shock proteins. Additionally, among the nine enriched
canonical pathways (p < 0.001), two concern actin polymerisation and adhesion (Actin Cy-
toskeleton Signalling; p = 1.2 × 10−4, Integrin Signalling; p = 1.2 × 10−3). Other highlighted
pathways concern metabolic and apoptosis regulation (Mitochondrion-expressed Sirtuin
Signalling pathway; p = 1.2 × 10−8, Granzyme A signalling; p = 5.7 × 10−4) and cellular
stress response (BAG2 Signalling pathway; p = 3.3 × 10−5) (Table 4).
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Figure 7. Application of MnTMPyP downregulates synaptogenesis signalling following hypoxic
insult. (A) A volcano plot shows major upregulation of potassium-channel-associated Kctd4 and
downregulation of LOC100910056, also knows as Bltp3b, involved in endosomal vesicle transport.
(B) The most enriched network (p = 1.00 × 10−52) is centred around actin, implicated in maintaining
neuronal structure and integrity, in addition to numerous heat shock proteins (HSPAA1, HSP70;
downregulated, HSP90; upregulated) responsible for cellular stress response.
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Table 4. Ingenuity pathway analysis of CA1 slices treated with hypoxia + MnTMPyP, compared
to vehicle-treated hypoxia. Ingenuity-generated associated canonical pathways, ranked by −log
(p-value), show the top canonical pathways concern themes such as apoptosis regulation (Sirtuin,
p = 1.2 × 10−8), cell stress regulation (BAG2, p = 3.31 × 10−5) and mitochondria (p = 9.77 × 10−5), in
addition to actin (p = 1.82 × 10−4).

Ingenuity Canonical Pathways −Log (p-Value) z-Score Ratio Molecules

Huntington’s Disease Signalling 8.05 0.032 CPLX2, CTSD, GNG3, HDAC6, MAPK1, NAPB, PSMD13,
PSMD6, SDHA

Sirtuin Signalling Pathway 7.92 0.82 0.031 APEX1, MAPK1, NDUFA10, NDUFA9, PGAM1, SDHA,
SOD2, TIMM9, TOMM34

Oestrogen Receptor Signalling 4.57 0.017 GNG3, HSP90AA1, MAPK1, NDUFA10, NDUFA9, SDHA,
SOD2

BAG2 Signalling Pathway 4.48 0.048 HSP90AA1, MAPK1, PSMD13, PSMD6

Mitochondrial Dysfunction 4.01 −2.45 0.017 NDUFA10, NDUFA9, OPA1, SDHA, SOD2, TOMM34

Actin Cytoskeleton Signalling 3.74 −0.45 0.021 ARPC3, MAPK1, PFN1, PIP5K1C, VCL

Neutrophil Extracellular Trap Signalling Pathway 3.59 2.45 0.015 MAPK1, NDUFA10, NDUFA9, SDHA, TIMM9, TOMM34

Granzyme A Signalling 3.24 0.04 APEX1, NDUFA10, NDUFA9

Clathrin-mediated Endocytosis Signalling 2.98 0.019 AP3D1, ARPC3, PIP5K1C, SH3GL1

Integrin Signalling 2.94 −1 0.019 ARPC3, MAPK1, PFN1, VCL

3.8. MnTMPyP Reduces Synaptogenesis and Mitochondrial-Mediated Apoptosis following OGD

A volcano plot of differentially expressed targets following MnTMPyP treatment of
CA1 regions after oxygen and glucose deprivation highlights the dramatic upregulation
of Neuronal Growth regulator 1 (Negr1) in treated samples, necessary for regenerative
axon sprouting (Figure 8A). Amongst the most significantly changed proteins is Tenm4
(downregulated), responsible for the regulation of myelination of axons and of appropriate
neuronal connectivity during development, and Ndrg2 (upregulated) implicated in neurite
outgrowth. Further characterisation using network enrichment analysis of significantly
differentially expressed proteins shows the most enriched network (p = 1.00 × 10−42) with
severely downregulated TGFB1 at its centre, in addition to AKT1 (Figure 8B). TGFB1 has
a multitude of roles, including cell growth, proliferation, differentiation and apoptosis,
and is protective against neuronal degeneration and excitotoxic injury [37]. Interestingly,
TGFB1 negatively regulates mitochondrial respiration, with its downregulation in the top
network suggesting increased mitochondrial bioenergetics [38]. Another central node is the
upregulation of CDKN1B, a regulator of cell-cycle progression, indicating reduced cellular
proliferation following MnTMPyP administration. Downregulation of the proto-oncogene
Myc suggests reduced cell proliferation and reduced apoptosis due to its regulatory role
in mitochondrial Bcl-2 [39]. Three canonical pathways reach the significance threshold of
p < 0.001 concerning mitochondrial-mediated apoptosis (Granzyme A signalling,
p = 0.1 × 10−3) and respiration (oxidative phosphorylation, p = 8.7 × 10−3), in addition to
Rho–actin interactions (p = 9.3 × 10−3), essential for actin polymerisation in neurogenesis,
in addition to macrophage/microglia morphology (Table 5).

Table 5. Ingenuity pathway analysis of CA1 slices administered with OGD and MnTMPyP, com-
pared to vehicle-treated OGD. Ingenuity-generated associated canonical pathways, ranked by −log
(p-value), reveal the top canonical pathways concern mitochondrial-mediated apoptosis (Granzyme
A, p = 4.07 × 10−3), oxidative phosphorylation (p = 8.7 × 10−3) and actin mobility (p = 9.33 × 10−3).

Ingenuity Canonical Pathways −Log (p-Value) z-Score Ratio Molecules

Granzyme A Signalling 2.39 0.027 NDUFB5, NDUFB9

Oxidative Phosphorylation 2.06 0.018 NDUFB5, NDUFB9

Regulation of Actin-based Motility by Rho 2.03 0.017 CFL1, PFN1
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Figure 8. Application of MnTMPyP modulates synaptogenesis and mitochondrial oxidative phospho-
rylation following OGD. (A) Volcano plot of differentially expressed targets shows the most dramatic
upregulation (log2(Fold Change) > 2) of Negr1, responsible for axon growth. The most significant
hits include downregulation of Tenm4 (axonal myelination) and upregulation of Ndrg2 (neurite
outgrowth). (B) The most enriched network (p = 1.00 × 10−42) is centred around downregulation of
TGFB1, a growth factor with roles in proliferation, differentiation and growth, in addition to actin
dynamics and mitochondrial activity. Other central nodes include CDKN1B, a regulator of cell cycle,
and downregulation of beta-oestradiol, with reported neuroprotective functions.

3.9. Two-Way ANOVA Analysis across All Groups in Hypoxia and OGD Experiments Confirms
Alterations in Synaptogenesis, Cell Stress and Mitochondrial Function, with Heightened
Sensitivity of Hypoxic CA1 Slices to MnTMPyP

A two-way ANOVA analysis comparing all groups in the hypoxia experiment re-
confirmed the significance of actin signalling changes, with the post hoc Student’s t-tests
demonstrate its upregulation following hypoxia. Actin is a major scaffold protein in-
volved in neuronal structural integrity and growth. Cross-group ANOVA analysis similarly
showed significant upregulation in hypoxia recovery (normoxia vs. hypoxia (F(1,12) = 5.43;
normoxia vehicle vs. hypoxia vehicle, post hoc t-test t(12) = 2.71, p = 0.019 (Figure 9). The
drug MnTMPyP upregulated actin-mediated signalling in normoxia (vehicle vs. MnTMPyp
F(1,12) = 16.18; normoxia vehicle vs. normoxia MnTMPyp, post hoc t-test t(12) = 3.91,
p = 0.0021) but not hypoxia, reflecting Figures 6B and 7B previously. Cell stress changes have
been implicated above in the hypoxia and MnTMPyP response, with the histone deacety-
lase HDAC6, an inducer of the already-highlighted heat shock protein HSP90 [40], show-
ing no significant change between normoxia and hypoxia treatment. However, HDAC6
shows significant downregulation following MnTMPyP in hypoxia (vehicle vs. MnTMPyP
F(1,12) = 0.15; hypoxia:vehicle vs. hypoxia:MnTMPyP post hoc t-test t(12) = 2.19; p = 0.048),
and is a central node in the enriched network in Figure 7B. This indicates a potential mech-
anism through which the drug is protective via alleviating the cell stress response. Indeed,
ROS has previously been shown to induce HDAC6 expression, with alleviation of oxidative
stress following MnTMPyP administration being a possible means through which the cell
stress response is abated [41]. Another target that was significantly upregulated following
hypoxia is Uqcrh, forming a subunit of the mitochondrial electron transport chain. This
shows significant upregulation in hypoxia recovery (normoxia vs. hypoxia F(1,12) = 5.08;
normoxia:vehicle vs. hypoxia:vehicle post hoc t-test t(12) = 2.20; p = 0.048), in agreement
with what was highlighted in Figure 4A, and is upregulated following MnTMPyP treat-
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ment in normoxia conditions (vehicle vs. MnTMPyP F(1,12) = 8.19; normoxia:vehicle vs.
normoxia:MnTMPyP post hoc t-test t(12) = 2.63; p = 0.022). This may reflect a mechanism
through which the drug, administered in unstressed conditions, may improve mitochon-
drial function. OGD treatment induced significant upregulation of CAMK2A in recovery
(normoxia vs. OGD F(1,12) = 0.63; normoxia:vehicle vs. OGD:vehicle post hoc t-test
t(12) = 4.04; p = 0.0016), in agreement with Figure 5A above. This is a major regulator
implicated in modulating glutamatergic synaptic plasticity and LTP [30], in addition to
mitochondrial maintenance [31], and is a central node in Figure 5B above. MnTMPyP gener-
ates no change to CAMK2A expression. RAB5C, a target implicated in endosome-mediated
waste clearance and dendritic branching, shows significant upregulation in OGD recovery
(normoxia vs. OGD F(1,12) = 15.46; normoxia:vehicle vs. OGD:vehicle post hoc t-test
t(12) = 3.6; p = 0.0035), suggesting elevated synaptic growth. MnTMPyP has no obvious
effect on this protein expression. Ctsb, a regulator of lysosomal-mediated proteolysis
and autophagy, and inducer of apoptosis [42], shows downregulation in OGD recovery
(normoxia vs. OGD F(1,12) = 31.49; normoxia:vehicle vs. OGD:vehicle post hoc t-test
t(12) = 5.59; p = 0.0001), with MnTMPyP showing a potentially protective downregulating
effect in normoxia conditions (vehicle vs. MnTMPyP F(1,2) = 2.99; normoxia:vehicle vs.
normoxia:MnTMPyP post hoc t-test t(12) = 2.84; p = 0.015). Overall, MnTMPyP had a
reduced influence on expression of these key proteomic targets following OGD, compared
to hypoxia, reflecting the electrophysiological results above.
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of the hippocampus. In addition, evidence suggests that these electrophysiological effects 
were neuroprotective, using cell viability analysis on organotypic slice cultures. In addi-
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chemia in the hippocampus (CA1) using two distinct in vitro ischemic models: OGD and 

Figure 9. Two-way ANOVA analysis across hypoxia-treated and OGD-treated CA1 region repli-
cates previously highlighted themes of plasticity, cell stress and mitochondrial change. Compar-
ison of key targets across normoxia, hypoxia, normoxia + MnTMPyP and hypoxia + MnTMPyP
groups via two-way ANOVA. Scatter plots highlight (A) Actin (ACTB), (B) Histone deacetylase 6
(HDAC6) and (C) (Uqcrh), implicated in synaptogenesis and neuronal structural integrity, cell stress
response and mitochondrial electron transport chain, respectively. Comparison of normoxia, OGD,
normoxia + MnTMPyP and OGD + MnTMPyP via two-way ANOVA yields scatter plots highlight-
ing (D) CAMK2A, (E) RAB5C and (F) Ctsb, implicated in glutamatergic synaptic plasticity and
mitochondrial maintenance, dendritic branching and endosomal trafficking, and apoptosis and
neuroinflammation, respectively. * p < 0.05, ** p < 0.01, *** p < 0.001.
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4. Discussion

Despite the vast research carried out on the neuroprotective role of antioxidants in
counteracting oxidative stress, there is still a gap in the literature on how exactly they
modulate synaptic transmission and plasticity [6]. The modulatory effects of antioxidant
treatment with MnTMPyP on synaptic transmission and neuronal viability post-ischemia
have been previously investigated [20]. In these studies, a high concentration of MnTMPyP
(25 µM) induced a decreased fEPSP recovery post-ischemia in the CA1 region of the
hippocampus. In addition, evidence suggests that these electrophysiological effects were
neuroprotective, using cell viability analysis on organotypic slice cultures. In addition, the
modulatory effects of MnTMPyP on synaptic plasticity were examined post-ischemia in
the hippocampus (CA1) using two distinct in vitro ischemic models: OGD and hypoxia.
Interestingly, distinct differences in the sensitivity of these models in their ability to achieve
post-ischemic LTP with MnTMPyP treatment were observed. Prior treatment with a low
concentration of MnTMPyP (2.5 µM) partially decreased fEPSP recovery post-hypoxia but
not after OGD. In addition, post-ischemic LTP was impaired with MnTMPyP (2.5 µM)
post-hypoxia but not post-OGD, suggesting an overall heightened sensitivity of hypoxia to
MnTMPyP treatment.

In our electrophysiological studies, 25 µM MnTMPyp decreased baseline synaptic
transmission over a 1h time-course. A sustained decrease in the fEPSP slope may be inter-
pretated as a reduced amount of synaptic glutamate release [43]. A possible reason for this
is altered vesicular trafficking leading to decreased AMPA receptor activity, which may ac-
count for this reduced fEPSP response [44]. This hypothesis is supported by our proteomics
data, which highlight impaired vesicular trafficking mechanisms with MnTMPyP treatment
compared to controls. In our studies, there was a significantly (p < 0.01) reduced Secretory
Carrier Membrane Protein 3 (SCAMP3) gene expression as the protein with the most dra-
matic fold change difference. SCAMP3 is an abundant transmembrane protein found in
endosomes and plays a central role in the intracellular trafficking of various transporters
and receptors [45] and is a reported AMPA receptor-carrying vesicle [46]. Additionally,
the observed downregulation of Neurogranin (Nrgn) may also impair glutamatergic cur-
rents via hypo-phosphorylation of NMDA receptors [47]. In addition, MnTMPyP reduced
RAB7A signalling compared to controls. RAB proteins are small monomeric GTPases that
are highly involved in the maintenance of neuronal vesicular trafficking, and RAB7 in par-
ticular is considered a marker for axonal retrograde transport [48] suggesting pre-synaptic
effects. Voltage-dependent anion channel (VDAC) signalling was also reduced, which, due
to its role in promoting apoptosis, may account for the observed neuroprotective effects
of this compound [49]. There was also an impairment of LTP with MnTMPyP application.
This result may be explained by impaired vesicular trafficking, since the expression of
LTP is highly dependent on the increase of the probability of neurotransmitter release [50].
Additionally, our reported reduction in the microtubule-associated protein tau following
MnTMPyP-treatment may impair LTP [51] via its effects on neuronal polarity and stability.
The modulatory effects of ROS on LTP induction have been previously explored [15,52,53].
Klann et al. reported that application of 25 µM MnTMPyP significantly impairs LTP in vitro
in the CA1 region of the hippocampus [54]. However, Arias-Cavieres et al. (2021) demon-
strated that in vivo treatment with MnTMPyP rescued LTP deficits following intermittent
long-term hypoxia treatments by modulating NMDAr subunit expression [55]. These
results highlight that there may be differences in the outcome of MnTMPyP treatment
depending on the concentration injected or time of application. As chronic MnTMPyP
application appears to be protective, this suggests that it may act as a modulator for
the production of receptor proteins rather than influence their location, conductance or
number during ischemia and reperfusion. It is possible that this is an adaptive response
in an attempt to overcome stress by minimizing the likely event that NMDARs become
overactivated in response to the pro-oxidant environment. These in vivo experiments
used MnTMPyP at a dose of 1 to 15 mg/kg i.p., and it will be important in the future to
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understand the biological significance of the concentrations used in vitro, namely 2.5 to
25 µM.

OGD is generally considered a more detrimental component of ischemia compared
to hypoxia. The combination of both oxygen and glucose deprivation elicits a highly
complex pathophysiology as neurons are particularly dependent on blood supply to sustain
their oxygen and glucose demand [47]. Quantitative proteomics analysis by Datta et al.
revealed that OGD caused a downregulation of proteins involved in protein metabolism
and anti-oxidative response, while certain anti-apoptotic and anti-inflammatory, and most
of the mitochondrial proteins, were increased in abundance [56]. Similarly, our protein
enrichment analysis after OGD recovery showed upregulation of CAMKII, promoting
glutamatergic plasticity and LTP [30], mitochondrial maintenance [31] and beta-tubulin,
mediating microtubule transport of organelles and vesicles. The top canonical pathways
additionally reflect a mitochondrial change (predicted upregulation of dysfunction after
OGD; however, z-score is non-significant). Overall, this reflects our electrophysiology
results, showing full recovery of fEPSP following 10 min OGD.

MnTMPyP treatment (25 µM) has previously been shown to be associated with a
lack of recovery of fEPSPs following a 20 min OGD episode. This sustained reduction
in fEPSP might be interpretated as neuroprotective through reduced glutamate release
and subsequent decrease in the probability of post-ischemic excitotoxicity. Shahraki and
Stone (2004) reported that superoxides can prevent the protective effect of adenosine
presynapically and that this antagonism of adenosine responses may contribute to the
injurious effects of ROS [57]. In addition, the application of DPCPX, DCKA and AP5
have been previously reported to reverse the protective effects of MnTMPyP on synaptic
transmission post-ischemia [20]. It has been reported that superoxide is produced by
NMDA receptors in an attempt to achieve a state of NMDA receptor hypofunction in order
to limit damaging Ca2+ influx [58].

In these electrophysiological experiments, a shorter episode of OGD was used in
order to be able to obtain a recovery of fEPSP and induce LTP. Application of MnTMPyP
(25 µM) prior to a 10 min OGD induced a similar lack of fEPSP recovery to the 15 min OGD
previously reported [20], an effect that was not seen with 2.5 µM. Proteomic analysis of
20 min OGD without MnTMPyP shows upregulation of synaptic plasticity and LTP. How-
ever, proteomic analysis following 25 µM MnTMPyP showed a reduction of signatures re-
lated to cell division with downregulation of Transforming Growth Factor Beta (TGFβ) [59]
and increased expression of the Cyclin-dependent Kinase Inhibitor CDKN1B. Similarly,
Yan et al. (2010) demonstrated that short bouts of OGD (1–2 h) inhibited the release of
regulatory factors from astrocytes that promote neuronal differentiation and division [60].
While 20 min OGD without MnTMPyP induced a predicted upregulation of mitochondrial
dysfunction, in agreement with its hypothesised neuroprotective function, MnTMPyP
administration downregulates the pro-apoptotic Myc due to its regulatory role in Bcl-2 [39].
Similarly, the top canonical pathways highlight Granzyme A (undetermined directionality),
an important enzyme that mediates mitochondrial apoptosis [61]. This adds rigour to
the neuroprotective properties of this compound, as mitochondrial dysfunction can be
detrimental to neuronal function due to the excessive overproduction of ROS, leading to a
loss of synaptic integrity and cell death [6].

When interpretating these results, it is important to take into account the age of the
animals used in these experiments. For both electrophysiological and proteomic experiments,
hippocampal slices from young rats (P21–28) were used. Many important stages of brain
development in rodents occur in the early postnatal period. Over the first two weeks of
development, synaptogenesis and myelination begin and neurogenesis is complete in the
cortex but incomplete in the hippocampus and cerebellum [62,63]. Most of the pyramidal
cells in the hippocampus are developed prenatally; however, only approximately 15% of
granule cells are generated in the dentate gyrus at birth [64]. The most significant period
of synaptogenesis in rats occurs up to P21 [65] and the majority of synaptic reorganisation
has been shown to be established by postnatal day 10 [66–69]. In turn, it has been shown
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that acute slices usually have minimally altered synaptic connection patterns relative to
the in vivo patterns at the time of harvest, adding rigour to the comparability of these
models [6,70]. However, when interpretating these results, any aberrant impact on the data
due to the age of the tissue and some active neurodevelopment at this stage must be taken
into account.

It has previously been reported that MnTMPyP treatment (25 µM) caused a lack of
recovery of fEPSPs following hypoxia (20 min) that has not been previously described [20].
This sustained reduction in fEPSP might also be interpreted as neuroprotective through
a decrease in the probability of post-ischemic excitotoxicity. Pre-synaptic A1 receptor
antagonism with DPCPX partially reversed this MnTMPyP effect, allowing the fEPSP to
recover post-hypoxia, which may be interpreted as a negative effect on neuronal viability.
Similarly, in these experiments, a lower concentration of MnTMPyP (2.5 µM) caused a
significant lack of recovery post-hypoxia, but to a lesser extent.

Our proteomic data demonstrated that hypoxia treatment induced an increase in
synaptogenesis compared to controls, perhaps to overcome the neuronal stress which may
account for the full fEPSP recovery post-hypoxia. A study by Kovalenko et al. (2006)
reported an increase in post-synaptic densities (PSDs) and multiple spine boutons (MSBs)
post-hypoxia in the CA1, suggesting the induction of synaptogenesis mechanisms [71].
Interestingly, both MnTMPyP and hypoxia treatment significantly reduced synaptogenesis
mechanisms, which may account for the reduced fEPSP recovery post-hypoxia. In particu-
lar, actin signalling, a cytoskeletal component key to neurogenesis and plasticity, comprised
a central node of our most significant network and was dramatically upregulated following
hypoxia in contrast to the administration of MnTMPyP. A study by Peinado et al. (2014)
detected a similar modification of actin nitration patterns, suggesting that there may be a
hypoxia-derived impairment of cell structure [72]. This modulation of actin during hypoxia
may also account for the impairment of post-ischemic LTP with MnTMPyP treatment seen
in our electrophysiological data, as actin is known to play a central role in the biogenesis,
transport and anchoring of synaptic vesicles, an essential component in the expression
of LTP [73]. In addition, mitochondrial dysfunction was predicted to be significantly re-
duced in MnTMPyP and hypoxia compared to the hypoxia-only groups, suggesting a
neuroprotective effect. Interestingly, edaravone, a free radical scavenger and antioxidant,
has previously been reported to have a neuroprotective effect, reducing apoptosis and
stimulating the BDNF/TrkB pathway, crucial in neural development, neurogenesis and
synaptic plasticity [74,75]. Preliminary data in our laboratory indicated that prior treatment
of organotypic hippocampal slices exposed to a 1 h OGD insult with edaravone showed
improved cell viability up to 24 h.

Administration of a hypoxic insult to CA1 hippocampal slices elicits a distinct pro-
teomic signature compared to oxygen and glucose deprivation. At the centre of the most
enriched network for hypoxic recovery is marked upregulation of actin, a key component
of synaptogenesis, in addition to upregulation of Heat Shock protein Hsp90, indicative of
recovery from cell stress. It has been previously reported that hypoxia, via various mecha-
nisms, can modulate actin cytoskeleton dynamics [76]. The enriched network generated
from OGD does not reflect as marked an upregulation of actin, but instead shows increased
expression of calmodulin-associated protein CAMKII and microtubule signalling. CAMKII
also plays crucial roles in mitochondrial maintenance [31]. Furthermore, actin signalling
does not appear amongst the most significant pathways in OGD, with mitochondrial dys-
function amongst the top three signatures. OGD is reported in the literature to impact
mitochondrial morphology and protein expression in neuronal cultures [77]. Thus, it seems
hypoxia is characterised by the recovery of synaptogenesis via actin-mediated signalling,
whilst OGD recovery emphasises mitochondrial functioning.

MnTMPyP treatment (2.5 µM, 25 µM) impaired recovery of fEPSPs following hy-
poxia (20 min) and following a 20 min OGD episode; however, OGD was not sensitive to
MnTMPyP at 2.5 µM. This elevated sensitivity of hypoxia-treated slices to MnTMPyP may
be due to this increased emphasis on actin regeneration. Indeed, the literature supports
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the role of ROS in promoting actin monomer incorporation into filaments, with MnTMPyP
administration shown to virtually abolish actin polymerisation due to reduced available
ROS levels [78]. This is reflected in the reduced upregulation of actin as a central node in
network analysis of MnTMPyP administration to hypoxic slices. The mechanisms through
which OGD alone affects synaptogenesis concerns mitochondrial dysfunction. Mitochon-
dria play a key role in bioenergetics and cell death, and thus are central in the appropriate
regulation of synaptic budding and pruning [79]. Amongst our most significant implicated
canonical pathways of MnTMPyP administration in the normoxia conditions above is a
predicted reduction in mitochondrial dysfunction. This is in agreement with the role of
the drug in reducing ROS, as this may damage mitochondria and impact respiration [80].
Indeed, the central node of the most enriched pathway in OGD following MnTMPyP
treatment concerned downregulation of TGFβ, promoting mitochondrial respiration [38].
Hence, MnTMPyP may partially compensate for mitochondrial dysfunction underlying
OGD-mediated synaptogenesis and fEPSP impairments.

Our proteomic analysis features upregulation of Heat Shock Proteins (HSPs) in the
hypoxia-treated group that was rescued by MnTMPyP application. HSPs are molecular
chaperones produced in response to oxidative stress and an increase in ROS production [81].
Zatsepina et al. (2021) demonstrated that HSPs are critically involved in the processes
of protein synthesis and synaptic receptor trafficking necessary for the maintenance of
synapses and the expression of LTP [82]. In addition, Gerges et al. reported that the Hsp90
family of proteins are specifically involved in the trafficking of AMPAr and neurotransmitter
release [83], both of which are essential for LTP maintenance. The electrophysiological
results support this notion where full post-ischemic LTP is achieved. However, an impaired
expression of post-hypoxic LTP is observed specifically when MnTMPyP is applied. The
reduction of HSP expression with MnTMPyP treatment (reduced ROS) may account for
this change due to the central role of HSPs in the generation of LTP during episodes
of oxidative stress. As our proteomic analysis reported no HSP signature changes in
OGD, this may explain why post-hypoxia LTP was impaired and full LTP was achieved
post-OGD with MnTMPyP treatment. In addition, the enriched network generated from
OGD reflects an increased expression of CAMKII not seen in hypoxia. This may also
partially explain the OGD-specific expression of post-ischemic LTP with MnTMPyP. Early
LTP involves CaMKII-dependent phosphorylation of the AMPAr subunit, GluR1, which
increases channel conductance of AMPARs. In addition, CAMKII phosphorylates stargazin,
which allows extrasynaptic AMPARs to bind to postsynaptic density protein 95 (PSD95),
thereby anchoring more AMPARs at the synapse and facilitating LTP expression [30].

5. Conclusions

Our electrophysiological and proteomic results have demonstrated a novel role for
the antioxidant MnTMPyP in modulating hippocampal (CA1) synaptic plasticity after
acute hypoxia and OGD. MnTMPyP was shown to cause an impairment of post-ischemic
LTP, suggesting a heightened sensitivity of hypoxia to MnTMPyP treatment compared to
OGD. This difference in sensitivity may be due to the increased expression of CAMKII
seen in OGD but not hypoxia. In addition, the reduction of HSP expression and actin
signalling in hypoxia with MnTMPyP treatment may account for this change due to the
central role of HSPs and actin in vesicular trafficking mechanisms and the generation of
LTP during episodes of oxidative stress. As our proteomic analysis reported no HSP or
actin signature changes in OGD, this may explain why LTP was impaired post-hypoxia
but not post-OGD with MnTMPyP treatment. Elucidating the exact mechanistic action of
MnTMPyP and other antioxidants on synaptic plasticity during episodes of ischemic stress
will be important. Finally, further validation of the role of these proteins will be required
and must be considered a limitation of this study.
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