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Abstract: Metallothionein 3 (MT3), also known as a neuronal growth-inhibitory factor, is a member
of the metallothionein family and is involved in a variety of biological functions, including protection
against metal toxicity and reactive oxygen species (ROS). However, less is known about the role
of MT3 in the differentiation of 3T3-L1 cells into adipocytes. In this study, we observed that MT3
levels were downregulated during 3T3-L1 adipocyte differentiation. Mt3 overexpression inhibited
adipocyte differentiation and reduced the levels of the adipogenic transcription factors C/EBPα and
PPARγ. Further analyses showed that MT3 also suppressed the transcriptional activity of PPARγ,
and this effect was not mediated by a direct interaction between MT3 with PPARγ. In addition,
Mt3 overexpression resulted in a decrease in ROS levels during early adipocyte differentiation,
while treatment with antimycin A, which induces ROS generation, restored the ROS levels. Mt3
knockdown, on the other hand, elevated ROS levels, which were suppressed upon treatment with
the antioxidant N-acetylcysteine. Our findings indicate a previously unknown role of MT3 in the
differentiation of 3T3-L1 cells into adipocytes and provide a potential novel target that might facilitate
obesity treatment.
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1. Introduction

Obesity has been gradually turning into a global epidemic with an increasing preva-
lence among adults and children [1–3]. By 2025, the incidence of obesity is predicted to be
more than 21% in women and 18% in men [4]. Obesity is associated with an increased risk of
developing various diseases, including several types of cancer [5–7], type 2 diabetes [8], and
cardiovascular disease [9], which are the primary causes of death worldwide. Therefore,
it is crucial to develop effective interventions for the prevention and treatment of obe-
sity. Adipocyte differentiation, a critical event in the progression of obesity, is an intricate
process tightly controlled by various transcription factors, including the members of the
CCAAT/enhancer binding protein (C/EBP) family and peroxisome proliferator-activated
receptor γ (PPARγ) [10,11]. C/EBPβ and C/EBPδ are important regulators of the initial
phases of adipocyte differentiation; C/EBPβ allows the growth-arrested preadipocytes to
reinitiate mitotic clonal expansion (MCE) [12,13]. Then, C/EBPβ and C/EBPδ synergisti-
cally promote the expression of C/EBPα and PPARγ upon stimulation with a differentiation
cocktail [14]. PPARγ is considered to be the dominant inducer of adipocyte differentiation
due to its indispensable role in adipogenesis; its absence is sufficient to inhibit adipocyte
differentiation [15,16]. C/EBPα, a critical downstream effector of PPARγ, maintains the
expression of PPARγ and functionally synergizes with PPARγ to induce the expression
of adipogenic genes functioning in the late stages of adipocyte differentiation, such as
adiponectin and fatty acid binding protein 4 (FABP4, also known as aP2) [17,18].
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Metallothioneins (MTs) are metal-binding proteins of low molecular weight (6–7 kDa)
with a high cysteine content (30%). The four major MTs are MT1, MT2, MT3, and
MT4 [19–21]. Among them, MT1 and MT2 are widely expressed in mammals, whereas
MT3 is primarily found in the brain, and MT4 is expressed only in certain squamous
epithelia [19,22]. MTs are associated with multiple physiological functions, including
detoxification of heavy metals, maintenance of metal ion homeostasis (especially zinc
and copper), and protection against DNA damage and oxidation [23–26]. MTs play key
roles in signaling pathways relevant to several disease conditions, including cancer and
neurodegenerative diseases [27,28]. Multiple studies have shown that MTs are also closely
associated with obesity. MT1/2-knockout male mice fed a high-fat diet (HFD) displayed
enhanced features of obesity (increased fat accumulation and obese (ob) gene expression)
compared with wide mice [29]; this finding was further confirmed in the MT1/2-knockout
female mice [30]. MT3-knockout male mice also exhibited elevated weight gain with ag-
ing compared with wild-type mice, which was associated with reduced levels of leptin
receptors [31].

Reactive oxygen species (ROS) are essential mediators that are not only linked to aging
and pathological conditions, such as cancer, diabetes, and obesity, but are also required for
multiple physiological processes essential for life [32,33]. Previous studies have indicated
that oxygen consumption and production of intracellular and mitochondrial ROS increase
during 3T3-L1 adipocyte differentiation [34,35]. In addition, oxidative stress was found to
induce the accumulation of lipid droplets through SREBP1c activation in HepG2 cells [36].
Moreover, ROS can promote adipocyte differentiation in 3T3-L1 preadipocytes, which is
mediated by advancing MCE [37]. These observations indicate that ROS act as crucial
factors in adipocyte differentiation. Intriguingly, the ROS scavenging activity of MT3, which
is rich in cysteine residues with a high potential to interact with ROS, is considered to be
one of its major functions [38], suggesting that MT3 may be closely related to adipocyte
differentiation.

In this study, we first found that MT3 was downregulated in the process of 3T3-L1
adipocyte differentiation. To investigate the role of MT3 in this process, we overexpressed
MT3 in 3T3-L1 cells. Our data revealed that MT3 can suppress 3T3-L1 adipocyte differenti-
ation indirectly by inhibiting the transcriptional activity of PPARγ and by reducing ROS
levels in the early stages of adipogenesis, thus providing a potential novel target for the
prevention and treatment of obesity.

2. Materials and Methods
2.1. Cell Culture

Mouse preadipocyte 3T3-L1 cells and human embryonic kidney (HEK) 293T cells were
obtained from the American Type Culture Collection. The 3T3-L1 cells were cultured in
Dulbecco’s modified Eagle medium (DMEM, #12100046, Gibco™, Carlsbad, CA, USA)
supplemented with 10% bovine calf serum (BCS, Welgene Inc., Daegu, Republic of Korea)
and 1% antibiotic–antimycotic (#15240062; Gibco™). HEK 293T cells were maintained
in DMEM containing 10% fetal bovine serum (FBS, Welgene Inc.) and 1% antibiotic–
antimycotic at 37 ◦C in a humidified incubator with 5% CO2.

2.2. 3T3-L1 Adipocyte Differentiation

After reaching confluence, the 3T3-L1 cells were maintained for 48 h. Then, the growth
medium was replaced with the differentiation medium, consisting of DMEM supplemented
with 10% FBS and a differentiation cocktail with 0.5 mM 3-isobutyl-1-methylxanthine
(Sigma, St. Louis, MO, USA), 10 µg/mL insulin (Sigma), and 1 µM dexamethasone (Sigma)
on day 0. Two days after hormonal induction (on day 2), the differentiation medium was
replaced with DMEM supplemented with 10% FBS and 10 µg/mL insulin. The media was
replaced every two days with DMEM supplemented with 10% FBS. On day 8, the lipid
droplets were observed in the cells, which were used for further experiments.
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2.3. Plasmids and Transfection

The HA-tagged MT3 plasmid or Myc-tagged PPARγ plasmid were constructed in
a CMV promoter-derived mammalian expression vector (pCS4+). For MT3 knockdown
experiments, oligonucleotides for small hairpin RNA (shRNA) were generated by targeting
a 19-base pair sequence of the mouse MT3 gene. shMT3#1: sense 5′-GAT CCC CCC AAG
GAC TGT GTG TGC AAT TCA AGA GAT TGC ACA CACA GTC CTT GGT TTTTA-3′,
antisense 5′-AGC TTA AAA ACC AAG GAC TGT GTG TGC AAT CTC TTG AAT TGC ACA
CAC AGT CCT TGG GGG-3′; shMT3#2: sense 5′-GAT CCC CGC AAG TGC AAG GGC
TGC AAA TTT CAA GAG AAT TTG CAG CCC TTG CAC TTG C TTTTTA-3′, antisense
5′-AGC TTA AAA AGC AAG TGC AAG GGC TGC AAA TTC TCT TGA AAT TTG CAG
CCC TTG CAC TTG CGGG-3′. Sense and antisense oligonucleotides were annealed and
ligated into a pSuper-retro vector (Oligoengine, Seattle, WA, USA). Both overexpression
and knockdown experiments in the HEK 293T cells and 3T3-L1 cells were performed by
using polyethyleneimine (PEI) (Polysciences, Inc., Warrington, PA, USA).

2.4. Oil Red O Staining

Oil Red O staining was performed to measure the extent of adipocyte differentiation.
Briefly, cells were washed two times with phosphate-buffered saline (PBS) and fixed with
10% formalin at room temperature for 30 min. Next, the cells were washed with PBS twice
and incubated with 60% isopropanol for 1 min. Then, 250 µL (for a 24-well plate) of 0.5%
Oil Red O staining solution (O0625; Sigma, St. Louis, MO, USA) was added to each well to
cover the cell monolayer, and the cells were incubated at room temperature for 25 min on a
shaker. The staining solution was carefully aspirated, and the cells were washed with PBS
three times. An inverted microscope and NIS-Elements software (Niko Company, Fukuoka,
Japan) were used to visualize lipid droplet accumulation. For the quantification of lipid
accumulation, the stain was extracted in isopropanol, and the absorbance was measured at
510 nm using an Epoch microplate reader (BioTek Company, New Castle, DE, USA).

2.5. Triglyceride (TG) Colorimetric Assay

For cellular triglyceride determination, fully differentiated 3T3-L1 cells were washed
twice with PBS and collected by cell scraper. They were centrifuged at 1000× g for 10 min,
and then the supernatant was removed and the cell sediment was retained. The cells added
isopropanol into the sediment according to the cell number (2 × 106) ratio: isopropanol
(µL) = 1:200. Then, centrifuging was performed at 10,000× g for 10 min at 4 ◦C, and the
supernatant was taken for detention. Cellular triglyceride content was determined by
the TG Colorimetric Assay Kit (E-BC-K261-M; Elabscience Biotechnology Inc., Houston,
TX, USA).

2.6. Luciferase Reporter Assays

HEK 293T cells were seeded in a 24-well plate and transfected with combinations of
plasmids expressing indicated proteins (MT3 and PPARγ), luciferase reporters (aP2-Luc
or PPRE-Luc), and CMV promoter-driven β-galactosidase (β-gal). PPRE-Luc includes the
consensus PPAR response element (PPRE), and aP2-Luc contains a promoter region of
adipocyte aP2 that includes PPREs [39]. A β-gal plasmid was used to monitor transfection
efficiency. The cells were treated with the PPARγ agonist rosiglitazone 24 h after transfection
and were lysed to determine the activities of luciferase reporters using a luciferase reporter
assay kit (Promega, Madison, WI, USA).

2.7. Immunoblotting

Cells were lysed in an ice-cold lysis buffer (1% NP-40, 25 mM HEPES at pH 7.5, 10%
glycerol, 0.25% sodium deoxycholate, 1 mM EDTA, 1 mM Na3VO4, 25 mM NaF, 150 mM
NaCl, 10 mg/mL aprotinin, 10 mg/mL leupeptin, and 250 mM phenylmethanesulfonyl
fluoride). For immunoblotting (IB), the samples (50–80 µg of total protein per sample) were
run on sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and then
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transferred onto polyvinylidene fluoride membranes. Then, membranes were incubated
with primary antibodies at 4 ◦C overnight. The primary antibodies used are shown in
Table 1. After incubation with appropriate horseradish peroxidase-conjugated secondary
antibodies, an Immobilon Western Chemiluminescent HRP Substrate (WBKLS0500, Milli-
pore, Billerica, MA, USA) was used to visualize the protein bands, and the images were
captured using an AmershamTM ImageQuantTM 800 system (GE Healthcare Life Sciences,
Marlborough, MA, USA).

Table 1. The primary antibodies used for immunoblotting.

Antibody Order# Company Dilution

MT3 LS-C295361 LifeSpan BioSciences, Seattle, WA, USA 1:400
PPARγ D69 Cell Signaling Technology, Danvers, MA, USA 1:1000

C/EBPα SC-61 Santa Cruz Biotechnology, Santa Cruz, CA, USA 1:1000
C/EBPβ SC-150 Santa Cruz Biotechnology, Santa Cruz, CA, USA 1:1000

adiponectin C45B10 Cell Signaling Technology, Danvers, MA, USA 1:1000
α-Tubulin sc-53646 Santa Cruz Biotechnology, Santa Cruz, CA, USA 1:1000

HA 12CA5 Roche Applied Science, Basel, Switzerland 1:1000
Myc 9E10 Santa Cruz Biotechnology, Santa Cruz, CA, USA 1:1000

2.8. Immunoprecipitation

For immunoprecipitation, supernatants of centrifuged lysates were incubated with
appropriate antibodies at 4 ◦C overnight on a shaker. Next, protein A-Sepharose beads
(17096303, GE Healthcare) were added (40 µL per sample). The samples were incubated for
2 h at 4 ◦C, centrifuged (3000 rpm) to precipitate the beads, and washed with lysis buffer
three times at 4 ◦C. Finally, the supernatant was removed, and 20 µL of 5× loading buffer
(20 mL of glycerol, 25 mL of 10% SDS, 5 mL of 1 M tris at pH 7.5, 100 µL of Bromo blue
phenol, and 50 mL of double distilled water) was added to each sample. Then, the samples
were boiled for 5 min at 100 ◦C. The immunoprecipitated proteins were subsequently
subjected to SDS-PAGE and visualized by immunoblotting.

2.9. Reverse Transcription followed by Quantitative PCR (RT-qPCR)

The total RNA from the 3T3-L1 cells was extracted using an RNAiso Plus kit (TaKaRa,
Tokyo, Japan), and cDNA was synthesized using Oligo (dT) primers with GoScriptTM

Reverse Transcription System (Promega). Quantitative PCR was performed using a TB
Green® Premix Ex Taq™ (Tli RNaseH Plus) Kit (TaKaRa) following the manufacturer’s
protocol. The primer sequences for the target genes are summarized in Table 2.

Table 2. Primer sequences used for RT-qPCR.

Gene Accession Number Forward Primer (5′–>3′) Reverse Primer (5′–>3′)

Mt1 NM_013602.3 AAGAGTGAGTTGGGACACCTT CGAGACAATACAATG GCCTCC
Mt2 NM_008630.2 ATGCAAATGTACTTCCTGCAAGA CTGGGAGCACTTCGCACAG
Mt3 NM_013603.2 TGCACCTGCTCGGACAAAT CTTGGCACACTTCTCACATC

Pparg NM_011146.4 GCCCTTTGGTGACTTTATGGA GCAGCAGGTTGCTTGGATG
Cebpa NM_007678.3 CAAGAACAGCAACGAGTACCG GTCACTGGTCAACTCCAGCAC
Cebpb NM_001287738.1 ACCGGGTTTCGGGACTTGA GTTGCGTCAGTCCCGTGTCCA
Fasn NM_007988.3 GCTATGCAGATGGCTGTCTCTCCCAG GCAGCGCTGTTTACATTCCTCCCAGG
Glut4 NM_001359114.1 GTAACTTCATTGTCGGCATGG AGCTGAGATCTGGTCAAACG

Adiponectin NM_009605.5 CATCCCAGGACATCCTGGCCACAATG GGCCCTTCAGCTCCTGTCATTCCAAC
Fabp4 NM_024406.4 AAGGTGAAGAGCATCATAACCCT TCACGCCTTTCATAACACATTCC
β-actin NM_007393.5 GCAGGAGTACGATGAGTCCG ACGCAGCTCAGTAACAGTCC

Catalase NM_009804.2 CACACCTACACGCAGGCCGG CTGCGCTCCGGAGTGGGAGA
Gpx1 NM_008160.6 AGTCCACCGTGTATGCCTTC GAGAAGCGACATTCAATG
Sod1 NM_011434.2 GTGTGCGTGCTGAAGGGCGA GACGTGGAACCCATGCTGGCC
Sod2 NM_013671.3 GTGGTGGAGAACCCAAAGGA AACCTTGGACTCCCACAGACA
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2.10. Dihydroethidium (DHE) Staining

The DHE Assay Kit—Reactive Oxygen Species (Abcam, Cambridge, UK) was used
to determine intracellular ROS levels in the 3T3-L1 cells. The cells seeded in 96-well
plates were transfected with plasmids inducing MT3 overexpression or knockdown. Upon
confluence, the cells were incubated with antimycin A or N-acetyl cysteine (NAC) for 12 h.
Next, the 3T3-L1 cells were incubated with DHE buffer at 37 ◦C for 1 h, and images were
captured using a fluorescence microscope and a digital camera.

2.11. Statistical Analysis

GraphPad Prism 8.0.2 was used for statistical analysis. One-way ANOVA followed
by Tukey’s Test (to compare the mean of each group with the mean of every other group)
or Dunnett’s Test (to compare the mean of each group with the control group) was used
to evaluate the differences. All experiments were repeated at least three times. The data
are expressed as the means ± SEM, and differences with p-values smaller than 0.05 were
considered significant.

3. Results
3.1. MT3 Is Significantly Downregulated during 3T3-L1 Adipocyte Differentiation

Previous studies in our lab have demonstrated that MT3 is important for osteoblast
differentiation [40], and numerous in vitro studies have shown that osteogenic factors
inhibit adipogenesis, while adipogenic factors hinder osteogenesis [41–43]. Therefore,
to explore the role of MT3 in adipocyte differentiation, we induced 3T3-L1 adipocyte
differentiation and examined the levels of Mt1, Mt2, and Mt3 by RT-qPCR. The induc-
tion of adipocyte differentiation was successful, as indicated by the expression of the
early-stage marker C/EBPβ and the late-stage adipogenesis markers C/EBPα and PPARγ
(Figures 1d–f and 2a,c–e). We found that the mRNA levels of Mt1 and Mt2 peaked on day
2 and then gradually decreased afterward, while the mRNA levels of Mt3 dramatically
decreased during the period of adipocyte differentiation (Figure 1a–c). The protein levels
of MT3 were reduced in a similar manner (Figure 2a,b). These findings suggest that MT3
might play a role in 3T3-L1 adipocyte differentiation.

3.2. Mt3 Overexpression Inhibits Lipid Accumulation in 3T3-L1 Adipocytes

To further investigate the potential function of MT3 in 3T3-L1 adipocyte differenti-
ation, we overexpressed Mt3 in 3T3-L1 preadipocytes before they reached confluence.
The formation and accumulation of lipid droplets are considered the predominant
characteristic of mature adipocyte differentiation; thus, Oil Red O staining was used
to assess the extent of adipocyte differentiation. Microscopy images showed that the
differentiated control group acquired the phenotype of mature adipocyte after 8 days of
differentiation, and Mt3 overexpression significantly decreased the intracellular lipid
accumulation, which was confirmed by quantitative analysis (Figure 3a,b). Further-
more, Mt3 overexpression also evidently decreased intracellular triglyceride content
(Figure 3c). Taken together, these results demonstrate that MT3 can inhibit 3T3-L1
adipocyte differentiation.
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Figure 1. The mRNA levels of Mt3 are significantly decreased during 3T3-L1 adipocyte differentiation.
The differentiation of 3T3-L1 adipocytes was induced by the differentiation cocktail. (a–f) RT-qPCR
analysis was used to detect the mRNA levels of Mt1, Mt2, Mt3, Pparg, Cebpa, and Cebpb at specific
times (days 0, 2, 4, 6, and 8). β-actin served as a loading control. The data are presented as the means
± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. the corresponding control group (day 0) were calculated
by one-way ANOVA followed by Dunnett’s Test.
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Figure 2. The protein levels of MT3 are significantly decreased during 3T3-L1 adipocyte differentiation.
The differentiation of 3T3-L1 adipocytes was induced by the differentiation cocktail. (a) Immunoblotting
was used to detect the protein levels of MT3, C/EBPα, C/EBPβ, PPARγ, and α-Tubulin at specified
times (days 0, 2, 4, 6, and 8). α-Tubulin was used as a loading control. (b–e) The intensities of bands
(MT3, C/EBPα, C/EBPβ, and PPARγ) were quantified and normalized with the corresponding α-
Tubulin bands. The data are presented as the means ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. the
corresponding control group (day 0) were calculated by one-way ANOVA followed by Dunnett’s Test.
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Figure 3. Mt3 overexpression inhibits lipid accumulation in 3T3−L1 adipocytes. 3T3−L1 cells were
transfected with HA−MT3 plasmid (0.25, 0.5 µg) prior to contact inhibition and incubated with
differentiation cocktail to induce adipocyte differentiation. Oil Red O staining was used to measure
the extent of lipid accumulation on day 8. (a) Representative images of 3T3-L1 adipocytes were
captured at 200×magnification. Scale bar = 100 µm. (b) The lipid accumulation in 3T3−L1 adipocytes
was quantified as a percentage of control values. (c) Intracellular triglyceride content was measured
by using a commercial kit. The data are presented as the means ± SEM. ** p < 0.01, *** p < 0.001 vs.
the corresponding undifferentiated and differentiated groups were calculated by one-way ANOVA
followed by Tukey’s Test.

3.3. Mt3 Overexpression Suppresses the Protein Levels of Adipogenic Transcriptional Factors in
3T3-L1 Cells

The sequential expression of genes associated with the specific characteristics of
adipocytes takes place during adipocyte differentiation. Therefore, we investigated
whether the decrease in the accumulation of lipid droplets in 3T3-L1 cells was due
to a downregulation of adipogenic transcription factors. Immunoblotting analysis re-
vealed that the protein levels of the early-stage marker C/EBPβ and the late-stage
markers C/EBPα and PPARγ were all reduced in cells overexpressing Mt3 (Figure 4a–e).
Adiponectin is an adipokine that regulates a variety of metabolic events, including fatty
acid oxidation and glucose levels, and exhibits the highest mRNA expression levels in
adipocytes [44]. In our study, the protein levels of adiponectin were also dramatically
decreased by Mt3 overexpression compared with the differentiated group (Figure 4f).
These data demonstrate that MT3 inhibits adipocyte differentiation by attenuating the
expression of adipogenic transcription factors.

3.4. Mt3 Overexpression Reduces Adipogenesis-Related Gene Expression in 3T3-L1 Cells

As Mt3 overexpression resulted in a downregulation of the protein levels of adipogenic
transcription factors, we further examined the mRNA levels of genes encoding these factors.
Similar to the protein levels, Mt3 overexpression significantly inhibited the mRNA levels of
adipogenesis-related genes, such as Pparg, Cebpa, Cebpb, and Adiponectin (Figure 5a–d). In
addition, we assessed the expression levels of other adipogenesis-related genes associated
with lipogenesis, fatty acid oxidation, and glucose homeostasis pathways [45,46]. Upon
differentiation induction, the mRNA levels of fatty acid synthase (Fasn), Fabp4, and glucose
transporter type 4 (Glut4) were highly elevated compared with the undifferentiated group,
whereas Mt3 overexpression dramatically reduced these increases (Figure 5e–g).
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Figure 4. Mt3 overexpression reduces the protein levels of adipogenic transcription factors in 3T3-L1
adipocytes. 3T3−L1 cells were transfected with HA−MT3 plasmid (0.25, 0.5 µg) prior to contact
inhibition and induced adipocyte differentiation using differentiation cocktail. (a) The protein levels of
MT3, PPARγ, C/EBPα, C/EBPβ, adiponectin, and α-Tubulin in the different groups were measured
by immunoblotting. α−Tubulin was used as a loading control. (b–f) The intensities of bands (MT3,
C/EBPα, C/EBPβ, PPARγ, and adiponectin) were quantified and normalized with the corresponding
α-Tubulin bands. The data are presented as the means ± SEM. * p < 0.05, ** p < 0.01 were calculated
by one-way ANOVA followed by Tukey’s Test.
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Figure 5. Mt3 overexpression reduces adipogenesis-related gene expression in 3T3−L1 cells. 3T3−L1
cells were transfected with HA−MT3 plasmid (0.25, 0.5 µg) prior to contact inhibition and induced
adipocyte differentiation using differentiation cocktail. (a–g) The mRNA levels of Mt3, Pparg, Cebpa,
Cebpb, Adiponectin, Fabp4, Fasn, and Glut4 in the different groups were compared by RT-qPCR. β-actin
was used as a loading control. The data are presented as the means ± SEM. ** p < 0.01, *** p < 0.001
were calculated by one-way ANOVA followed by Tukey’s Test.
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3.5. MT3 Indirectly Suppresses PPARγ Transcriptional Activity

PPARγ is considered the most important regulator of adipocyte differentiation [15,16].
Thus, we investigated whether MT3 regulated the transcriptional activity of PPARγ by
performing a luciferase reporter assay to measure the transcriptional activity of PPARγ in
HEK 293T cells. As expected, PPARγ alone stimulated the activity of luciferase reporters,
and MT3 did not affect the activity of luciferase reporters. However, we observed that
Mt3 overexpression evidently inhibited the activity of luciferase reporters in the presence
of Pparg overexpression, while this inhibitory effect was more pronounced following the
incubation with rosiglitazone, an agonist of PPARγ (Figure 6a,b). These results suggested
that Mt3 overexpression suppressed PPARγ transcriptional activity. Then, we examined
whether there was an interaction between MT3 and PPARγ in HEK 293T cells by performing
immunoprecipitation. However, we did not detect an interaction between MT3 and PPARγ
(Figure 6c,d). Taken together, these data suggested that MT3 downregulated PPARγ
transcriptional activity not by interacting with PPARγ but through an indirect mechanism.
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Figure 6. MT3 indirectly suppresses PPARγ transcriptional activities. (a,b) HEK 293T cells were
transfected with indicated HA−MT3 (0.5 µg) or combinations of HA−PPARγ (0.125 µg) and HA-MT3
(0.5 µg) along with aP2−Luc or PPRE-Luc reporter. pCMV−β−gal (0.025 µg) was used to normalize
the transfection efficiency. HEK 293T cells were incubated with 0.5 µM rosiglitazone and DMSO
24 h after transfection and cultured for an additional 24 h. The luciferase reporter activities were
measured following 48 h transfection. The data are presented as the means ± SEM. ** p < 0.01,
*** p < 0.001 were calculated by one-way ANOVA followed by Tukey’s Test. (c,d) HEK 293T cells
were transfected with indicated expression plasmids (HA−MT3, Myc−PPARγ, or empty Myc vector)
for immunoprecipitation.

3.6. MT3 Impedes ROS Production in the Early Stage of 3T3-L1 Adipocyte Differentiation

Given that Mt3 overexpression downregulated the levels of adipogenic transcription
factors including PPARγ but indirectly regulated PPARγ transcriptional activity, we sought
to identify the mechanism underlying the inhibitory effect of MT3 on 3T3-L1 adipocyte
differentiation. MT3 is a powerful scavenger of ROS due to its particular structure [38]. In



Antioxidants 2023, 12, 640 10 of 17

addition, the early stages of adipocyte differentiation are associated with elevated ROS
levels [37], implying that ROS plays a role in adipocyte differentiation. Therefore, we
hypothesized that MT3 might affect ROS generation during adipocyte differentiation.
To test our hypothesis, we performed DHE staining to measure ROS levels in 3T3-L1
cells. We found that Mt3 overexpression decreased the elevated ROS levels induced by
differentiation, while antimycin A treatment reversed the MT3-induced decreases in ROS
levels (Figure 7a,c). Antimycin A is a mitochondrial respiratory chain inhibitor that is
experimentally used to induce ROS generation [47]. To further examine the effect of
MT3 on ROS levels, we knocked down MT3 expression by transfecting the cells with
shRNA targeting Mt3. Compared with the differentiated control group, Mt3 knockdown
dramatically elevated ROS levels. However, treatment with NAC, an ROS scavenger,
attenuated the Mt3 knockdown-induced increases in ROS levels (Figure 7b,d). Taken
together, these results indicate that MT3 can impede ROS production in the early stages of
adipocyte differentiation.
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Figure 7. MT3 impedes ROS production in the early stages of 3T3−L1 adipocyte differentiation.
(a,b) 3T3−L1 cells were transfected with HA−MT3 plasmid or shMT3 plasmid (0.2 µg) prior to
contact inhibition and cultured in differentiation medium with 25 nM antimycin A or 7.5 mM NAC
for 12 h. ROS levels are measured by DHE assay. Representative images of 3T3-L1 adipocytes were
captured at 200×magnification. Scale bar = 100 µm. MDI, a mixture of 3-isobutyl-1-methylxanthine,
dexamethasone, and insulin in differentiation medium. (c,d) The quantitative analysis of the relative
DHE fluorescence intensity indicated the differences in each group. The data are presented as the
means ± SEM. * p < 0.05, ** p < 0.01, and *** p < 0.001 were calculated by one-way ANOVA followed
by Tukey’s Test.

4. Discussion

MTs are multipurpose proteins with essential roles in a variety of pathological condi-
tions. Previous studies have demonstrated that MTs are potentially involved in obesity and
its complications. MTs are secreted by white adipose tissue in mice [48], but their functions
in the adipose tissue are not clear. Clinical studies have shown that MT1A and MT2A
levels are upregulated in subcutaneous and visceral adipose tissues of patients with obesity
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or type 2 diabetes [49,50], implying that increased expression of MTs in human adipose
tissues may be either a factor contributing to the development of obesity or a consequence
of obesity. A recent study further reported the regulatory effect of MT1/2 on sex-specific
differences observed in HFD-induced obesity. MTs can enhance the activity of androgens to
promote fat storage and the function of estrogen in preventing excess fat accumulation [51].
In fact, Mt3-knockout mice fed an HFD were more susceptible to weight gain compared
with Mt1/2-knockout mice fed an HFD [52]. However, there are no clear data on how MT3
is engaged in the development of obesity, especially in 3T3-L1 adipocyte differentiation;
the underlying molecular pathways remain unclear.

A previous study showed that MTs are not secreted during the maintenance of
fibroblast-like preadipocytes but are released after the induction of differentiation by
exposure to a “differentiation cocktail”. Furthermore, the release of MTs into the culture
medium precedes leptin expression [48], indicating that MTs may be potential markers
of adipocyte differentiation. Yoshito Kadota et al. [53] also describe the expression pat-
terns of MT1 and MT2 during 3T3-L1 adipocyte differentiation. In our study, we further
examined the expression patterns of MT3 during 3T3-L1 adipocyte differentiation. We
observed that MT3 expression was significantly decreased during differentiation, along
with the upregulation of PPARγ and C/EBPα. The Oil Red O staining results demon-
strated that MT3 repressed the accumulation of lipid droplets, suggesting that MT3 may
inhibit adipocyte differentiation. This was further confirmed by the downregulation of
the adipogenic transcription factors PPARγ and C/EBPα. Considering that adipocyte
differentiation is a multi-step process, we examined the protein levels of related markers,
including PPARγ, C/EBPα, and C/EBPβ, at different stages of differentiation to clarify the
steps in which MT3 may significantly affect differentiation. We found that MT3 reduced
the protein level of PPARγ and C/EBPα at specific times (day 2, day 4, day 6, and day 8)
(Figure S1). The differentiation of mature adipocytes from preadipocytes is involved in the
successive activation of a range of transcription factors, among which PPARγ is the most
important one [54]. Considering the central role of PPARγ in adipocyte differentiation, we
hypothesized that MT3 might mediate the PPARγ transcriptional activity. To this end, a lu-
ciferase reporter assay was performed to measure its transcriptional activity. As suspected,
MT3 suppressed PPARγ transcriptional activity, and the inhibitory effect of PPARγ was
more pronounced after treatment with the PPARγ agonist rosiglitazone. We considered the
possibility that the inhibitory effect of MT3 on PPARγ transcriptional activity was due to
a potential interaction between MT3 and PPARγ. However, immunoprecipitation assays
indicated that MT3 did not bind PPARγ. Therefore, the mechanism through which MT3
regulates PPARγ transcriptional activity is still unclear; one possibility is that MT3 may
interact with upstream factors of PPARγ, such as C/EBPβ, or another important factor,
C/EBPα, which needs to be further investigated.

As in the case of other MT family members, ROS scavenging ability is the most impor-
tant function of MT3 [55]. Both intracellular and extracellular MT3 protect neurons from
oxidative damage under stress-induced conditions due to their function in the elimination
of ROS [56,57], which plays a potential role in adipocyte differentiation. Elevated ROS
levels during the initial stages of adipocyte differentiation are observed in both 3T3-L1
cells and mesenchymal stem cells (10T1/2), indicating that ROS generation is essential for
adipocyte differentiation. In line with this idea, adipocyte differentiation is promoted by
H2O2 treatment but inhibited by the antioxidant NAC [37,58]. ROS can originate from
mitochondrial complex III and can regulate the differentiation process from the primary
human mesenchymal stem cells into adipocytes, which is mainly dependent on mTORC1
signaling [59]. In adipose-derived stem cells, hypoxia (2% oxygen) enhances the differentia-
tion through the generation of mitochondrial ROS [60]. Hence, we asked whether there
was a relationship between MT3, ROS levels, and adipocyte differentiation. Here, we found
that ROS were induced in the initial phase of 3T3-L1 adipocyte differentiation. We also
observed that Mt3 overexpression could impede ROS generation during differentiation; on
the contrary, Mt3 knockdown significantly elevated ROS production; importantly, these
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effects were largely reversed by treatments with the ROS inducer antimycin A and the
antioxidant NAC, respectively. In addition, Mt3 overexpression could reduce the MDI-
induced increase of ROS scavenging genes, such as Catalase, Gpx1, Sod1, and Sod2, while
antimycin A treatment reversed this effect (Figure S2). To further elucidate whether MT3
could regulate adipocyte differentiation through its powerful antioxidant effect, we treated
Mt3-overexpressing 3T3-L1 cells with or without antimycin A. The Oil Red O staining
results showed that antimycin A could partially restore the inhibitory role of MT3 on
3T3-L1 adipocyte differentiation (Figure S3). Taken together, these results suggest that MT3
hinders 3T3-L1 adipocyte differentiation largely by attenuating the ROS levels during the
early stages of adipocyte differentiation.

A previous study reported a partial relationship between ROS levels and C/EBPβ
activity with the following observations: (i) the initial phase of adipocyte differentiation
with elevated ROS levels corresponds to the S phase of MCE, when C/EBPβ is translocated
into centromeres; (ii) antioxidant treatment not only blocks ROS production but also
prevents the translocation of C/EBPβ. Therefore, this study [37] demonstrated that ROS
is essential for the MCE of 3T3-L1 preadipocytes, which is closely linked to the DNA
binding activity of C/EBPβ. Furthermore, there are some other studies showing that ROS
levels can be reduced by PPARγ and its agonists [61–63]. However, we did not investigate
the connection between the decreased ROS levels caused by MT3 and the adipogenic
transcription factors C/EBPβ and PPARγ, which should be further studied in the future.

Adipocyte differentiation is a complex process regulated by various signaling path-
ways. For example, the mitogen-activated protein kinase (MAPK) signaling pathway
plays a pivotal role in adipocyte differentiation [64]. Extracellular signal-regulated kinases
(ERKs), c-Jun amino-terminal kinases (JNKs), and p38 MAPK are the three main important
subfamilies of the MAPK signaling pathway [65]. ERKs can be activated by mitogens
including growth factors or serum, and its activation is essential for MCE, which is in-
dispensable for early adipocyte differentiation [66]. Conversely, phosphorylated Erk1/2
inhibits 3T3-L1 adipocyte differentiation through a reduction in PPARγ transcriptional
activity [67]. These opposite effects of ERKs might be associated with the different stages
of differentiation. JNK2 has a positive impact on 3T3-L1 adipocyte differentiation, and its
activation specifically contributes to the initial stage of differentiation, as JNK inhibition
cannot affect terminal differentiation [68]. p38 MAPK inhibitors function to block 3T3-L1
adipocyte differentiation during the early stage of differentiation [69]. This study also
pointed out that C/EBPβ serves as a substrate for p38 MAPK in vitro due to its consensus
site for p38 phosphorylation. In addition, the MAPK signaling pathway is closely linked to
the ROS pathway. ERK1/2 has been reported as the potential downstream target of ROS in
inflammation-related diseases [70,71]. ROS can induce the activation of the MAPK signal-
ing pathway, and the decreased accumulation of ROS by antioxidants suppresses MAPK
activation, implying that ROS play a vital role in the activation of MAPK pathways [72,73].
The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway also plays a critical role
in adipocyte differentiation [74]. The constitutively active form of Akt promotes 3T3-L1
adipocyte differentiation [75], and ROS are known to enhance Akt phosphorylation [76]. A
previous study showed that mTORC1 signaling is required for the early increase in ROS
during adipocyte differentiation of human mesenchymal stem cells [59]. In addition, ROS
can activate AMP-activated protein kinase (AMPK) and further induce the DNA binding
activity of C/EBPβ, leading to the promotion of adipogenesis [77].

Furthermore, the generation of complex III ROS in the mitochondria, which induces
the PPARγ transcriptional machinery, is required for adipocyte differentiation [59]. On
the basis of our finding that MT3 can suppress the expressions of PPARγ and its target
genes, we assume that the inhibition of ROS generation by MT3 might suppress the
PPARγ transcriptional machinery and consequently inhibit 3T3-L1 adipocyte differentiation.
However, the detailed mechanism of how the decrease in ROS via MT3 regulates PPARγ
transcriptional machinery remains elusive.
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5. Conclusions

In conclusion, our findings suggest a new role for MT3 in the differentiation of 3T3-L1
cells into adipocytes (Figure 8). Our results indicate that MT3 acts as a novel inhibitor of
adipocyte differentiation. MT3 can suppress the levels of adipogenic transcription factors
such as C/EBP family members and PPARγ. MT3 also downregulates the transcriptional
activity of PPARγ. Furthermore, the ability of MT3 to regulate adipocyte differentiation
is largely dependent on its ROS scavenging activity. Although our findings are limited
in vitro, this study might provide a potential target for the prevention and treatment
of obesity.
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