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Abstract: In the past decades, many studies have widely examined the effects of dietary polyphenols
on human health. Polyphenols are well known for their antioxidant properties and for their chelating
abilities, by which they can be potentially employed in cases of pathological conditions, such as
iron overload. In this review, we have highlighted the chelating abilities of polyphenols, which are
due to their structural specific sites, and the differences for each class of polyphenols. We have also
explored how the dietary polyphenols and their iron-binding abilities can be important in inflam-
matory/immunomodulatory responses, with a special focus on the involvement of macrophages
and dendritic cells, and how they might contribute to reshape the gut microbiota into a healthy
profile. This review also provides evidence that the axes “polyphenol–iron metabolism–inflammatory
responses” and “polyphenol–iron availability–gut microbiota” have not been very well explored
so far, and the need for further investigation to exploit such a potential to prevent or counteract
pathological conditions.

Keywords: polyphenols; iron metabolism; inflammation; gut microbiota

1. Introduction

Polyphenols are secondary metabolites that are naturally present in many plant-derived
food and beverages that are commonly consumed in the human diet [1–3]. According to
their chemical structure, polyphenols can be divided into the following different sub-groups:
phenolic acids (including hydroxycinnamic and hydroxybenzoic acids, commonly present
in coffee, tea, cocoa, oats, rice, wheat, and some fruits); flavonoids, which include different
subclasses, such as flavones (reported in vegetables and fruits, e.g., citrus fruits), flavanones
(citrus fruits), isoflavones (soya-derived products), flavonols (mostly present in vegetables,
such as onions, tomatoes, cauliflower, and broccoli), flavanols (wine, tea, and cocoa), and
anthocyanins (berries, grapes, and red wine); stilbenoids (grapes, berries, peanuts, and
wine); tannins (grapes and wine); and lignans (seeds and grains) [4–7].

Polyphenol-enriched diets exert several beneficial roles in human health, thus support-
ing the prevention of many non-communicable diseases that are associated with oxidative
stress and inflammation [8–10]. Specifically, these bioactive compounds from foods are able
to modulate human health at multiple levels, as follows: acting as scavengers of reactive
oxygen species (ROS) [11]; imprinting an anti-inflammatory profile to the innate immune
cells; downmodulating inflammatory cytokines and chemokine secretion; inhibiting the cor-
rect immunological synapse formation and, consequently, the initiation of antigen-specific
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adaptive immunity [12,13]; modulating some important cellular pathways that are linked
to tumorigenesis, such as cellular proliferation [14]; and regulating gut microbiota [15].

One of the possible mechanisms that could connect all of these biological activities
is the iron-chelating ability of polyphenols, which can influence iron homeostasis in the
human body. In fact, iron is a pivotal microelement for living organisms. Indeed, upon the
onset of an infection, one of the primary host responses is related to iron sequestration and
accumulation into phagocytes. Vice versa, tissue repair is characterized by the immune
cells’ depletion of the cytoplasmic iron content.

Iron chelation can negatively impact iron deficiency conditions, thus resulting in a
higher risk of anemia, which impacts the immune system, also inducing metabolic and
neurological impairments [16,17]. On the other hand, iron overload and accumulation can
lead to other pathological conditions, such as hemochromatosis, metabolism dysfunction,
and other complicated symptoms [18]. Excessive iron availability represents a risk factor
for cancer development, as a consequence of the increased level of reactive iron, which
promotes ROS and DNA damage and mutations. Therefore, the chelating activity of
polyphenols can play a positive role in iron-overload conditions by helping to reverse the
damages that are caused by iron accumulation and, consequently, can act as a nutritional
tool for chronic inflammatory syndrome prevention. Moreover, many polyphenols can
favor the selection of beneficial bacteria that can transform them into molecules with
increased anti-inflammatory activity [19]. To date, little is known about the microbiota
communities that can contribute to polyphenol–bacteria interaction, but further studies will
help us to develop new polyphenol-based prebiotic formulations with important health
benefits [20].

2. Iron Intake, Absorption, and Homeostasis

Iron is one of the most abundant elements on our planet, constitutive of both Earth’s
crust and its inner cores [21]. Living organisms, from prokaryotic to eukaryotic cells, require
iron for survival and proliferation. Iron is a constituent of hemoproteins, including those
that are involved in oxygen transport and storage (hemoglobin and myoglobin), electron
transfer (cytochromes), and iron–sulfur-containing proteins, or proteins which require
iron to carry out the essential functions in cellular metabolism [22,23]. The biological
importance of iron relies on its chemical properties as a transition metal, since it is involved
in redox reactions in both its ferric (Fe3+) and ferrous (Fe2+) states. However, an excess
of reactive iron can be toxic for cells, since it can participate in Fenton-type reactions
with the production of hydrogen peroxide, or lipid peroxides, and the generation of ROS.
H2O2 can be further reduced by Fe2+ in OH•, causing protein modification, nuclear and
mitochondrial DNA damage, and the oxidation of other biomolecules, thus triggering
genetic mutations and/or cell death. Oxidative stress conditions can also induce iron
release from its ligand proteins, resulting in higher concentrations of free iron, which in
turn generate an enhanced susceptibility to oxidative DNA damage. Therefore, the level of
reactive iron and the balance between cellular iron overload and iron deficiency must be
carefully controlled and finely regulated [22].

Most living organisms have developed different strategies to acquire, store, and recycle
iron [24]. In plants, two strategies are employed to acquire iron. The first strategy, which is
mostly adopted by dicots and non-graminaceous monocots, consists of the acidification
of the rhizosphere by excreting protons to reduce Fe3+ to Fe2+ and the promotion of its
uptake. In the second strategy, which is carried out by grasses, rice, maize, barley, and
wheat, phytosiderophores (PS) and other high-affinity chelating compounds are secreted to
chelate and uptake ferric iron [21].

In humans, iron can be assumed in the form of heme or non-heme from the diet or can
be derived from cellular turnover or exfoliation [25]. The dietary sources of heme iron are
represented by red meat, liver, fish, and shellfish, whilst non-heme iron is mainly present
in pulses and vegetables [24]. Furthermore, the presence of dietary components such as
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ascorbic acid can promote heme and non-heme iron absorption, whereas other compounds,
such as phytic acid, can reduce iron absorption [25,26].

In the human body, almost 60–70% of iron is bound to hemoglobin (Hb), 20% is
deposited in ferritin (Ft), and the remaining percentage is linked to both myoglobin in the
muscle tissues and to transferrin (Tf) [27].

Iron absorption mainly occurs at the duodenal level, where the ferrireductase cy-
tochrome b (DcytB) reduces Fe3+ to Fe2+ in order to allow import by the epithelial divalent
metal transporter 1 (DMT1) (Figure 1). Heme iron can be internalized by the low-affinity
heme carrier protein HCP1 into the endosome, where it is catabolized by hemeoxygenases
(Hmox). Hmox releases free ferrous iron, which is presumably transported to the cytoplasm
by divalent metal transporter 1 (DMT1) [22,23]. Here, heme-derived and non-heme iron
join the labile iron pool, from which iron can be used by the mitochondria for metabolic
reactions, can be incorporated into Ft for cellular storage, or can be exported across the
basolateral membrane by ferroportin-1 (FPN-1) into blood circulation. Ferrous iron is subse-
quently oxidized to ferric iron by the ferroxidases hephaestin, or ceruloplasmin, and bound
to Tf [23]. The complex Tf iron interacts with the membrane receptors and is internalized by
receptor-mediated endocytosis, which is followed by Tf recycling. Iron uptake also involves
the transport of heme–hemopexin complexes, which are internalized via the CD91 receptor
(expressed in liver and macrophages), and hemoglobin-bound iron that is complexed with
haptoglobin, which is imported via the CD163 receptor (mostly express in monocytes
and macrophages).
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Figure 1. Schematic representation of cellular iron metabolism. Divalent metal transporter 1 (DMT1)
mediates the cellular import of Fe2+ after its reduction from Fe3+ by the cytochrome-b-like ferrireduc-
tase (Dctyb). Transferrin receptor (TfR) binds transferrin–iron complexes before their internalization
by receptor-mediated endocytosis. DMT1 function is also implicated in the iron transport from the
endosome to the cytoplasm, following the Tf cycle. The hemoglobin scavenger receptor (CD163) and
heme-hemopexin receptor (CD91) are implicated in hemoglobin uptake. Once inside the cell, iron
joins the labile pool that is stored in ferritin or participates in cell metabolism processes. Ferroportin
(FPN) mediates the iron efflux outside the cell, mostly under the regulation of hepcidin. Hephaestin
(HEPH) or ceruloplasmin (CER) oxidize Fe2+ to Fe3+ for the binding of iron to transferrin.
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At a cellular level, iron regulatory proteins (IRP1 and 2) play an important role in
the regulation of iron homeostasis by recognizing the iron-responsive elements (IREs)
that are located in the untranslated regions of the mRNA encoding proteins that are
involved in iron metabolism, such as DMT1, transferrin receptors, Ft, and FPN1, therefore
modulating their translation [28]. At a systemic level, an important protein regulating
iron homeostasis is represented by hepcidin, synthetized by the liver, which regulates
the iron absorption, distribution, and storage in the different body districts [29]. In this
way, increased levels of hepcidin reduce iron transport into the bloodstream, therefore
affecting the iron distribution and storage, whereas reduced levels of hepcidin can cause
an excess of iron in the bloodstream, Tf saturation, iron accumulation and overload, and
hemochromatosis [28,30].

3. Anti/Pro-Oxidant Activities of Polyphenols

Polyphenols are antioxidant compounds that are well known for their radical scav-
enging activity. By this mechanism, polyphenols behave as reducing agents towards ROS
and reactive nitrogen species (RNS), such as OH•, O2

•−, and NO•, thus preventing the
oxidative stress and DNA damage that are caused by these species. The hydroxyl radical
can be generated by different pathways, including the decomposition of peroxynitrous
acid [31] or the reduction of peroxides, whereas the production of H2O2, O2

•−, and NO•

is mostly derived by cellular respiration or cell signaling mechanisms [32]. Polyphenols
are able to act as antioxidant compounds by donating an electron or hydrogen atom, thus
neutralizing the free radicals. They also act as radical scavengers and chain breakers
in lipid peroxidation chain reactions, with the consequent formation of more stable and
less reactive species and block of chain reactions before the cell viability can be seriously
affected [6,33,34]. Furthermore, polyphenols can induce the expression of antioxidant
enzymes, such as glutathione peroxidase, catalase, and superoxide dismutase, which act on
hydroxyperoxides, hydrogen peroxide, and superoxide anions, and inhibit the expression
of pro-oxidant enzymes, such as cyclooxygenases and lipoxygenases [6,35].

Besides their antioxidant abilities, polyphenols have also been shown to behave as
pro-oxidant compounds [35–37]. In different cases, the pro-oxidant activity has been re-
lated to the structural characteristics of polyphenols, e.g., the flavonol quercetin showed a
pronounced pro-oxidative activity, while the flavanones hesperetin and naringenin have
displayed milder effects [38]. Some flavonoids containing multiple hydroxyl groups, espe-
cially in the B-ring, have been shown to increase the production of hydroxyl radicals [39].
Baicalein, containing a pyrogallol structure in the A-ring, has also been reported to promote
hydrogen peroxide production [39,40]. In addition, the pro-oxidant effect can be caused by
the autoxidation or enzymatic oxidation (for example, by peroxidases) to which polyphe-
nols can be subjected, causing the production of highly reactive phenoxyl radicals, such
as flavonoid quinones. These compounds can be stabilized in vivo by conjugation with
nucleophiles, such as GSH, cysteine, or nucleic acids [41].

The pro-oxidant activity of polyphenols could also be associated with their ability
to reduce Fe3+ (or other transition metal ions) and the prevention of their binding to
other chelating ligands, such as EDTA. In fact, the pro-oxidant properties of polyphenols
have been experimentally observed in the presence of metal chelators, such as EDTA,
and the oxidized form of the metal ion Fe3+ [36,42–45]. Increased levels of OH• have
been observed following the reduction in Fe3+ complexed with EDTA in the presence of
myricetin, quercetin, or catechin [42]. Some phenolics (quercetin, phloretin, phloridzin,
phloroglucinol, gallic acid, ferulic acid, and 3,4-dihydroxyphenylacetic acid) have been
found to enhance OH• generation under the Fe2+-EDTA-H2O2 system [35]. However,
an important consideration that should be taken into account is that the intracellular
environment is prevalently reducing, due to the presence of reductant agents such as
NADH, glutathione, ascorbic acid, etc., [46–48]. Therefore, most of the metal ions that are
not bound to proteins would be mainly in their reduced forms in vivo [49]. Polyphenols
can display both antioxidant and pro-oxidant activities in very similar conditions, even
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though their pro-oxidant activity may increase in the presence of very strong chelators (such
as EDTA, or medications with chelating abilities, e.g., bleomycin) or high concentrations
of H2O2 [35,49]. Furthermore, the pro-oxidative potential of polyphenols can also differ
within the same class, dependent on their concentration (low levels of polyphenols may
have antioxidant activity, whereas higher concentrations may display pro-oxidant effects),
pH conditions, or stereochemistry, which might partly explain the controversy among their
antioxidant and pro-oxidant effects [37].

4. Iron-Chelating Abilities of Polyphenols

Besides their radical scavenging activities, another mechanism by which polyphenols
can exert their antioxidant activity involves iron binding. Iron, and transition metals
in general, can be involved in the generation of oxygen free radicals, the reduction of
peroxides, or reactions with superoxide anions [50–52], and, subsequently, oxidative stress.
Polyphenols have been shown to have iron-binding abilities, which are mainly related
to the presence of catechol and galloyl groups. Some studies have shown that the 6,7-
dihydroxy structure, B-ring catechol, the galloyl groups, the 2,3-double bond, and the
3- and 5-hydroxylic groups in co-presence with the 4-keto group are associated with
chelation properties, and therefore are eligible as iron-binding sites [49,53–56] (Figure 1).
For example, baicalein and baicalin, containing 6,7-dihydroxy groups, have strong iron-
binding activities [57]. Flavonoids, such as quercetin and rutin, with 3- and 5-hydroxy-4-
keto groups, or flavones and flavonols with 2,3-double bonds in general, are also important
metal chelators [58,59]. Ellagic acid, with its four hydroxyl groups, shows metal-transition-
chelating abilities, with the possibility to participate in antioxidant redox reactions, resulting
in an efficient free radical scavenger [60,61]. Interestingly, when it is incubated with iron–
EDTA or iron–citrate complexes, ellagic acid is able to remove iron from those ligands by
forming an iron–ellagic acid complex, which reduces the levels of iron ions in the solution
that catalyze free radical formation, and therefore showing an antioxidant mechanism
that is different from “classical” OH• radical scavenging [45]. In the case of curcumin, the
β-diketone group has been suggested to be responsible for iron chelation, even though it
does not affect or block iron cellular uptake [62,63]. In in vivo systems, curcumin’s iron-
chelating abilities show the ability to affect the systemic iron metabolism (e.g., a decline in
serum iron and transferrin saturation, decreased iron levels in the spleen and bone marrow,
IRPs activation, repressed ferritin levels, and hepcidin hepatic synthesis), thus suggesting
possible effects in patients with both a marginal and a high iron status [64,65]. Furthermore,
the iron-chelating abilities of curcumin have also been suggested to contribute to anticancer
activities through the formation of redox-active iron complexes and iron depletion in cancer
cells [63–65].

In the case of isoflavones, the 5-hydroxy-4-keto group has been suggested to chelate
ferric and ferrous ions, even though the affinity towards these ions was lower than those of
the other iron-chelating flavonoids [66]. In particular, genistein and biochanin A, but not
daidzein, show chelating abilities of Fe3+, indicating that isoflavones bind the metals at the
4-keto and the 5-OH sites [67].

Lakey-Beitia and co-workers [68] propose the following three groups of polyphenols
based on the binding sites: a group with one metal binding site, to which belong the
curcuminoids, some stilbenoids, isoflavones, and flavanones; the group with two binding
sites that includes some flavones and some anthocyanins; and the group with three metal
binding sites that includes flavonols, flavanols, some anthocyanins, and tannins.

In general, the polyphenolic compounds with catechol moieties on the B-ring are
more potent inhibitors of the Fenton reaction than those without catechol groups [69]. In
addition, the presence of a large number of catechol/galloyl groups (as in the case of tannic
acid) contributes to enhanced iron chelation. Perron and co-workers [70] have shown that
compounds with galloyl groups have a higher antioxidant activity compared to those with
only catechol groups. Phenolic acids bearing catechol or galloyl groups (caffeic acid, gallic
acid, protocatechuic acid, and chlorogenic acid) have shown more intriguing iron-binding
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properties compared to the other polyphenols lacking these groups (ferulic acid, syringic
acid, and vanillic acid) [53]. For these, the carboxylate group has been proposed as the
most eligible group for iron complexation [71]. In addition, the structures with galloyl
moiety, as in the case of gallic acid within the group of hydroxybenzoic acids, scored better
than those of the catechol type (as in the case of protocatechuic acid), which could be
attributed to the number and position of the hydroxyl groups. It is worthy of notice that
gallic acid alone exhibits a reduced iron-chelating capacity, which is probably because
of the third hydroxyl group in position three. Indeed, this third OH group can stabilize
the flavonoid ring structure and has radical scavenging abilities [72,73], but reduces the
iron-chelation ability [53]. Similarly, the presence of methoxy groups (as in the case of
vanillic acid, syringic acid, and ferulic acid) increases the radical scavenging activities but
hinders the chelation abilities of polyphenols [53,74].
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group, showing different iron-chelating abilities. Polyphenol general structure is formed by two
aromatic rings, indicated as A and B, linked together by three carbon atoms forming an oxygenated
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5. Polyphenols’ Bioavailability

The bioavailability of dietary nutrients and compounds usually designates the quan-
tity or fraction of the ingested dose that is absorbed from the gastrointestinal tract [75].
In the case of polyphenols, the bioavailability is strongly influenced by their physical
properties (e.g., molecular mass, polarity, and hydrophobic moieties) and the presence of
proteins, lipids, and fibers in the ingested food matrixes [76]. For instance, poor antho-
cyanin bioavailability can be improved by their binding to dietary fibers, which are able to
protect them from degradation due to the pH of the intestinal environment and allow them
to reach the large intestine and remain there for a longer time [76]. Once they are ingested,
polyphenols reach the intestine, where they are first deconjugated by enzymes such as
lactase phlorizin hydrolase (LPH, located on the enterocytes membrane) or β-glucosidase
(CBG, cytosolic), in order to facilitate the absorption by the epithelial cells. Following this
first process of absorption, the polyphenols are transported through the portal vein to the
liver, where they undergo phase I metabolism, which implies hydrolysis and oxidation re-
actions, and phase II metabolism, prevalently including glucuronidation, methylation, and
sulfonation reactions [77,78]. Such metabolites can have markedly changed iron-chelating
and anti/pro-oxidant properties [79,80]. They can be detected in systemic circulation;
however, such modifications (in particular, sulfation and glucuronidation) also facilitate
their efflux into the intestinal lumen. Once they are released into the intestinal lumen, the
polyphenols are then subjected to microbial biotransformation, which can produce smaller
and structurally simpler compounds [81,82]. Several studies report the presence of phase
II metabolites (glucuronides or sulfated forms) in plasma samples after the ingestion of
polyphenols, or foods that are enriched in polyphenols, indicating that the intestines and
the liver are the main sites of polyphenol metabolism [83], whereas polyphenolic aglycones
are not commonly found there [84,85]. Table 1 reports some examples from published
studies describing the bioavailability and the excretion paths of representative classes of
polyphenols. The maximal plasma concentration (Cmax) and the time to reach it (tmax)
strongly depend on the diverse classes of compounds, the type and amount of the food
source, the studied species, and the interindividual variability [86,87]. In some cases, such
as for quercetin, the type of bound sugar moiety can also influence the efficiency of the
intestinal absorption and, therefore, the polyphenol bioavailability [83].

The main route of elimination of polyphenols is urinary excretion, even though biliary
excretion should be considered for some compounds, such as quercetin or curcumin [87–90].

Polyphenols’ intestinal absorption is mainly mediated by epithelial glucose or mono-
carboxylates transporters (MCTs) [91]. Quercetin glucosides can be directly transported
via SGLT1 (sodium-dependent glucose transporter 1) or hydrolyzed to quercetin before
their absorption by passive diffusion in the small intestine [83]. Rutin is metabolized by
intestinal bacteria into phenolic compounds prior to being absorbed via MCT, or through
the paracellular pathway. The uptake transporters OATPs (organic anion transport polypep-
tides) and OATs (organic anion transporter) contributes to the uptake of quercetin and
its metabolites into the liver and the kidneys [83]. A hesperetin derivative, MTBH (8-
methylene-tert-butylamine-3’,5,7-trihydroxy-4’-methoxyflavanone), has been shown to be
mainly absorbed by the transcellular passive diffusion mechanism and to use MCT carriers
to enter the cells [92]. Trans-resveratrol has been reported to use a passive transport to
cross the apical membrane of the intestinal cells, whereas the transport of its trans-piceid
derivative is likely to be active, involving SGLT1 [93]. On the other hand, the main trans-
porters that are implicated in polyphenol efflux are MRP2 (multi-drug resistance protein 2),
BCPR (breast cancer resistance protein), and P-gp (P-glycoprotein transporters) [91]. MPR2
and BCPR mediate the excretion of quercetin and its metabolites through bile and urine,
eliminating them from the body [83]. MRP2 has been also shown to be involved in stilbene
efflux [93]. P-gp and BCPR are used for MTBH efflux transport [92]. However, Teng and
co-workers (2012) [91] reported different affinities for SLGT1, MRP2, and P-gp transporters
among the different classes of polyphenols, indicating that their influx or efflux may be
dependent on their chemical structures.
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Table 1. Examples of studies reporting polyphenols’ bioavailability in humans.

Polyphenol Compound—Food Source Dosage Cmax
1 of the Main Compounds in

Plasma (tmax
2)

Main Compounds
Excreted in Urine (Time) Reference

Quercetin-4’-O-glucoside 100 mg 2.12 µg·mL−1 of
quercetin-4’-O-glucoside (0.70 h) NA 3 [94]

Quercetin-3-O-rutinoside 200 mg 0.32 µg·mL−1 of
quercetin-3-O-rutinoside (6.98 h)

NA [94]

Fried onions (containing 275 µmol
flavonols, principally
quercetin-4’-glucoside and
quercetin-3,4’-diglucoside)

270 g

665 nM of quercetin-3’-sulfate
(0.75 h)
351 nM of quercetin-3-glucuronide
(0.60 h)
63 nM of quercetin diglucuronide
(0.80 h)

274 nM quercetin
diglucuronide (8–24 h) [95]

Fresh blackcurrant (containing 897 mg
total anthocyanins) 100 g Anthocyanins

not detected

339 µg total anthocyanins
(48 h)
17.3 mg hippuric acid
(0–24 h)

[84]

Elderberry concentrate (containing 1.9 g
anthocyanins and equivalent to 235 mL
fresh juice)

11 g NA

15.8 µg
cyanidin-3-glucoside (1 h)
29.8 µg
cyanidin-3-sambubioside
(2 h)

[96]

Homogenized raspberries (containing
292 µmol anthocyanins, 6.3 µmol ellagic
acids, 251 µmol ellagitannins, and
2.5 µmol phenolic acids)

300 g

180 nmol·L−1 of
3’,4’-dihydroxyphenylaceticacid (6 h)
78 nmol·L−1 of
4’-Hydroxyhippuricacid (1 h)
47 nmol·L−1 of ferulic acid-4′-sulfate
(1.5 h)
18 nmol·L−1 of ferulic
acid-4′-O-glucuronide (1.5 h)
14 nmol of isoferulic
acid-3’-O-glucuronide (1.5 h)

19.9 nmol
cyanidin-3-O-glucoside
(0–48 h)
6.4 nmol
4-Hydroxybenzoic acid
(0–48 h)
6.5 nmol ferulic
acid-4-sulfate (0–48 h)
16.1 nmol
4-hydroxyhippuricacid
(0–48 h)
239 nmol hippuric acid
(0–48 h)

[97]

Evelor 500 mg tablets (containing
trans-resveratrol) 500 g

71.18 mg·mL−1 of trans-resveratrol
(1.339 h)
1516.014 mg·mL−1 of sulfated
resveratrol
4083.900 mg·mL−1 of glucuronated
resveratrol

NA [98]

Coffee beverage, containing various
doses of chlorogenic acid:
412 µmol (A)
635 µmol (B)
795 µmol (C)

200 mL

808 µmol of total chlorogenic acid
derivatives
(0.5–6 h) (A)
1242 µmol of total chlorogenic acid
derivatives
(0.5–6 h) (B)
1164 µmol of total chlorogenic acid
derivatives
(0.5–6 h) (C)

100.7 µmol of total
chlorogenic acid
derivatives (0–24 h) (A)
160.0 µmol of total
chlorogenic acid
derivatives (0–24 h) (B)
125.2 µmol of total
chlorogenic acid
derivatives (0–24 h) (C)

[99]

Curcuminoids as native powder,
micronized powder, or liquid micelles
(containing
410 mg curcumin, 80 mg
demethoxycurcumin, and 10 mg
bis-demethoxycurcumin)

500 mg

7.1 nmol curcumin (7.5 h) (native
powder)
41.6 nmol curcumin (8.8 h)
(micronized powder)
3228 nmol curcumin (1.1 h) (liquid
micelles)

5.1 nmol 4 curcumin
(0–24 h) (native powder)
70.6 nmol 4 curcumin
(0–24 h) (micronized
powder)
753 nmol 4 curcumin
(0–24 h) (liquid micelles)

[100]

1 Cmax: maximal plasma concentration. 2 tmax: time to reach Cmax.
3 NA: not available. 4 data expressed as

nmol·g−1 creatinine.
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6. Polyphenol-Mediated Iron Sequestration Affects the Inflammatory Response
6.1. The Host Level

Polyphenols display remarkable anti-inflammatory and modulatory activities on the
immune system, at both the intestinal and the systemic level. Such activities involve cellular
mediators—such as macrophages, lymphocytes, and dendritic cells—and protein mediators,
such as cytokines and interleukins. Polyphenols can impair the release of interleukins, such
as IL1β, IL-6, and IL-8, the tumor necrosis factor (TNF) [101–103], and chemokines [12]. They
can also affect the signaling systems that are involved in inflammatory processes, as in the
case of T-cell proliferation and B lymphocyte activation [34]. Polyphenols can also modulate
the NFκB signaling and MAP kinase pathways [104,105] and the production of mediators of
inflammation through phospholipase A2 and cyclooxygenase 2 (COX-2), which are enzymes
that are involved in the arachidonic acid metabolism [106–108]. Another important anti-
inflammatory mechanism concerns nitric oxide (NO) production at the vascular level, since
polyphenols can inhibit NO release, which is involved in the inflammatory responses that
are triggered by free radicals [5]. Polyphenols also inhibit extracellular-matrix-degrading
enzymes, such as the matrix metalloproteinase-2 and 9 [109–111].

Among these important modulation mechanisms on the inflammatory and immune-
related pathways, another interesting route concerns cellular iron homeostasis. The iron-
chelating properties of polyphenols can play important roles in systemic iron regulation
and during the inflammatory processes at the gut level and/or in iron overload conditions,
such as hemochromatosis.

Under homeostatic conditions, iron undergoes systemic recycling to supply the needs
of the body metabolism. Dietary iron intestinal absorption compensates the body losses
only in part (for example, through intestinal epithelium desquamation or menstrual bleed-
ing [112]). Hence, senescent red blood cells (sRBC) represent an important supply of iron
for hemeproteins de novo synthesis (e.g., hemoglobin) and erythropoiesis [112]. Heme
deriving from sRBC is mainly recovered by macrophages in the red pulp of the spleen, the
liver, and the small intestine, and phagocytized and degraded by Hmox-1 to release iron
into the cytoplasm, which is subsequently exported by ferroportin. Such iron release from
macrophages is important, not only for iron recycling, but also for tissue iron availability in
homeostatic and pathological conditions, as well as in wound healing [113]. In this context,
liver hepcidin exhibits an important systemic regulatory role, acting as a ferroportin gene
expression inhibitor or representing negative feedback for iron release, based on the iron
plasmatic concentrations [114]. The systemic release of soluble inflammatory mediators,
mainly IL-6, induces the hepatocytes to release hepcidin, which, in turn, downregulates fer-
roportin activity, resulting in the inhibition of iron release from the cells and iron absorption
under inflammatory conditions [115,116].

It is worth noting that iron homeostasis dictates the polarization of innate immune
cells, with an indirect effect on the adaptive immune response. This is especially true for
macrophages exerting different immune functions, ranging from pathogen recognition,
antigen processing, phagocytic clearance, and positive/negative immune regulation in the
resolution of the immune response and tissue repair [117]. These immune functions depend
on the macrophages’ functional states; in fact, based on the local environment, macrophage
plasticity identifies two phenotypes: the M1 macrophage phenotype, or the “classically”
activated phenotype, with pro-inflammatory activities, and the M2 macrophage phenotype,
or the “alternatively” activated phenotype, with anti-inflammatory activities and tissue
repair properties [118]. The two macrophage phenotypes are characterized by marked
differences in the effector functions and the gene expression profile. However, the iden-
tification of M1 and M2 largely oversimplifies the plasticity of the macrophages, which
rather shows a continuum of the functional activation states that are modulated by the
environmental stimuli, such as the iron content in a given cell or tissue [119]. Specifically,
macrophages represent one of the major sources of the available iron in our body, thus
becoming crucial in iron homeostasis regulation. During inflammation, the macrophages
sequester iron, while during tissue repair, the macrophages release iron, also contributing
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to cell proliferation [120]. Furthermore, macrophage polarization could affect the systemic
iron balance that modulates the expression of the hepcidin and ferroportin genes [121].
While M1 polarization induces the up-modulation of hepcidin, promoting iron sequestra-
tion and retention, M2 polarization upregulates ferroportin gene expression, enhancing
iron release [113,122,123].

Moreover, the balance between iron influx/efflux also modulates other important
cells of innate immunity, i.e., the dendritic cells (DCs), which are activated to support
inflammation, tissue healing, and host tolerance [124]. DCs maturation is inhibited by iron
depletion, since inflammation favors iron influx and the tolerance iron efflux [124]. On the
other hand, in in vitro iron-overload-mimicking conditions, bone-marrow derived DCs
(BMDCs) have been found to differentiate into MHCIIlowCD11c+CD11b+F4/80+ cells, with
a reduced ability to release inflammatory cytokines [125].

Another environmental stimulus that is able to influence the polarization of macrophages
is diet. The vast majority of immune cells are located in mucosal tissues, and macrophages
and DCs in particular patrol the intestinal epithelium from the basolateral side, sometimes
projecting dendrites into the intestinal lumen. Thus, it is not surprising that the luminal
content can influence the immune cells’ response. In fact, the beneficial role of the numerous
bioactive compounds that are obtained from foods in the modulation of the inflammatory
response has been widely demonstrated, with a focus on immune cells from the innate
response, such as macrophages and dendritic cells [12,13,126–130]. Thus, the link between
polyphenols, iron metabolism, and the inflammatory/immune response can easily come
up, even if it has not been extensively studied until now. To explain polyphenols’ potential
to act on iron homeostasis and inflammatory conditions, we can start to consider different
in vitro and in vivo studies that have investigated the effects of polyphenols on iron home-
ostasis (Table 2). Specifically, in the presence of polyphenols, macrophages change their
polarization and, therefore, the iron availability, in order to reduce the inflammatory pro-
cesses [131–135]. In C57BL/6 mice that were subjected to a high-fat diet, the administration
of a purple, red corn extract that was enriched in anthocyanins resulted in the upregulation
of M2 markers in the adipose tissue macrophages, with a downregulation of inflammatory
mediators and an increased expression of iron-metabolism genes that were associated with
an iron storage reduction [132]. In vitro experiments have shown that quercetin reduces
ferroptosis by inhibiting M1 macrophage polarization and ameliorating the inflammatory
response [134]. Following quercetin exposure, liposaccharide (LPS)-treated BMDCs change
their polarization into an M2-like profile, increasing the ferroportin expression level and,
subsequently, the iron efflux, therefore reducing their inflammatory abilities [124,125].

Importantly, when investigating the link between dietary polyphenols and iron
metabolism, the modulation of the oxidative pathways has to be taken into account. In
iron-overloaded rats, curcumin administration reduced iron accumulation in the spleen
and the liver and subsequent oxidative stress by increasing the endogenous antioxidant
and anti-inflammatory abilities [136], as also reported in Table 2. Myricetin also reduces
iron uptake in Caco-2 cells [137] and the iron content in vivo by inhibiting the expression of
transferrin receptor 1 (TFR1) in an Alzheimer’s disease mouse model [138]. Baicalein and
quercetin attenuate iron-overload lipid peroxidation and protein oxidation in mouse liver
injuries [139]. Low dosages of resveratrol have been shown to reduce ineffective erythro-
poiesis [140]. Such studies therefore suggest that the iron-chelating abilities of polyphenols
can be useful in the reduction in iron overload and the consequent oxidative cellular stress,
thus indicating a valuable nutritional strategy to prevent hemolytic disorders.

Moreover, in order to investigate the interaction of ubiquitous polyphenols, such as
quercetin and related flavonoids with iron supplements, Mazhar and coworkers adminis-
tered a low-iron diet to female Sprague Dawley rats for 20 days to induce iron-deficiency
anemia [141]. After that, a 30-day treatment with 50 mg kg−1 ferrous sulfate, combined in
an equal ratio of quercetin, quercetagetin, and patuletin, was administered. The combined
administration of flavonoids and ferrous sulfate ameliorates some of the hematological
parameters and increases the splenic tissue availability of iron, as well as the expression
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of ferroportin in this animal model of iron-deficiency anemia. Importantly, this effect
seems to be variable with alterations in structural features of flavonoids, even though these
functional differences need further investigation. It is important to note that the authors
have also proposed that the increase in the serum and splenic stores could be based on the
formation of a metal-ion–chelate complex with organic ligands and that could improve
their transport across the membrane and the absorption. The positive metallic ion charge
could be shielded by polyphenols, thus preventing the interaction with the negatively
charged layer of mucin, and thereby increasing their lipophilicity and their absorption by
the intestinal enterocytes. Finally, the iron–quercetin complex may provide an alternative
pathway for iron absorption through the glucose transporter [141].

Table 2. Studies reporting the effects of structurally different polyphenols in iron homeostasis,
oxidative stress, and inflammatory conditions.

Compound Model Effect Reference

Anthocyanins
C57BL/6 mice fed with a high-fat diet

supplemented with purple corn
anthocyanins in drinking water

Downregulation of inflammatory mediators,
increased expression of iron genes

metabolism, and upregulation M2 markers
in adipose tissue macrophages

[132]

Quercetin

In vitro RAW 264.7 cells; in vivo
lipopolysaccharide (LPS)/ovalbumin
(OVA)-induced neutrophilic asthma

mouse model

Reduction in ferroptosis and inhibition of
M1 macrophage polarization. The effect was

ferrostatin-like
[134]

Quercetin In vitro bone marrow dendritic cells
(BMDCs)

Changes in M2-like phenotype, increased
expression in ferroportin, and reduction in

inflammatory abilities
[124]

Quercetin and baicalin
Kunming mice fed with a diet

supplemented with iron-dextran and
baicalin 1% or quercetin 1%

Inhibition of iron-overload induced lipid
peroxidation and protein oxidation in the

liver
[139]

Resveratrol Kunming mice with iron-overload
induced liver fibrosis

Regulation of iron homeostasis by reducing
the expression of hepcidin, ferritin, TfR, and
DMT1, and raising the expression of FPN-1

[142]

Resveratrol
In vitro human β-thalassemic-erythroid

cells; in vivo in β-thalassemic mice
(Hbbth3/+)

Reduction in ineffective erythropoiesis,
increase in hemoglobin levels, and reduction

in oxidative stress in circulating red cells
[140]

Myricetin In vitro HepG2 cells; HEK293 cells;
C57BL/6 mice

Inhibition of hepcidin expression in vitro;
and reduced hepatic hepcidin expression,

decreased splenic iron levels, and increased
serum iron levels in vivo

[143]

Curcumin C3H/HeNCrl mice fed with different
amounts of iron and curcumin

Decreased iron levels in blood, liver, bone
marrow, and spleen, induced TfR1, and

repressed ferritin and hepcidin
[65]

Quercetin,
quercetagetin,
and patuletin

Sprague Dawley rats fed with low-iron
diet for 20 days, followed by a 30-day

treatment with 50 mg kg−1 ferrous sulfate
supplement combined with quercetin,

quercetagetin, and patuletin

Improved hematological parameters and
increased splenic tissue availability of iron

and ferroportin expression
[141]

Curcumin In vitro T51B cells
Repression of iron-dependent generation of

ROS and inhibition of intracellular iron
toxicity

[62]

Curcumin
Sprague Dawley rats receiving iron and

curcumin supplementation in
drinking water

Reduction in iron overload-induced lipid
peroxidation and reduction in oxidative

stress in the liver and spleen
[136]

Curcumin In vitro LLC-PK and NRK52E cells Stimulation of heme-oxygenase1 expression [144]

6.2. The Gut Microbiota Level

The data that have been obtained from clinical practice indicate that oral iron supple-
ments may have a deleterious effect that is related to inflammatory bowel disease patients
(IBD, i.e., ulcerative colitis and Crohn’s disease) with increased intestinal inflammation,
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thus, intravenous infusion is the recommended strategy [145,146]. This observation can
be explained in light of the knowledge that iron availability is an important limiting fac-
tor for gut bacterial proliferation, and that less than 20% of orally supplemented iron is
absorbed in the duodenum, while the rest becomes available for the intestinal microorgan-
isms. As mentioned previously, the host response to inflammation accounts for numerous
strategies that are aimed at limiting iron availability. Among these, an important role is
displayed by the iron-chelating Lipocalin 2 (LCN2), which is a protein that is produced
by enterocytes, hepatocytes, macrophages, neutrophiles, and myeloid cells that can limit
microbial overgrowth.

At the intestinal level, LCN2 is mostly expressed by epithelial and myeloid cells and
shows a very strong affinity toward the bacterial siderophores and a strong bacteriostatic
function, since its binding to siderophores, such as enterobactin, inhibits iron acquisition
by the bacteria, therefore limiting their growth. A lack of LCN2 results in gut dysbio-
sis in Lcn2−/− mice [147], and, under intestinal inflammation conditions, it facilitates
the growth of pathogenic bacteria and a severe colonic inflammation status. LCN2 may
therefore shift the microbial community towards a beneficial milieu in the case of chronic
intestinal inflammation [148,149]. However, the pathogens that do not strictly rely on
enterobactin-mediated iron acquisition can gain an advantage from LCN2-mediated com-
mensal growth [25]. Furthermore, increased levels of LCN2 have also been associated with
pro-inflammatory conditions, insulin resistance, and obesity-related disorders [148]. Iron
availability at the intestinal level can be affected by both the commensal bacteria and by
the dietary components. In fact, with their abilities to capture iron, the commensal bacteria
share iron among themselves and with the human host [150,151]. Furthermore, the bacteria
can indirectly improve the iron availability by enzymatically degrading the iron chelators,
such as tannins or phytates [152]. In addition, dietary components such as ascorbic acid
and organic acids (citric acid, malic acid, etc.), both deriving from the diet or as by-products
of bacterial metabolism (lactic acid and propionic acid), can improve the iron bioavailability
and bio-accessibility [153].

Polyphenols, which are characterized by well-known iron-chelating abilities, can play
either the role of antimicrobial agents [154] or as growth promoters of some bacterial
species [155,156]. This could be also explained by the very limited bioavailability of
polyphenols; in fact, while only a small percentage of the total intake is absorbed in the small
intestine, the vast majority of it can reach the lumen of the large intestine and can interact
with the gut microbiota [157]. Considering the relationship between the polyphenols and
iron, DMT1 fails to transport the polyphenol–iron complex into the epithelial cells, and,
in this way, the polyphenol–iron complex reduces the iron availability in the intestinal
lumen, impairing the gut microbiota growth. This aspect should be considered during
intestinal inflammatory events that are associated with microbial dysbiosis, because the
iron sequestration that is mediated by iron–polyphenol complexes could be an effective
strategy to deprive the gut microbial species of a crucial supply. Furthermore, polyphenols
can be the substrate for the growth of some microbiota species, and not others, and the by-
products deriving from the microbial metabolism and biotransformation can have effects
on the host [5,158] (Figure 2).

In in vitro fermentation and in vivo experiments, increased dietary iron reshapes the
gut microbiota composition, with reduced inflammatory responses, increased toxic metabo-
lites, and bacterial-virulence-associated pathways. Such changes therefore predispose
the system to an increased risk of infections, the development of a dysbiotic phenotype,
and a predisposition to disease [159,160]. Commensal species, such as lactobacilli and
Bifidobacterium, have been shown to have lower iron requirements compared to other
pathogenic strains belonging to Enterobacteriaceae (e.g., Salmonella), Yersinia, Pseudonomas,
E. coli, and Clostridium (e.g., C. difficile) [161,162]. Some lactobacilli species, such as
Lactobacillus plantarum, have been found to be able to grow in iron-restricted media [163].
Lactobacillus sakei has shown a complete machinery for iron sequestration and metabolism
but does not require complete dependence on iron to grow; although, the iron sources en-
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hance its survival rate [164]. Some Bifidobacteria strains antagonize Salmonella Typhimurium
and pathogenic E. coli in vitro by sequestering and subtracting the iron from their
growth [165]. The non-pathogenic E. coli strain Nissle utilizes an LCN2-resistant salmoche-
lin to acquire iron and in such a way that it is able to compete with Salmonella [166,167].
Despite these observations, the studies on the changes in the composition of gut microbiota
following iron supplementation are insufficient and do not allow for whole generalization.
In many studies, iron supplementation has been reported to either to increase, reduce, or
have no effect on the different microbiota genera [168–170], according to the previously used
models. However, consistent data are available to date regarding mostly Lactobacillaceae and
Bifidobacteriaceae, which decrease upon iron supplementation [159,160,169,171]. In this con-
text, the presence of polyphenols in the gut environment could change the iron availability
for the gut bacterial species; although, in an iron-deprived environment, some pathogenic
strains producing siderophores could benefit and scavenge from the polyphenol–iron com-
plexes [171]. Apart from this possibility, polyphenols may act to prevent the iron uptake
of bacteria, therefore dampening the overgrowth of the intestinal bacteria. This could be
particularly important in the case of inflammatory conditions that are affected by dysbiosis,
as in IBD; however, future studies will be required in order to understand if a polyphenol-
enriched diet may be integrated with probiotic supplements to better support the growth of
the correct microbiota. In this regard, it is important to underline that microbial metabolites
have a crucial role in intestinal pathogenesis; however, recent evidence has shown that they
are also involved in host iron absorption and metabolism. Butyrate, diaminopropionate,
and reuterin can act on the duodenal enterocytes to reduce iron absorption through HIF-2α
activity. Moreover, these metabolites reduce the expression of intracellular iron storage
proteins, such as ferritin. These metabolites are known to be produced by bacteria of the
Lactobacilli genus, and others, and are part of the short-chain fatty acids (SCFAs) class.
Thus, they can have a dual role in the host. They can reduce and modulate excessive
inflammatory responses and, at the same time, affect iron absorption. Interestingly, this can
potentially be employed in probiotic formulations that are used to treat iron overload, or in
hemochromatosis to reduce body iron concentrations and excessive inflammation [172].
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Iron might have a role in the modulating effects of bacterial-derived SCFAs [173]. The
use of an iron-deficient diet in rats reduced butyrate- and propionate-producing bacteria
compared to the control animals [174], which might be due to the need for iron by the
enzymes that are involved in SCFAs synthesis. Even though the iron levels need to be kept
low in order to not incur excessive inflammation, it is also necessary to feed enough of this
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microelement to the “good” bacteria, since they can also chelate it and reduce its availability
to the pathogenic species. Streptococcaceae, Pesteurellaceae, and Methanobacteriaceae were
found to be involved in the metabolism of histidine from imidazole propionate, and this, in
turn, impairs the insulin signaling in the liver and the adipose tissue [175].

In general, iron and microbiota share a role in modulating the host’s immune system
and physiology; microbes fight over iron ions to grow, stealing them from each other and
from the enterocytes, while becoming deprived of the host through LCN2 and lactoferrin.
While an excess in iron concentration can favor the growth of pathogenic bacteria and
induce the onset of several diseases, the right amount of this ion is necessary for eubiotic
bacteria for their production of metabolites that are beneficial to the host. In this interplay,
polyphenols intervene to chelate more iron and reduce its bioavailability to the pathobionts.
The iron is then metabolized by other bacteria that produce health-promoting molecules.

7. Polyphenols as Prebiotics—Chelating Iron to Select Beneficial Bacteria

The iron-chelating activity of polyphenols shapes the intestinal microbiota and reduces
dysbiosis. The new populations that arise are beneficial to the host, as they can further
boost the polyphenol anti-inflammatory effects through the production of polyphenol
derivatives [176]. An example of this is the production of bacteria-derived metabolites,
e.g., succinate by some genera of Lachnoclostridium, and this process has shown positive
improvements in the healing of inflamed mucosa; additionally, polyunsaturated fatty acids
can be produced by the intestinal bacteria [177]. These bacteria genera were often seen to
increase after treatment with polyphenol-enriched diets.

To this extent, polyphenols and iron-chelating molecules can be employed as prebiotics,
using their iron-depriving ability to reduce pathogenic bacteria, while, at the same time,
favoring the thriving of beneficial species that use the unabsorbed polyphenols to produce
other anti-inflammatory compounds [178].

Over time, many bacteria genera have been studied in order to observe how they me-
tabolize polyphenols and what they can produce. Lactobacilli can use mulberry polyphenols
to produce chlorogenic, caffeic, and ferulic acid metabolites [179]; Bacteroides can convert
rutin to quercetin [180]; and Bifidobacteria can also use sea buckthorn to synthetize caffeic
acid [181]. Firmicutes of the Eubacterium, Clostridium, and Flavonifractor genera can metab-
olize flavonols to obtain SCFAs and their derivatives [182]. Many other bacteria genera
have already been tested in vitro in order to observe what pathways are involved in the
metabolism of polyphenols and what enzymes could be employed directly to convert the
natural molecules into more powerful bioactive compounds. This research area is critical in
the production of new, healthier prebiotic formulations that can be commercialized in the
next years [183,184]. Other bacteria of the Akkermansia genus were found to be able to me-
tabolize anthocyanins and increase insulin sensitivity [185], and fecal microbial enzymes are
able to catalyze polyphenol digestion. Bacteria can break phenolic rings and demethylate
and dehydroxylate polyphenols in order to obtain smaller acids and aldehydes.

Furthermore, the gut microbiota transforms ellagic acid into urolithins [186]. They
can also act on dietary lignans to produce molecules such as enterodiol and enterolactone
through a series of reactions that are orchestrated by several bacterial communities [187].
While this is only the tip of the iceberg, new studies are needed in order to discover more
bacteria, ideally at a species or strain level, that can transform and boost polyphenol activity
and suppress dysregulated inflammation.

Finally, polyphenols’ anti-inflammatory role has been demonstrated by numerous
reports, with most of them reporting their ability to suppress IL-6 secretion. The axis
between IL-6 [129,130,188,189] and the hepatic production of several iron-related acute-
phase proteins has been previously discussed [29]. Thus, polyphenols may have a dual
role, supporting homeostasis during healthy periods and dampening inflammation and
dysbiosis during chronic inflammation.
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8. Conclusions

The iron-chelating abilities of polyphenols can help to explain, at least in part, their
antioxidant and anti-inflammatory properties. Such iron-binding properties can also be
involved in anti-tumorigenic activities, since polyphenols can reduce the iron availability
for cancer cells and have cytotoxic activity towards cancer cells by behaving as pro-oxidants
through iron–Fenton reactions [63,65,190–192]. Although the presence of specific chelat-
ing sites in the polyphenol structure has been reported to be important to explicate their
iron-chelation activity, we should take into account that these phytochemicals are deeply
transformed (i.e., glycosylated, methylated, acylated, hydroxylated, etc.) before their stor-
age in the plant tissues. Therefore, the iron-chelating properties require in vivo conditions
that are favorable to set free the chelating sites. Our need of further studies to clarify the
axis between polyphenol–iron-metabolism-inflammatory mediators, and the interplay be-
tween polyphenols, iron availability, and microbiota, is clear from this review. Such studies
are complicated by the study design and the data interpretation since they are strongly
dependent from the adopted model, the iron status, and the iron form (non-heme/heme),
and because the interaction between the host, the iron metabolism, and the bacterial iron
regulation is not always predictable. Targeting bacteria-specific iron uptake, promoting
commensal bacteria, and optimizing iron availability for the host may improve therapeutic
and nutritional approaches in the context of gut inflammatory diseases.

Author Contributions: Conceptualization, A.S. (Aurelia Scarano), B.L., F.B., S.D.S., G.V., A.S.
(Angelo Santino) and M.C.; writing—original draft preparation, A.S. (Aurelia Scarano), B.L., F.B.,
S.D.S., G.V., A.S. (Angelo Santino) and M.C.; writing—review and editing, A.S. (Aurelia Scarano), B.L.,
F.B., S.D.S., G.V., A.S. (Angelo Santino) and M.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Laddomada, B.; Colella, G.; Tufariello, M.; Durante, M.; Angiuli, M.; Salvetti, G.; Mita, G. Application of a simplified calorimetric

assay for the evaluation of extra virgin olive oil quality. Food Res. Int. 2013, 54, 2062–2068. [CrossRef]
2. Pasqualone, A.; Summo, C.; Laddomada, B.; Mudura, E.; Coldea, T.E. Effect of processing variables on the physico-chemical
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