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Abstract: The definition of reactive sulfur species (RSS) is inspired by the reactivity and variable
chemical valence of sulfur. Sulfur is an essential element for life and is a part of global geochemical
cycles. Wastewater treatment bioreactors can be divided into two major categories: sulfur reduction
and sulfur oxidation. We review the origins of the definition of RSS and related biotechnological
processes in environmental management. Sulfate reduction, sulfide oxidation, and sulfur-based redox
reactions are key to driving the coupled global carbon, nitrogen, and sulfur co-cycles. This shows the
coupling of the sulfur cycle with the carbon and nitrogen cycles and provides insights into the global
material−chemical cycle. We also review the biological classification and RSS metabolic mechanisms
of functional microorganisms involved in the biological processes, such as sulfate-reducing and sulfur-
oxidizing bacteria. Developments in molecular biology and genomic technologies have allowed us to
obtain detailed information on these bacteria. The importance of RSS in environmental technologies
requires further consideration.
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1. Introduction

Hydrogen sulfide from violent movements of the Earth’s crust (e.g., volcanic erup-
tions) provided the energy, reducing power, and material basis for the origin of life about
3.8 billion years ago [1,2]. The ensuing anoxygenic and oxygenic photosynthesis led the
Earth into an era known as the “great oxidation event” (GOE) [3]. The hypothesis of
“ox-tox” is that early living organisms evolved antioxidant defense systems (e.g., superox-
ide dismutase, catalase, peroxiredoxins, thioredoxin, and glutaredoxin) to counteract the
abundance of oxygen [4]. Sulfide-based biochemical reactions persist in modern times, not
as a primary source of energy, but as a regulator of metabolism and signaling. This basis to
create, regulate, and maintain life activities is redox reactions, such as photosynthesis and
respiration [2].

Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive nitrogen
oxides (RNOS) are highly oxidizing, destroying redox-sensitive proteins and enzymes and
attacking membranes and DNA [5]. Anti-oxidation is a core topic in physiological and
biochemical research, and the attention of researchers has shifted from oxygen to sulfur.
Sulfur-containing materials are generally considered to exist naturally as antioxidants (e.g.,
hydrogen sulfide and glutathione). The definition of reactive sulfur species (RSS) emerged
in 2001 and research has focused on physiological, biochemical, and protein molecular
functions. Previous reviews described the active chemical properties and physiological
effects of RSS [6,7]. The sulfur cycle is an important part of global geochemical cycles
(Figure 1) [8,9], but what role does RSS play in the field of environmental technology?
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Figure 1. Global sulfur cycle. 

In this review, we detail the relationship between RSS and pollutants, environmental 
technologies, and metabolic mechanisms. The review emphasizes the prevalence and im-
portance of RSS in environmental technologies and provides an outlook on application 
prospects and future development of RSS. 

2. RSS Definition and Relationship with Environmental Management 
2.1. Origins and Definition of RSS 

Giles et al. first defined RSS by presenting it as an oxidative-stress product and jux-
taposing it with ROS, RNS, and RNOS [10]. Later, Brannan and Gruhlke amended the 
definition of RSS to “sulfur-containing molecules capable of oxidizing or reducing the ox-
idative reactive activity of biological macromolecules under physiological conditions” 
[11,12]. This definition does not include environmental microorganisms. This is because, 
for many simple chemoautotrophic microorganisms, the source of energy for survival is 
inorganic matter or sunlight. In these cases, in addition to hydrogen sulfide, inorganic 
reduced sulfur substances, such as elemental sulfur (S0), can serve as an electron donor or 
electron acceptor for growth. From this perspective, S0 has properties similar to those of 
RSS, which is susceptible to oxidation or reduction by biological processes. We suggest 
that RSS should be defined more broadly to include sulfur-containing molecules which 
are bioavailable and susceptible to redox reactions. The chemical valence states of the sul-
fur atoms in the typical sulfur-containing compounds are summarized in Table 1. This 
review is particularly focused on sulfide, S0, polysulfide, sulfur dioxide, and sulfate. 

Table 1. Representative sulfur-containing substances in different valence states. 

Component Chemical Formula Valence of Sulfur 
Inorganic sulfur species:   

Sulfide H2S/HS−/S2− −2 
Pyretic sulfur FeS/FeS2 −2 and −1 

Inorganic polysulfides H-Sn-H/Sn2− (n ≥ 2) −1 and 0 

Figure 1. Global sulfur cycle.

In this review, we detail the relationship between RSS and pollutants, environmental
technologies, and metabolic mechanisms. The review emphasizes the prevalence and
importance of RSS in environmental technologies and provides an outlook on application
prospects and future development of RSS.

2. RSS Definition and Relationship with Environmental Management
2.1. Origins and Definition of RSS

Giles et al. first defined RSS by presenting it as an oxidative-stress product and jux-
taposing it with ROS, RNS, and RNOS [10]. Later, Brannan and Gruhlke amended the
definition of RSS to “sulfur-containing molecules capable of oxidizing or reducing the oxida-
tive reactive activity of biological macromolecules under physiological conditions” [11,12].
This definition does not include environmental microorganisms. This is because, for many
simple chemoautotrophic microorganisms, the source of energy for survival is inorganic
matter or sunlight. In these cases, in addition to hydrogen sulfide, inorganic reduced
sulfur substances, such as elemental sulfur (S0), can serve as an electron donor or electron
acceptor for growth. From this perspective, S0 has properties similar to those of RSS, which
is susceptible to oxidation or reduction by biological processes. We suggest that RSS should
be defined more broadly to include sulfur-containing molecules which are bioavailable
and susceptible to redox reactions. The chemical valence states of the sulfur atoms in the
typical sulfur-containing compounds are summarized in Table 1. This review is particularly
focused on sulfide, S0, polysulfide, sulfur dioxide, and sulfate.
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Table 1. Representative sulfur-containing substances in different valence states.

Component Chemical Formula Valence of Sulfur

Inorganic sulfur species:
Sulfide H2S/HS−/S2− −2

Pyretic sulfur FeS/FeS2 −2 and −1
Inorganic polysulfides H-Sn-H/Sn

2− (n ≥ 2) −1 and 0
Elemental sulfur S/S8/S0 0

Thiosulfate S2O3
2− +2

Sulfur dioxide SO2 +4
Sulfite SO3

2− +4
Sulfate SO4

2− +6
Organic sulfur species:

Reduced organic sulfur compounds Cysteine, methionine −2
Organic polysulfides R-Sn-R/R-SnH (n ≥ 2) 0

2.2. Relationship between RSS and Environmental Pollutant Management

Sulfur is the 10th most common element in the universe, the 15th most common
element in the Earth’s crust, and the 7th most common element in biology [13]. Its main
forms are pyrite (FeS2) and gypsum (CaSO4) in the ground and free sulfate in the ocean.
It has a valence state of −2 to +6, and is more stable at even numbers. H2S (−2), the
most reduced form of sulfur, is characterized by a rotten-egg odor, typical of RSS. In
aqueous environments, it exhibits properties of a dibasic weak acid. Despite the similarity
to H2O, the transmembrane behavior is different, with H2S in the ionic form of HS− by
simple free diffusion [14,15]. The anaerobic environment is favorable for the generation
and aggregation of H2S. With anthropogenic intervention, sulfide-containing wastewater
is often observed in industrial plant wastewater, e.g., petrochemical plants, tanneries,
synthetic fiber manufacturers, or coal gasification power plants. Therefore, the release of
H2S into the environment, as dissolved sulfide in wastewater or as H2S in flue gases, is
controlled for environmental protection.

S0 is one of the major sulfur pools in the global sulfur cycle. Chemically generated S0

has low water solubility (5 µg/L, 25 ◦C), with the bio-generated form being hydrophilic
and more bioavailable [16]. As a non-corrosive solid that is environmentally friendly and
easy to handle and transport, S0 is pursued as a target for sulfur-containing pollution
treatment. Its commercial value exceeds that of sulfuric acid, even though both can be used
in chemical processes and fertilizer production [17].

Polysulfides (RSnR, RSnH, H2Sn; n ≥ 2), highly reactive chemical intermediates, often
accompany the oxidation of sulfides and the bioavailability of sulfur, and are also typical of
RSS [18]. The hypothetical polysulfide generation process is shown in Figure 2 [19]. Similar
to S0, polysulfides can act as both electron acceptors and electron donors. Polysulfides,
rather than hydrogen sulfide, play an important role in intracellular antioxidation, persul-
fide modification, and signaling [20–22]. S0 and polysulfides are important as intermediate
products of the global sulfur cycle in different sulfur reservoirs and isotope fractionations.
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SO2(+4) is a toxic, colorless, environmental pollutant. It has a wide range of sources,
such as coal-fired processes in power plants, incinerators, and boilers. The dispersion of
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sulfur dioxide gas into the atmosphere causes photochemical smog, acid rain, stratospheric
ozone depletion, and fine particulate matter, causing serious harm to ecosystems and
corroding the metal components of industrial equipment [23]. Efforts have focused on the
development of qualified technologies to eliminate SO2 from coal-combustion flue gas.
Flue-gas exhaust contains some CO, nitrogen oxides (NOX), and small amounts of O2 in
addition to SO2 [24]. Developing technologies for integrated methods of treating multiple
greenhouse gases remains a global priority.

Sulfate (+6), one of the main forms of sulfur in nature, is a type of secondary pollutant
due to its anaerobic reduction products [25]. Sulfate-laden wastewater is characterized by a
long latent period and is difficult to treat. Wastewater with high untreated sulfate levels
causes acidification of surface and groundwater, damage to soil structure, and reduction
of crop yield [26]. High sulfate concentrations lead to off-flavors (>400 mg L−1) and
diarrhea (1000–1200 mg L−1) [27]. The development of high-sulfate wastewater treatment
technologies with solid elemental sulfur as a recovery target is important.

3. RSS-Related Bioprocesses for the Treatment of Environmental Pollutants

A central issue in wastewater treatment is nitrogen removal [28]. Excess nitrogen
causes eutrophication, has a toxic effect on aquatic plants and animals, and contaminates
drinking water sources [29]. Biological denitrification stands out for its low operating
costs and environmental friendliness. In this process, both autotrophic and heterotrophic
bacteria play roles separately or together. The SANI (sulfate reduction−autotrophic
denitrification−nitrification integrated) process is successful in practical municipal wastew-
ater treatment, especially in terms of energy and sludge reduction (Figure 3) [30]. We
review wastewater treatment mediated by sulfur-containing substances, categorized by
main sulfur species, focusing on the main functional microorganisms, functional genes,
and metabolic mechanisms. In addition to the SANI process, other types of reactors, such
as membrane reactors and elemental sulfur packed-bioreactor, are covered. Some of the
treatment processes that involve exhaust gas treatment are also discussed.
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3.1. Sulfur-Reduction-Based Biological Treatment
3.1.1. Sulfate-Reduction Bioreactors

Sulfate can be used as an alternative terminal electron acceptor under anaerobic
conditions, except for oxygen, nitrate, Mn (IV), and Fe (III), which provide higher energy
yields. Therefore, sulfate reduction is not only an important part of the global sulfur cycle
but is also applied in wastewater treatment. The use of sulfate-reducing bacteria (SRB)
for the treatment of high-sulfate wastewater is appropriate, given the potential threat of
excessive sulfate emissions to the environment. To the best of our knowledge, the sulfate
respiration of SRB relies on a variety of electron donors, such as formate, acetate, butyrate,
and H2, with sulfide as the end product [31,32]. Sulfate-reduction bioreactors are used in
single or multi-stage systems for full-depth treatment of wastewater, depending on the
purpose of the treatment.
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Bio-sulfate-reduction technology for the removal and recovery of valuable metals is
critical [33]. Metallic wastewater from acid mine drainage (AMD) and heavy industries,
such as metallurgy and steel manufacturing, has low pH and COD (chemical oxygen de-
mand), high sulfate, and high heavy metals [34]. The advantages of using SRB to precipitate
metals include (1) SRB have a broad spectrum of pH adaptability and can perform sulfate
reduction at low pH to produce sulfides, (2) high sensitivity of sulfide precipitation reac-
tions and high recoverability, and (3) low cost. Treatment of antimony (Sb) mine drainage is
regarded as a priority by regulators, and sulfate-reduction bioreactors have great potential
for Sb removal [35]. Up to 98.3% antimony removal is achieved in SRB reactors with
Fe(II) participation, and soluble Sb(V) is reduced to Sb(III) and precipitated as pyroxene
(Sb2S3) [36]; a typical strain of SRB enriched therein is Desulfovibrio sp. Macroscopically, SRB
utilizes the organic compounds in wastewater to provide electrons for sulfate reduction,
which results in the production of sulfides that combine with metal ions to form insoluble
precipitates. These reactions can be expressed by two equations:

2CH2O + SO4
2− + 2H+ → H2S + 2CO2 + 2H2O (1)

H2S + M2+ →MS + 2H+ (2)

where M is a metal, e.g., Mn, Pb, Cu, Cd, or Ni. Sulfate reduction is an alkalinity-producing
process that is advantageous in biologically neutralizing acidic wastewater and for ecologi-
cal restoration. The major problems associated with the anaerobic treatment of high-sulfate
wastewater are related to the production of sulfides. In addition to the precipitation of
metals, sulfide can also be used as a feedstock for subsequent bioreactors. Sulfide oxidation
used for wastewater treatment is summarized in Section 3.2.

Besides AMD wastewater, sulfate-reduction biotechnology is applied to other types
of wastewater, such as antibiotic-containing pharmaceutical or phenol-containing paper-
mill wastewater. Ciprofloxacin (CIP) is a fluoroquinolone antibiotic that is widely used
in human and animal manufacturing. It has strong antibacterial effects in the treatment
of human tuberculosis and urinary tract and respiratory tract infections, as well as in
animal husbandry and farming [37]. Jia et al. found that sulfate-reduction biotechnology
has great potential to treat wastewater containing CIP [38]. At low concentrations CIP is
adsorbed by secreting extracellular polymeric substances (EPS), thus avoiding the toxic
effects of antibiotics on microorganisms—with increasing CIP concentrations, CIP-resistant
Desulfobacter are enriched. The CIP biodegradation pathway dependent on cytochrome
P450 enzymes and acetylases was validated in an SRUSB (sulfate-reducing up-flow sludge
bed) reactor [39].

Other examples are phenols and their derivatives present in wastewater from textile,
paper, plastic, and cosmetic industries, as well as in industrial phenol leaks and exhaust
gases from construction and renovation [40]. Because of their toxicity and carcinogenicity,
phenol substances may cause pollution, which has attracted widespread attention from the
scientific community and the public. Anaerobic treatment of phenol-containing wastewater
is mostly performed in UASB (up-flow anaerobic sludge blanket) reactors [41]. Guo et al.
achieved up to 90% phenol removal using a UASB reactor based on sulfate reduction [42].
Sequencing 16s DNA showed that Clostridium spp. and Desulfotomaculum spp. were the
major phenol-degrading bacteria. Dephosphorylation and acidification are known to be
the main pathways of phenol biodegradation [43].

3.1.2. Sulfate-Reducing Bacteria (SRB) and Molecular Mechanisms

Sulfate-reducing bacteria, an artificial taxonomic designation according to function,
comprise a diverse group of anaerobic microorganisms with a wide range of fermentation-
product metabolism capabilities [44,45]. SRB are distributed in more than 220 species in 60
genera of five phyla of bacteria and two divisions of archaea [46,47]. Bacteria taxa include
Desulfovibrio, Desulfotomaculum, and Desulfosporomus in phylum Firmicutes, Thermodesul-
fovibrio of phylum Nitrospira, and Thermodesulfobacterium. For archaea, the euryarchaeota
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genus Archaeoglobus and the two crenarchaeotal genera Thermocladium and Caldivirga are
dominant. The dominant SRB vary in different bioreactors. For example, in an expanded
granular sludge bed (EGSB) reactor capable of carbon, nitrogen, and sulfur co-removal
operated by Chen, the dominant strain of SRB was Desulfomicrobium sp. [48]. Desulfomi-
crobiaceae and Desulfobulbaceae are the two dominant SRB taxa in sulfate-reduction and
organic-matter-removal units [49]. Two new species were defined in the sulfate-reducing
ammonia anaerobic oxidation (SRAO) process, Anammoxoglobus sulfate and Bacillus benzo-
evorans, which possess the ability to simultaneously eliminate ammonia and sulfate [50].

Regardless of the environment or bioreactor, a common set of dissimilatory sulfate-
reduction pathways (also called “sulfate respiration”) are shared by functional SRB as
shown in Figure 4 [51–53]. Sulfate is taken up from the environment via sulfate transporters
and activated by the enzyme ATP sulfurylase (Sat) to form adenosine-5′-phosphosulfate
(APS). Then APS is reduced to sulfite through adenylyl-sulfate reductase (Apr), which
accepts electrons from the electron transport complex (ETC) in the membrane. The dissim-
ilatory (bi)sulfite reductase (DSR) complex further reduces the (bi)sulfite to H2S, which
diffuses passively out of cell membranes. Besides the dissimilatory sulfate-reduction path-
way, there is an assimilatory sulfate pathway in SRB [54,55]. Both share the same initial
step of sulfate activation by ATP—the difference is that assimilatory sulfate reduction
requires the transfer of phosphate to adenosine-5′-phosphate sulfate (APS) by adenylate
kinase to produce phosphoryl adenosine-5′-phosphate sulfate (PAPS). This continues to be
decomposed by NADPH2 to produce SO3

2− and, finally, a cysteine is formed from SO3
2−

by sulfite reductase.
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The enzymatic reaction of sulfate reduction is reversible due to the intermediate
products and substrate concentrations. This explains sulfur isotope fractionation [56,57].
Genes dsrA and dsrB are regarded as the characteristic key functional genes of SRB, and
they have been used to investigate the distribution and abundance of SRB in colonies [58].
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Specific inhibition of sulfate reduction by molybdate or selenate has been experimentally
demonstrated, and this has been used to study the contribution of different electron donors
to sulfate reduction [59].

In addition to temperature and pH, two basic physicochemical indicators that directly
affect the activity of SRB substrate carbon supply are to be considered for sulfate-reduction
biotechnology: (1) SRB are mostly heterotrophic in metabolism and (2) different types of SRB
utilize different carbon sources [44]. Therefore, the provision of suitable carbon sources is of
significance to improve the efficiency of SRB reactors. Scientific research mostly uses a single
carbon-source culture, but it is expensive. In large-scale applications, such as industrial
wastewater treatment, alternative efficient and inexpensive carbon source supplies must
be considered. Mixing multiple carbon sources is common. Steel slag, sugarcane bagasse,
fruit and vegetable wastewater, and sugar by-products have been introduced as cheap
carbon sources [60,61]. In anaerobic wastewater treatment, methanogenic bacteria compete
with sulfate-reducing bacteria for hydrogen and acetic acid (both are prerequisites for
methane formation and electron donors for sulfate reduction) [62,63]. Providing suitable
reaction conditions and controlling the activity of methanogenic bacteria are also important
to improve sulfate-reducing bioreactors [64].

3.1.3. S0-Based Reduction Bioreactors

Sulfur-packed bioreactors have significant advantages in treating both high-rate COD
wastewater and low C/N ratio domestic wastewater by avoiding high activated-sludge
yields [65,66]. Sulfur-packed bioreactors can be categorized into two major types ac-
cording to the electron valence change of sulfur. One is as electron acceptors, mainly
used in the treatment of high-organic-carbon wastewater and hazardous metal-laden
wastewater [65,67]. The other is as electron donors for in-depth denitrification of drinking-
water resources and wastewater with a low C/N ratio (see Section 3.2.3) [68]. These
technologies provide a more cost-effective solution to the environmental problems in
current wastewater treatment.

The S0-based reduction bioreactor is an efficient anaerobic wastewater treatment
process that reduces sludge production and avoids the excess activated sludge problem
commonly faced by wastewater plants [69]. A laboratory-scale sulfur-reducing anaerobic
fluidized bed (SRAFB) reactor built by Zhang et al. achieved high organic removal rates
with a sludge yield of only 16% (VSS per kg COD) [70]. Sulfide in the effluent can be
recovered by micro-aeration biological treatment, an internal sulfur cycling process (ISC).
An ISC system achieved 94% removal at 300 mg/L COD after 200 days of continuous
operation, and 76% recovery of sulfide in the effluent was recovered in the form of elemental
sulfur after 200 days of continuous operation [71].

Emerging sulfur-reduction biotechnology requires only two electrons for the sulfi-
dation of elemental sulfur, theoretically reducing organic consumption by 75%. Sulfur
reduction can reduce organic carbon by 66–80% compared to sulfate reduction when
producing equivalent amounts of sulfide [67]. Li et al. performed a pilot-scale sulfur reduc-
tion bioreactor to handle practical domestic wastewater, coupling Cu-laden electroplating
wastewater treatment [72]. The results achieved 99% removal of Cu2+, indicating that
sulfur reduction is a sustainable sulfide generation technology with great potential for
application.

Mercury and arsenate removal is also critical for S0-based reduction bioreactors. Ar-
senite (III) is more mobile and toxic than arsenate (V) and both are culprits of arsenic
contamination in groundwater. Sulfide precipitation is the ideal means of biological arsenic
removal [73]. Because sulfate reduction is alkali-producing, the by-product thioarsenite
(As(OH)S2

2−) is produced [74]. Therefore, sulfur-reduction technology under acidic condi-
tions is considered a prospective alternative because it produces large amounts of sulfide
while minimizing pH increases. Sun et al. verified that an S0-based reduction bioreactor
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could produce high sulfide yields (0.42 ± 0.2 kg S/m3-d) under acidic conditions (pH~4.3)
while achieving 99% removal of arsenite without the formation of soluble thioarsenite [75].

2H3AsO3 + 3HS− → As2S3 + 3H2O + 3OH− (3)

H3AsO3 + HS− + 2H+ → AsS + 3H2O (4)

As2S3 + HS− + 3OH− → 2As(OH)S2
2− + H2O (5)

Sulfur-reduction technology also has the potential for treating mercury (II) in aqueous
environments. Mercury (II) is highly toxic and can be removed by the formation of insoluble
precipitates with biogenic sulfides. Sulfate reduction, however, does not achieve desired
mercury removal because SRB promotes the production of the more toxic methylmercury
(MeHg) in the presence of organic matter and sulfate [76]. Wang et al. performed successive
experiments on mercury-laden wastewater and found that the use of S0-based reduction
bioreactors completely removed mercury (II) (up to 50 mg/L) without forming neurotoxic
MeHg [77]. However, the causes and mechanisms for no by-product MeHg production in
this process are not clear.

Sulfur-packed bioreactors have also been used in flue-gas treatment. SO2 has high
solubility (11.29 g SO2/100 g H2O), whereas NO, which is the major component of NOx,
does not (0.00618 g NO/100 g H2O). The traditional physical−chemical desulfurization
and denitrification approach is wet flue-gas desulfurization (WFGD) for SO2 removal with
selective catalytic reduction (SCR) of nitrogen oxides [23]. Reducing substances produced
during wastewater treatment, such as ammonia, nitric oxide, and hydrogen sulfide, have
been shown to act as reducing agents for flue-gas desulfurization and denitrogenation.
Sun et al. developed a simultaneous catalytic desulfurization and denitrogenation (SCDD)
technology based on sulfur cycling [78]. This technology takes the organic matter in
wastewater as an electron donor and obtains high-rate sulfide by biological sulfur reduction;
the resulting low-cost reductant (hydrogen sulfide) removes 90% of SO2 and NO from the
flue gas, and the end product was elemental sulfur that was non-toxic and had economic
recovery value.

Polysulfides have been found to participate in and accelerate the sulfur reduction in
S0-based reduction bioreactors. As a product of the nucleophilic attack of sulfur hydrogen
ions on elemental sulfur, polysulfides are a key intermediate in sulfur reduction and they
enhance the bioavailability of sulfur. Polysulfides were also found by Zhang et al. in
their laboratory-scale, sulfur-reducing anaerobic fluidized bed (SRAFB) bioreactor for
wastewater treatment [70]. The small initial amount of sulfide promoted the production
of polysulfide, which accelerated the reduction of elemental sulfur, forming a polysulfide-
mediated self-accelerating chain reaction. Qiu et al. suggested that a novel polysulfide-
involved SADN (PiSADN) process achieved a high rate of autotrophic nitrate removal [79].
In this process, sulfur disproportionation is considered to be the key to driving PiSADN,
where disproportionation generates sulfides, which, in turn, promote the formation of
polysulfides.

HS− + (n − 1) S0 → Sn
2− + H+ (6)

4S0 + 4H2O→ SO4
2− + 3HS− + 5H+ (7)

∆G0 = 240.2 kJ/mol

3.1.4. Sulfur-Reducing Bacteria (S0RB) and Molecular Mechanisms

Elemental sulfur reduction to sulfide coupled with inorganic phosphorylation of
ADP is known as sulfur respiration [80]. Since the discovery of sulfur respiration in
Desulfuromonas acetoxidans, more bacteria that can catalyze elemental sulfur reduction have
been discovered. Sulfur-reducing bacteria (S0RB) are distributed in both archaea and
bacteria and have a wide range of habitats in nature, from extremely acidic hot seawater to
superheated seafloor vents [80,81]. Because of this, the metabolism of S0RB exhibits high
variability (Table 2).
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Table 2. Representative archaea and bacterial members of sulfur respiration.

Taxonomic Category Electron Donor Reference

Archaea
Crenarchaeota:

Acidianus H2 [82]

Thermoproteus H2, peptides, maltose, formate, fumarate, ethanol, malate, methanol,
glycogen, starch, amylopectin, formamide [83]

Euryarchaeota:
Pyrococcus Complex substrates, amino acids, starch, maltose, pyruvate [84]

Methanococcus H2, formate [85]
Bacteria
Aquifex H2, sulfur, thiosulfate [86]

Desulfurobacterium H2 [87]
Desulfuromonas Acetate, pyruvate, ethanol [88]
Desulfuromusa Acetate, propionate [89]

Fervidobacterium Sugars, pyruvate, yeast extract [90]
Geobacter Acetate [91]

Sulfospirillum H2, formate [92]

Thermotoga Sugars, peptone, yeast extract, bacterial and archaeal cell
homogenates [93]

Thermosipho Yeast extract, brain heart infusion, peptone, tryptone [94]
Wolinella H2, formate [95]

There are at least two known mechanisms of sulfur respiration in S0RB (Figure 5) [96].
One is found in Wolinella succinogenes, in which the [NiFe]-hydrogenase (HydABC) oxi-
dizes H2 and transfers electrons via methyl quinone to the periplasmic membrane-bound
polysulfide reductase, PsrABC [80]. PsrA is responsible for polysulfide reduction to H2S,
PsrB is an [FeS] electron transfer protein, and PsrC is a quinone-containing membrane
anchor. In addition, a polysulfide transferase (Sud) protein is thought to be involved in the
acquisition of sulfides from protons and sulfur. The other is the NAD(P)H elemental sulfur
reductase (Nsr) that uses elemental sulfur as a substrate directly, rather than polysulfides,
to reduce elemental sulfur by oxidizing NAD(P)H and releasing H2S [96].

Antioxidants 2023, 12, x FOR PEER REVIEW 9 of 21 
 

been discovered. Sulfur-reducing bacteria (S0RB) are distributed in both archaea and bac-
teria and have a wide range of habitats in nature, from extremely acidic hot seawater to 
superheated seafloor vents [80–81]. Because of this, the metabolism of S0RB exhibits high 
variability (Table 2). 

Table 2. Representative archaea and bacterial members of sulfur respiration. 

Taxonomic Category Electron Donor Reference 
Archaea   

Crenarchaeota:   
Acidianus H2 [82] 

Thermoproteus 
H2, peptides, maltose, formate, fumarate, ethanol, malate, methanol, glycogen, 

starch, amylopectin, formamide [83] 

Euryarchaeota:   
Pyrococcus Complex substrates, amino acids, starch, maltose, pyruvate [84] 

Methanococcus H2, formate [85] 
Bacteria   
Aquifex H2, sulfur, thiosulfate [86] 

Desulfurobacterium H2 [87] 
Desulfuromonas Acetate, pyruvate, ethanol [88] 
Desulfuromusa Acetate, propionate [89] 

Fervidobacterium Sugars, pyruvate, yeast extract [90] 
Geobacter Acetate [91] 

Sulfospirillum H2, formate [92] 
Thermotoga Sugars, peptone, yeast extract, bacterial and archaeal cell homogenates [93] 
Thermosipho Yeast extract, brain heart infusion, peptone, tryptone [94] 

Wolinella H2, formate [95] 

There are at least two known mechanisms of sulfur respiration in S0RB (Figure 5) [96]. 
One is found in Wolinella succinogenes, in which the [NiFe]-hydrogenase (HydABC) oxi-
dizes H2 and transfers electrons via methyl quinone to the periplasmic membrane-bound 
polysulfide reductase, PsrABC [80]. PsrA is responsible for polysulfide reduction to H2S, 
PsrB is an [FeS] electron transfer protein, and PsrC is a quinone-containing membrane 
anchor. In addition, a polysulfide transferase (Sud) protein is thought to be involved in 
the acquisition of sulfides from protons and sulfur. The other is the NAD(P)H elemental 
sulfur reductase (Nsr) that uses elemental sulfur as a substrate directly, rather than poly-
sulfides, to reduce elemental sulfur by oxidizing NAD(P)H and releasing H2S [96]. 

 
Figure 5. Two known mechanisms of sulfur respiration. (A) The Psr pathway where electrons for 
sulfur reduction are derived from hydrogenase. (B) The Nsr pathway where electrons for sulfur 
reduction come directly from NAD(P)H and require the participation of coenzyme A. 

Figure 5. Two known mechanisms of sulfur respiration. (A) The Psr pathway where electrons for
sulfur reduction are derived from hydrogenase. (B) The Nsr pathway where electrons for sulfur
reduction come directly from NAD(P)H and require the participation of coenzyme A.

3.2. Sulfur-Oxidation-Based Biological Treatment
3.2.1. Sulfide-Oxidation Bioreactors

Sulfide is highly reductive and serves as an energy source for some chemoautotrophic
microorganisms. It is found in many scenarios, such as anaerobic treatment effluent of
sulfate-laden wastewater, sulfidogenic treatment of acid mine drainage, petroleum refining
industries, and pharmaceutical wastewater [34,37]. In the geochemical cycle, sulfide is
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re-oxidized back to sulfate via various oxidants, such as oxygen, nitrate, Mn (IV), Fe
(III), and other chemical oxidants or bio-oxidizers, such as reductive sulfur substances
oxidizing bacteria (SOB), through different sulfur intermediates (polysulfide, elemental
sulfur, sulfite, thiosulfate, etc.). The degree of sulfide oxidation depends on the number
of available chemical oxidants (e.g., oxygen and nitrate) and the species of SOB [62]. SOB
is a group of microorganisms that utilize reduced sulfur substances (sulfide, elemental
sulfur, or thiosulfate) and whose oxidation products are higher-valence sulfur-containing
substances or sulfates. Due to the diversity of their nutrient metabolism types, they
have long been used in wastewater treatment [97]. Practical wastewater systems contain
organic carbon, nitrate nitrogen, and ammonia nitrogen in different concentrations, besides
sulfurous substances. Therefore, various simultaneous desulfurization and denitrification
technologies have been developed to deal with sulfurous wastewater pollution [98].

Denitrifying functional microorganisms are classified into two main groups depending
on the electron donor. Processes using organic material are called heterotrophic denitrifica-
tion (HD) and those using inorganic materials (e.g., Fe2+, Mn2+, H2, S2−, and S0) are called
autotrophic denitrification (AD). The former has the advantage of rapid denitrification but
disadvantages include sludge production, N2O emissions, and exogenous supplemental
carbon sources. AD decreases sludge yield but has a long start-up period and slow bacterial
growth [99]. The choice of autotrophic or heterotrophic denitrification, or a combination,
depends on the type of wastewater being treated.

Autotrophic denitrification technology with sulfide as an alternative electron donor is
applied to the desulfurization of biogas and denitrification of low C/N ratio wastewater.
This can avoid the exogenous addition of carbon sources, and the intermediate oxidation
product (elemental sulfur) is not a secondary pollutant and has economic value [100].
Therefore, the final treatment of sulfur-containing wastewater is often targeted at elemental
sulfur. As shown in Figure 3, AD is the core technology unit in the SANI system, in which
sulfide and nitrate are synchronously converted by microorganisms into sulfate and N2,
thus achieving the goal of harmless and resourceful wastewater.

Biogas, a biomass energy source, has many advantages, such as high combustion value,
simple preparation, sufficient raw materials, and low pollution; however, the formation of
hydrogen sulfide as a by-product is inevitable [101]. Although the concentration of H2S is
low, it will have a strong corrosive effect on metal pipes, instruments, internal combustion
engines, etc. Moreover, it will produce SO2 after combustion, which will cause pollution.
Therefore, desulfurization is an essential part of biogas purification [102,103]. The coupling
of biogas desulfurization with deep denitrification of wastewater is increasingly common.

Similar to sulfur-containing wastewater treatment, biodesulfurization uses SOB to
convert H2S in biogas into elemental sulfur or sulfate. Wang et al. proposed a new process
using autotrophic denitrification coupled with biogas desulfurization [104]. The process
uses H2S in biogas as the electron donor for wastewater denitrification and achieves deep
nitrogen removal from wastewater and simultaneous purification of biogas without an
additional carbon source. Even if the N/S parameters change, the removal rate of elemental
nitrogen in the effluent can reach 100% and the removal rate of hydrogen sulfide remains
above 91%.

The combination of autotrophs and heterotrophs has significant advantages in wastew-
ater treatment, such as increasing the stability of the reactor network, compensating for
insufficient organic carbons, and minimizing sludge yields. On this basis, integrated au-
totrophic heterotrophic denitrification (IAHD) is proposed for the treatment of organic
wastewater containing nitrogen and sulfide, i.e., simultaneous carbon, nitrogen, and sulfur
removal. Reyes-Avila et al. achieved simultaneous removal of nitrate (to N2), sulfide
(to S0), and carbon (acetate to CO2) in a continuously stirred tank reactor (CSTR) using
an incubated autotrophic heterotrophic symbiotic system [105]. The maximum removal
rates were 0.209 kg N m−3 d−1, 0.294 kg S m−3 d−1, and 0.303 kg C m−3 d−1. Chen et al.
used an EGSB to achieve high rates of bioconversion in synthetic wastewater, at loading
rates of 3.0 kg S m−3 d−1, 1.45 kg N m−3 d−1, and 2.77 kg Ac m−1 d−1 [106]. Zhang et al.
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investigated the contribution of autotrophic and heterotrophic bacteria in an IAHD system
and found that Thiobacillus was the key autotrophic desulfurization and denitrification
bacterium at low sulfide levels, while other heterotrophic bacteria, such as Azoarcus and
Pseudomonas, functioned at high sulfide concentrations [107].

Huang et al. achieved 78% recovery using a UASB reactor while ensuring 100% carbon,
nitrogen, and sulfur co-removal [108]. Further, they developed a compact, biofilm-forming,
membrane-filtration reactor (BfMFR) aimed at the rapid separation of the generated ele-
mental sulfur from the biofilm by membrane filtration [109]. The high sulfur generation
efficiency (98% on average) was stably maintained with feed water concentrations of 115,
120, and 100 mg/L for acetic acid, nitrate, and sulfide. Researchers found that the genera
Thauera, Arcobacter, Pseudomonas, Azoarcus, Ochrobactrum, Alkiflexus, and Thiobacillus were
prevalent and they were the core genera of denitrification desulfurization system [109].

3.2.2. Sulfide-Oxidation Bacteria (SOB) and Molecular Mechanisms

The biological oxidation of sulfides is an ancient metabolic mode and a common
chemical reaction in extreme environments such as volcanoes and hot springs. The microor-
ganisms that dominate these oxidation reactions are diverse and include various trophic
groups of bacteria and archaea. Table 3 summarizes the taxonomy, nutrient types, and
enzymes of several representative SOBs [110–114].

Table 3. Representative strains of sulfide-oxidizing bacteria and their metabolic features.

Taxonomic Category Representative Species Metabolic Features Sulfur Oxidation
Genes

Distributed
Environment Reference

GSB
Chlorobi

Chlorobaculum tepidum,
Chlorobaculum
thiosulfatiphilum

Obligate phototrophy;
S2–, S0, or S2O3

2− as e−

donors for reduction of
CO2; extracellular S0

globules; potential
mixotrophy

SoxXAYZB, APS
reductase, Qmo
complex, and Fcc

Anaerobic waters, oceans,
soils, the Yellowstone hot
springs and sediments

[115,116]

PSB
Chromatiaceae

Allochromatium warmingi
Isochromatium buderi

Photoautotrophy except
for Rheinheimera spp.; S2−

and S0 as e− donors of
photosynthesis;
intracellular S0 globules

-

Oceans, stagnant aquifers,
eutrophic lakes with
water bodies, and
extreme environments
rich in sulfides

[117,118]

Ectothiorhodospiraceae
Allochromatium vinosum
Ectothiorhodospira
vacuolata

Oxidation of S2− for all
the members;
extracellular S0 globules;
polysulfides under
alkaline conditions; some
can oxidize S2O3

2− to
SO4

2−

SoxXAYZB, Sqr,
DsrABEFHCMKLJOP-
NRS, APS reductase,
and Fcc

[119,120]

PNSB
Alphaproteobacteria

Rhodopseudomonas
palustris

The preferred
photoheterotrophy under
anaerobic conditions;
photolithoautotrophy
with S2−/S2O3

2−

SoxXAYZBCD, SoxEF,
and Sqr

Waste ponds, coastal
lagoons and other
aquatic-habitat stagnant
areas, sediments, wet
soils, and rice paddies

[121]

Betaproteobacteria Rhodocyclus purpureus

Chemoorganotrophy/
chemolithoautotrophy
under aerobic or
microaerobic conditions

- [122]
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Table 3. Cont.

Taxonomic Category Representative Species Metabolic Features Sulfur Oxidation
Genes

Distributed
Environment Reference

CSB
Alphaproteobacteria Paracoccus spp.

Facultative
chemolithoautotrophy;
oxidation of S2−, S0,
S2O3

2−, or SO3
2− to

SO4
2−

SoxXAYZBCD and
SoxEF

Activated sludge,
wastewater treatment
systems, farmland, and
natural ecological
environment such as
orchards

[123]

Acidithiobacillia Acidithiobacillus
ferrooxidans

Obligate
chemolithoautotrophy;
oxidation of S0, S2O3

2−,
or S4O6

2− by the
incomplete Sox system;
S0 globules as
intermediates

SoxXAYZB and Sqr [124]

Gammaproteobacteria Thiomicrospira crunogena

Obligate
chemolithoautotrophy;
extracellular S0 globules
under low oxygen/pH;
transient accumulation of
SO3

2− or polythionate
during S0 globules or
S2O3

2− oxidation

SoxXAYZBCD and
Sqr [125]

Gammaproteobacteria Beggiatoa spp.
Chemolithoheterotrophy/
mixotrophy; intracellular
S0 globules

Dsr, Sqr, and APS
reductase [126]

Colorless sulfur bacteria include Paracoccus, Hyphomicrrobium, Alcaligenes, Pseudomonas,
Ochrobactrum, and Hydrogenobacter. Thiobacillus denitrificans is the most well-studied
chemoautotrophic sulfide-oxidizing bacterium, capable of sulfide oxidation under aer-
obic and anaerobic conditions [127]. Primary sulfide-oxidation pathways include the
sulfide−quinone oxidoreductase (SQR/PDO/ST) system, flavin cytochrome c dehydroge-
nase (FCSD), and Sox multi-enzyme oxidation system. Among them, SQR and FCSD are
the dominant types of sulfide oxidases (Figure 6). There are six SQR systems distributed in
animals, plants, and microorganisms [111,128]. SQR relies on its cofactor FAD to oxidize
sulfide to zero-valent sulfur, and the resulting electrons enter the respiratory chain via
coenzyme Q or methyl naphthoquinone on cell membranes. The resulting zero-valent
sulfur reacts spontaneously with GSH in the presence of a suitable receptor (e.g., GSH)
to form glutathione persulfide (GSSH), which is then oxidized to sulfite by persulfide
dioxygenase (PDO) [129]. The zero-valent sulfur is temporarily bound to the conserved
cysteine of SQR in the absence of a suitable receptor, and as the sulfide is oxidized; the zero-
valent sulfur bound to SQR is eventually shed as S8. By contrast, FCSD is a heterologous
flavoprotein dimer formed by the binding of two c-type cytochrome subunits encoded by
the fccA and fccB genes, which are generally found in the microbial periplasmic space [130].
FCSD differs from the electron acceptor of SQR in that it uses cytochrome c as an electron
acceptor to oxidize sulfide to zero-valent sulfur. The FCSD system is thought to be useful
in areas of low sulfide concentration and, therefore, SQR is generally considered to be the
primary sulfide-oxidation system (especially in high sulfide environments) [131]. Therefore,
sqr, fccA, fccB, pdo, and sox are often queried as key characteristic genes or proteins in the
distribution and diversity analysis of SOB.
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The optimization of reactor operating parameters, such as temperature, pH, HRT,
N/S ratio, and C/N ratio of the influent, directly affects the operating effectiveness of
denitrification sulfide removal [132]. The rate of microbial-catalyzed sulfide oxidation is
several orders of magnitude higher than chemical oxidation [133,134]. Researchers have
demonstrated that microaerobic conditions (DO in the range of 0.2–1 mg L−1) can improve
the sulfide tolerance of functional bacteria, promote the efficiency of biodesulfurization,
and increase the elemental sulfur yield [135–137]. Macrogenomic results show that micro-
oxygen promoted the abundance of genes responsible for sulfide metabolism (sqr, glpE (a
typical sulfotransferase gene in Escherichia coli), pdo, sox, and cysK (Figure 4)) [138]. The
formation of polysulfides is inevitable during the oxidation of sulfides [139].

3.2.3. S0-Based Oxidation Bioreactors

S0-based oxidation bioreactors are primarily applied for the intensive denitrification of
low C/N ratio wastewater or groundwater for economic reasons. More importantly, sulfur
autotrophic denitrification (SADN) emits less N2O than heterotrophic denitrification [140].
Sahinkaya performed a new SADN using a membrane bioreactor (MBR) to remove nitrate
from drinking water [141]. Complete denitrification was achieved when the influent
nitrate concentration was 25–50 mg NO3-N/L and the HRT was as low as 5 h. Zhang
et al. achieved a removal efficiency of 4.0 g NO3-N/L·d using a novel sulfur-oxidizing
autotrophic denitrifying anaerobic fluidized bed membrane bioreactor (AnFB-MBR). They
found Thiobacillus, Sulfurimonas, and Ignavibacteriales to be the dominant sulfur-oxidizing
bacterial genera [66]. Denitrification is alkalinity-depleting, so cheap and easily available
materials, such as CaCO3 or crushed oyster shells, are good choices to neutralize alkalinity.
SADN has been applied in wastewater treatment plants and for the production of drinking
water [142].

S0-based oxidation bioreactors have also been applied for chromium removal from
drinking water. Chromium contamination is not uncommon in industrial wastewater and
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groundwater [143]. In nature, hexavalent (VI) and trivalent (III) chromium are the main
forms, the former is water soluble and strongly carcinogenic, and the latter is insoluble in
neutral conditions. The main method of chromium removal from water bodies is to reduce
Cr(VI) to Cr(III) [144]. After 60 days of operation, 92.9% removal of chromate was achieved
with the reactor using elemental sulfur as the only electron donor.

3.2.4. Sulfur-Oxidation Bacteria (S0OB) and Molecular Mechanisms

Sulfur-oxidizing bacteria (S0OB) are microorganisms capable of directly using ele-
mental sulfur as an electron donor. Due to the relevance of the metabolism of reduced
sulfur species (sulfide, sulfite, thiosulfate), S0OB can oxidize the above-mentioned reducing
sulfur species. Here, we review two known metabolic pathways for microbial elemen-
tal sulfur oxidation: the rDSR (reverse dissimilatory sulfite reductase) pathway and the
Hdr (heterodisulfide reductase) pathway (Figure 7). The rDSR pathway involves several
enzymes in dissimilatory sulfate reduction as mentioned in previous sections [145]. The
sulfur atoms in elemental sulfur being sequentially transferred to the active site of rDSR
through proteins Rhd, TusA, DsrEFH, and DsrC. The two active Cys of protein DsrC and
the received sulfur atoms form a trisulfide peroxide catalyzed by the membrane-bound
protein complex DsrMKJOP, and SO3

2− is produced by the DsrAB protein. In this process,
low-molecular-weight organic persulfides (e.g., glutamine persulfide) are carriers for the
transfer of sulfur from the periplasmic space to the cytoplasm. The Hdr pathway is a
sulfur-atom-transfer pathway, similar to the rDSR pathway, which produces sulfite [146].
The difference is that the Hdr complex is a membrane-bound protein containing at least
five subunits.
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4. Prospects and Conclusions

This study highlights the scientific and environmental aspects of relying on the sulfur
cycle for pollutant treatment by reviewing current advanced biotechnologies and the
available molecular biological knowledge. Yet, there remains a gulf between currently
known molecular mechanisms and practical biotechnological guidance. A better interplay
between the two should be addressed in the future for both basic theoretical research and
practical engineering applications. The relevant biological principles and mechanisms
in biological treatment need to be optimized by calibrating operating parameters and
elucidating more efficient microbial pathways.

RSS are involved in several biotechnological processes as an important intermediate
in the microbially driven sulfur cycle. One of the challenges of RSS is the interconversion
of different sulfur species through redox reactions, leading to the inability to accurately
quantify them, especially polysulfides. The role played by RSS in environmental technology
research is also complicated by the oxidative-stress products of functional microorganisms
in bioreactors and their interactions with contaminants.
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Some substantial advances have been made in sulfur-cycle-based biotechnology for
wastewater treatment. A variety of sulfur-packed bioreactors are emerging and the devel-
opment of single-stage bioreactors for the simultaneous removal of multiple pollutants is a
future research direction. Sulfur-packed reactors show their superiority, but safety during
transportation and storage should not be ignored.
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